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Abstract
Over the past two decades, a number of mathematical and computational models have been
developed to study different aspects of angiogenesis that span the spatial and temporal scales
encompassed by this complex process. For example, models have been built to investigate how
growth factors and receptors signal endothelial cell proliferation, how groups of endothelial cells
assemble into individual vessels, and how tumors recruit the ingrowth of whole microvascular
networks. A prudent question to pose is: “what have we learned from these models?” This review
aims to answer this question as it pertains to angiogenesis in the context of normal physiological
growth, tumorigenesis, wound healing, tissue engineering, and the design of therapeutic strategies.
We also provide a framework for parsing angiogenesis models into categories, according to the
type of modeling approach used, the spatial and temporal scales simulated, and the overarching
question being posed to the model. Finally, this review introduces some of the simplification
strategies and assumptions used in model building, discusses model validation, and makes
recommendations for application of modeling approaches to unresolved questions in the field.
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Introduction
Angiogenesis is a complex process, whereby existing microvessels give rise to new
capillaries (via sprouting) that are capable of delivering additional oxygen and nutrients to a
growing, injured, or inflamed tissue. This process occurs during normal growth and
development and in pathological adaptations, such as embryogenesis, tumorigenesis,
peripheral arterial disease, diabetic retinopathy, and wound healing. Angiogenesis is
complex in that it relies on the precise coordination of different cell types, a number of
different cellular behaviors (i.e. proliferation and migration), and biomechanical and
biochemical signals that operate locally (i.e. at cell-cell contact interfaces) and across
distances spanning hundreds of microns in the tissue (i.e. diffusion of VEGF). The outcome
is a remodeled microvascular network that contains a new cohort of capillary-sized vessels.
At the tissue-level, the new vessels are able to augment blood flow and oxygenation to the
extent required by the metabolic demand of the tissue or induced by the pathology (e.g.
tumor). Since the mid 1900’s, a number of experimental models have been developed to
study both physiological and pathological angiogenesis [9;26]. Within the past two decades,
the application of mathematical and computational models have supplemented experimental
approaches and enhanced our understanding of this complex process.
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This review will summarize the types of questions that mathematical and computational
models of angiogenesis have been designed to address, overview commonalities and
differences in different modeling approaches, and highlight the key advances in
understanding that mathematical and computational models have contributed to the field.
We will also describe simplification strategies and common assumptions of published
models, discuss the importance of and techniques for model validation, and bring to light
some unanswered questions in angiogenesis that could be addressed by mathematical and
computational models in the future.

Modeling the different biological scales of angiogenesis
One way to parse the existing set of published models is to categorize them according to the
spatial scale(s) that they were developed to encompass (Table 1). While some models have
focused on signaling phenomena at the level of a cell’s membrane-bound receptors [20],
others have studied microvascular network remodeling at the whole tissue level [23].
Another way to parse the existing set of published models is according to the temporal
scales that they were designed to simulate. Some models, for example, have simulated
biological events on the order of minutes [8], while others have considered processes that
occur over weeks [11]. The distinguishing factor for any model, however, is the central
question that the model was developed to investigate, and ultimately, it is this motivating
question that serves to define the scope of the spatial and temporal scales included in the
model.

Recently, “multi-scale” models have incorporated both biomechanical and biochemical
phenomena and accounted for their interactions across spatial and temporal scales [8;18;23].
These models are proving to be powerful tools for the study of angiogenesis, which is
inherently a multi-scale process, because their integration of single-cell, multi-cell, and
tissue-level/microvascular network-level phenomena expands the number and types of
questions that they can be used to answer. We emphasize multi-scale models in this review,
as we view this type of modeling approach as offering tremendous additional benefit in
helping to address important unanswered questions in the field of angiogenesis and
microvascular remodeling.

Although this review focuses on mathematical and computational models of angiogenesis
(i.e. capillary sprouting from existing vessels), there are also references to models of other
types of microvascular growth and adaptation, including intussusception, microvascular
stabilization, arteriogenesis, and vasculogenesis. Computational models of in vitro
vasculogenesis have also been developed to study the interactions of endothelial cells and
how they give rise to new vascular structures in culture. This process is particularly relevant
to recent tissue engineering efforts to fabricate microvascular networks ex vivo, and we
review some models of in vitro vasculogenic processes, as well.

Types of modeling approaches
Before we overview the different physiological and pathological settings where
angiogenesis modeling has been employed, we briefly describe different types of modeling
approaches from a mathematical and computational standpoint. These types of modeling
approaches are not mutually-exclusive; a model can include one or more of the following
approaches, and in subsequent sections we review a number of models that combine two or
more of the following approaches.

One type of modeling approach is continuum-based modeling, where the system being
modeled is approximated as a continuous series of entities or events. In continuum
modeling, the individual parts are very similar to their nearest neighbor, and variation across
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the system is accounted for by gradual transitions lacking discontinuities. In the context of
angiogenesis modeling, continuum models ignore details of the constituents (e.g. cell-level
details) and new capillary growth, for example, is often modeled as changes in vascular
density at the network level [12]. Continuum models are usually implemented by solving
systems of differential equations that describe physical phenomena as being a continuous
spread in space and/or time.

Other types of models utilize a discrete approach, where the entities being modeled (e.g.
endothelial cells) and their unique behaviors (e.g. proliferation) are explicitly represented.
Discrete models consider increments of time and space as distinct entities and the objects
within the environment as individual, unique units. Discrete models of angiogenesis, for
example, account for the behaviors of individual endothelial cells [7;28]. Discrete models
are often implemented by solving systems of differential equations at discrete locations (i.e.
points on a 2-D grid) or by using computational algorithms where individual behaviors are
explicitly modeled according to logic algorithms using discrete event simulators (e.g. agent-
based modeling).

Stochastic modeling approaches use probabilities to define biological phenomena. These
models explicitly accommodate the randomness associated with biological processes by
using probability distributions to dictate the probable outcomes of simulated events [27].
Stochastic modeling assumes that random variation and fluctuation in the system dominates
the overall behavior of the system.

Deterministic models, unlike stochastic modeling approaches, presume that later states of
the system are determined by previous states of the system. In this way, deterministic
models predict actual outcomes, and not just probable outcomes. In a deterministic model, if
all inputs are specified and the changes in the states of the system are prescribed
accordingly, the outcome will always be the same, unlike in a stochastic model where
random variability will give rise to alternative outcomes.

The type of modeling approach (or combination thereof) that is used to simulate a particular
aspect(s) of angiogenesis, much like the spatial and temporal scale of the simulation, is
usually selected based on the question that the model seeks to address and the types of
available data with which to construct the model. In this way, the type of modeling
approach(s) utilized in a particular model is important, but certainly secondary to the
biological facets of the overarching study.

Insights offered by mathematical and computational models of
angiogenesis

The majority of this review is focused on summarizing specific examples of previous
insights provided by angiogenesis models and abstracting these examples into more generic
types of insights that can be expected from performing such analyses (Box 1). Mathematical
and computational models of angiogenesis have generated basic science understanding
about the processes of capillary assembly and morphogenesis during development, growth,
and pathological insults. Models have also been developed with the intention of supporting
applied biomedical research and development--for the purpose of identifying new
therapeutic targets and clinically relevant approaches for either inhibiting or stimulating
angiogenesis. The impetus for such models has included the identification of putative drug
candidates or drug combination strategies and the engineering of vascularized tissue
constructs ex vivo. The following sub-sections are organized according to the central
physiological or pathological settings in which the process of angiogenesis was studied and
the overarching questions that motivated the development of the models.
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Endothelial cell migration
One of the most frequently cited angiogenesis models has been developed by Stokes and
Lauffenburger [27]. Their discrete mathematical model simulated individual cell movements
by considering cell motility and chemotaxis as partially stochastic events. They used the
model to assess microvascular endothelial migration in the presence or absence of aFGF.
They validated the model by conducting experiments and comparing the mean square
displacements of each cell. In the simulation, adding aFGF increased cell migration speed by
decreasing persistence time, suggesting that the intracellular mechanisms that control the
rate of movement may be decoupled from those that govern the direction of movements.
Importantly, this work demonstrated that it is possible to estimate chemotactic sensitivity by
measuring the dynamics of population-level migration. More recent models of cell migration
have used force-based dynamics approaches to simulate internally generated forces and
external traction forces, as well as matrix compliance and ECM stiffness [31].

In vitro vasculogenesis
A recently developed 2-dimensional discrete model by Merks et al., 2006 simulates the
process of in vitro vasculogenesis, or the assembly of human umbilical vein endothelial cells
(HUVECs) into networks of connected cells in a Matrigel environment [22]. This Cellular
Potts model represents each endothelial cell discretely, and an effective energy function
describes the state of the cells as they behave according to a small set of phenomenological
rules: 1) endothelial cells secrete a morphogen (angiogenic factor, such as Vascular
Endothelial Growth Factor, VEGF165), which diffuses over the simulation space and decays
producing local gradients, 2) endothelial cells extend filopodia up morphogen gradients, and
3) endothelial cells rapidly elongate after contact with the extracellular matrix. The authors
use the model to study how cell-level behaviors impact tissue-level shape changes, and they
validate their model by qualitative comparison to in vitro Matrigel experiments. The
simulation suggests that the elongated shape of the endothelial cells is essential for correct
spatio-temporal vasculogenesis in vitro. This prediction is consistent with a published study,
in which it was reported that VEGF induces and elongated cell shapes [10]. The authors
infer from their model that ECM-binding form of VEGF (VEGF189 or VEGF206) may be the
predominant signaling molecule for vasculogenesis, since the generation of stable vascular-
like in vitro patterns of simulated endothelial cells required a morphogen that diffused
quickly and was quickly inactivated (i.e. a “short-range” signal). Thus, this model was
useful in linking observed patterning phenomena at the tissue-level to underpinning cell-
level behaviors and suggesting how the differential presentation of a growth factor (matrix-
bound or diffusible) may functionally impact this particular vascular assembly process.

Tumor angiogenesis
The vascularized phase of tumor growth has dominated as the most common context in
which to develop mathematical and computational models of angiogenesis. Many of these
models have built upon one another or evolved over time in a series of publications. While
early models were focused on accurately replicating key observed behaviors during this
process, more recent models have been able to test specific hypotheses and suggest useful
strategies for drug development.

One of the most highly cited early models of tumor angiogenesis is a dynamic model of
endothelial cell migration that predicted, for the first time, that chemotaxis is needed to
orient vascular growth toward the tumor [28]. Since then, a number of models have built on
the chemotaxis model by simulating a diffusible tumor angiogenesis factor (TAF), which is
likened to the biologically relevant growth factor, VEGF, that acts as a potent chemokine for
endothelial cells [6;25].
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Of particular interest in the field of tumor angiogenesis is the temporal transition between
the avascular growth phase and the vascular growth phase of the tumor. Hogea et al., 2006
developed a 2-dimensional computational framework based on a Cartesian mesh/narrow
band level-set method, of the avascular and vascular phases of tumor growth, and the
simulation is capable of simulating when the transition occurs [12]. The interactions of the
tumor, which can be simulated as having spherical symmetry or arbitrary geometries, with
the surrounding vascular tissue are explicitly incorporated, and their model considers the
effect of TAF, which diffuses into the healthy surrounding tissue and simulates the capillary
network surrounding the tumor to grow into it. The model predicts that the spatial
arrangements of pre-existing capillaries in the surrounding tissue dictate a more complex
tumor boundary orientation in the moderate vascularization regime, but during the high
vascularization regime, the tumor boundaries are less complex.

In addition to probing the spatio-temporal events that lead to the transition, or switch,
between avascular and vascular tumor growth, models have been developed to elucidate the
tissue-level impact of different types of microvascular adaptations on tumor growth. For
example, Komarova and Mironov, 2005 developed a model of tumor angiogenesis using a
system of ODEs, where the key dependent variables were tumor mass and the number of
bone marrow-derived endothelial progenitor cells (EPCs) [16]. They use their model to test
the hypothesis that angiogenesis-driven tumorgenesis is different than vasculogenesis-driven
tumor growth. Their model assumes that both processes, angio- and vasculogenesis, can
occur within the same simulated tumor, and this allows the authors to predict what happens
if either type of vessel growth dominates over the other. Their model predicts that if
angiogenesis dominates, tumor mass will grow as a cubic power of time and bone marrow-
derived EPCs remain at a constant level in the tumor. However, if vasculogenesis
dominates, tumor mass is characterized by linear growth when the bone marrow has been
depleted of EPCs. The authors validate their model by citing papers that have
experimentally measured the growth kinetics of tumors. There is evidence for both linear
growth rates and cubic growth rates, suggesting that more refined experiments with multiple
measurement time points may be fruitful in helping to determine whether angiogenesis or
vasculogenesis drives tumor vessel growth.

Other models have simulated the effects of more specific, physiologically relevant growth
factors on tumor angiogenesis, as opposed to the effect of TAF, which is a generic
endothelial cell chemokine. For example, an ODE-based model by Arakelyan et al., 2002
considers tumor cell proliferation, angiogenesis, and vessel stabilization and maturation in
order to predict the effects of targeting these different processes, alone and together, with a
cocktail of drugs [2]. They investigate the role of four growth factors, including Ang-1,
Ang-2, VEGF, and PDGF, and model the influence of anti-angiogenesis (VEGF production
inhibitor) and anti-maturation (Ang-1 production inhibitor) treatments targeted at these
molecules. Administered alone, these simulated therapies only partially attenuated tumor
growth. Tumor size continued to increase nonlinearly, even when the drug doses were
increased and the treatment period was extended. Dual treatment with anti-VEGF and anti-
Ang-1 resulted in prolonged suppression of tumor growth and a significant linear decrease in
the average size of the tumor. These results were not dependent on initial conditions, but
interestingly, the efficacy of anti-VEGF therapy depended on the extent of initial vessel
maturation at the onset of treatment, whereas, the efficacy of anti-Ang-1 treatment and
combination treatment was independent of the degree of initial vessel maturation.

Gevertz and Torquato, 2006 developed a 2-dimensional discrete cellular automata model of
early brain tumor growth that also couples angiogenesis with simulated changes in tumor
mass, allowing the interdependence between tumor growth and vascular network expansion
to be investigated quantitatively [11]. Each agent in the simulation represented 50 biological
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cells, and a system of reaction-diffusion equations was used to calculate regional
concentrations of VEGF, Ang-1, and Ang-2. The model predicted that the presence of
VEGF and the angiopoietins are both sufficient for allowing unbounded tumor growth, but
blocking VEGF effectively inhibits angiogenesis and limits tumor size to 1–2 mm.
Interestingly, the model also suggested that tumor expansion can occur in a well-
vascularized environment, even when angiogenesis is inhibited, which may have profound
implications when it comes to the timing of anti-angiogenic drug administration.

Bauer et al., 2007 developed a cell-based model that also describes diffusion, uptake, and
decay of pro-angiogenic factors secreted by tumor cells and used it to understand the roles of
cell-cell and cell-matrix dynamics in regulating tumor angiogenesis [5]. The model
incorporates both discrete and continuous modeling approaches. A PDE describes diffusion,
uptake, and half-life decay of tumor-secreted VEGF, while a discrete lattice Monte Carlo
model (cellular Potts model), based on system energy reduction was used to describe
endothelial cell migration, growth, division, and adhesion, as well as ECM degredation. The
model simulates a number of cell-level phenomena, including (1) VEGF binding to VEGF
receptors on the endothelial cell surface, (as well as internalization and recycling of VEGF
receptors, although these events are not modeled explicitly), (2) VEGF-mediated cellular
activation, migration, and proliferation, and (3) proteolytic ECM degredation. However,
notably, the intracellular events are not modeled explicitly. Their rules for cell behavior do
not prescribe vessel branching or anastomosis explicitly, but these properties emerge from
the independent behaviors of the individual simulated endothelial cells. The authors use their
model to determine if the differential presence of matrix-bound vs. soluble VEGF results in
different vascular morphologies. The model suggests that differences in the ECM-binding
affinity of VEGF could affect the VEGF concentration profile and the presence of steep or
shallow VEGF gradients result in different capillary morphologies (narrow vessels vs. wider
vessels). They also use the model to determine if the location of the proliferating region of
cells within a capillary sprout (i.e. tip cells vs. stalk cells) has an impact on capillary
morphology and the rate of capillary sprout elongation. Their model shows that as the
proliferating region on the sprout stalk moves further from the sprout tip (toward the parent
vessel), sprout extension is more rapid due. Another important question that the authors
address with their model is to what extent the composition of the stroma (ECM density and
anisotropy) and the presence of other cells (i.e. tumor cells) influences angiogenesis. The
model predicts that local anisotropies in the stroma, such as variable matrix fiber density and
the presence of other tissue cells, influences sprout migration and morphology. Model
validation was accomplished by comparing simulated capillary sprout diameters (length and
cell width) to VEGF-induced sprout diameters measured experimentally, and the
comparison suggested a good match between model and experiment.

In addition to considering the role of the ECM as an important modulator of tumor
angiogenesis, Levine et al., 2000 built a model to study the initiation of capillary formation
(i.e. the onset of angiogenesis) in tumor growth with respect to the role of pericytes,
macrophages, and two hypothesized mechanisms of angiostatin protease inhibition [17]. The
model uses reinforced random walks to govern cell movements and Michaelis-Menten
kinetics to describe the catalysis of angiogenic factors into proteolytic enzymes by
endothelial cells. The degredation of the basal lamina by the active proteases is modeled
using a simple catalytic reaction. Angiostatin prevents the degradation of fibronectin in the
basal lamina, and its putative actions in modulating tumor angiogenesis were modeled in
two ways: as a direct inhibitor of protease and as a stimulator of endothelial cells to produce
a protease inhibitor. The model suggests that when angiostatin operates via inducing
endothelial cell production of protease inhibitor, it is more effective in redistributing
endothelial and pericyte cells and returns fibronectin to a uniform profile than when it acts

Peirce Page 6

Microcirculation. Author manuscript; available in PMC 2011 June 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



as a direct protease inhibitor. A secondary prediction is that angiostatin must be supplied
continuously in order to combat the stimulation of endothelial cells by chemotactic agents.

A recent model by McDougall et al., 2006, termed DATIA, or “dynamic adaptive tumor-
induced angiogenesis” model, simulates multi-scale phenomena impacting tumor
angiogenesis [21]. This model was inspired by an earlier continuous model of tumor-
induced angiogenesis [1], and integrates vessel growth with blood flow, such that blood flow
directly impacts capillary growth. Key assumptions of the model are that endothelial cells
migrate via random walk, tumor angiogenesis factor (TAF)-mediated chemotaxis, and
fibronectin-induced haptotaxis. The model operates in two stages, which are coupled
together via a single parameter, wall shear stress. A discrete simulation of individual
endothelial cell migration is paired with a continuum method to calculate blood flow
according to Poieusille’s law and vessel adaptations in response to shear stress, pressure, and
a metabolic mechanism. Vessel branching is dependent on a probability function that
considers the combined effects of local wall shear stress and TAF concentrations, such that
high values of wall shear stress in the presence of high local TAF concentrations lead to a
higher branching probability, whereas low values of one or both give rise to a lower
branching probability. To account for the two different timescales that impact blood flow
(seconds) and angiogenic sprouting (days), respectively, the authors devised a clever way of
running the two parts of the simulation separately and juxtaposing them together. During the
early time points of the simulation when the overall microvascular network is still relatively
small, capillary growth is simulated on a longer time scale, the simulation is paused when
new anastomoses form, and blood flow in the network is modeled on a shorter timescale
until a new steady state has been reached. This process is repeated for consecutive time
windows. However, as the simulated network of vessels (i.e. the number of individual
vessels) grows over time, flow simulation is performed at periodic intervals during the
growth process so as to keep the model computationally tractable.

The model predicts that shear stress-induced branching leads to the earlier formation of
dilated vessels close to the parent vessel. A sensitivity analysis was performed by changing a
few key physical parameters, such as cell-matrix interactions and endothelial cell haptotaxis,
and the results suggested an interesting therapeutically-relevant phenomenon: that reducing
the influence of haptotaxis leads to networks with less anastamoses and a delayed onset of
flow. The authors also used the simulation to quantify the abilities of different patterns of
vascular networks to transport blood, nutrients, and chemotherapeutic drugs into the tumor.
This analysis led to the identification of a therapeutic target—the manipulation of the
haptotactic response of the migrating endothelial cells. This was predicted to lead to a
capillary network characterized by reduced lateral migration and shear-induced branching.
Although tumors with this pattern of vascular network would have abundant access to
nutrients and therefore increased growth potential, they would also be susceptible to
chemotherapeutic treatments. This simulation prediction is also consistent with a current
hypothesis regarding the therapeutic manipulation of tumor vasculature: by remodeling the
tumor vasculature such that leaky tumor vessels become stabilized and abnormal vessel
network patterns become “normalized”, tumor growth and metastasis will be curbed [14].

To study how vascular network structures in normal tissues vs. tumors differ in terms of
their transport behaviors, Baish et al., 1996 developed an invasion percolation-based
network model [4]. Their model describes 2-D tumor vessel architecture in a murine dorsal
skinfold model using fractal dimensions, and assumes that vascular growth in tumors is
random and governed by local cues as opposed to global cues that are optimized at the tissue
level. The authors abstract general physical properties of tumor networks that are indicated
by a large sample of images and tumor types, and their stochastic method for generating
model networks allows them to reproduce the large variability in tumor vascular network
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architectures that is observed experimentally. The authors conclude that their model
generates more realistic representations of tumor vasculature architecture, with fewer large
avascular spaces relative to the number of smaller avascular spaces and higher geometrical
resistance due to increased vessel tortuosity.

Wound healing
Wound healing is a complex process that relies, in part, on angiogenesis. To better
understand the interactions of endothelial cell behaviors and macrophage-derived
chemotactic agents on dermal wound healing, Pettet et al., 1995 developed a continuum
model, a system of PDEs, that models the growth of new blood vessels in an experimental
rabbit ear wound model, which is approximated by the model as a 2-dimensional wound
[24]. The numerical simulations generate a normal wound healing response (successful
closure of the wound), as well as a dysfunctional wound healing response, as occurs in
chronic wounds. The model explores how the balance between chemotaxis, cell
proliferation, and cell apoptosis impacts the speed of healing. A negative feedback loop in
their model limits angiogenesis by regulating the rate at which new endothelial cells migrate
into the wound and the production of the pro-angiogenic factor, which is correlated with the
density of the vascular bed. If the vessel density increases beyond a certain threshold, the
macrophages cease to produce the pro-angiogenic-factor, which, in turn, reduces the extent
of new endothelial cells migrating into the wound bed. The simulations reproduce some
experimentally-observed features of the wound healing environment, including the
formation of a well-developed vascular network at the wound border, known clinically as
the “brush border”. The simulation identifies a maximum wave speed for the edge of the
healing wound, as well as limits on the vascular density of healed wounds. The model was
validated by comparing predictions to qualitative observations of wound healing in the
rabbit ear wound model.

Designing tissue engineered constructs
The development of tissue engineered constructs greater than approximately 1 mm3 is
limited by the necessity to overcome oxygen diffusion limitations. Thus, the development of
novel approaches for engineering microvascular networks ex vivo or inducing their ingrowth
upon implantation of the construct is imperative if ex vivo tissue engineering approaches are
to be realized in the clinical setting. In an effort to provide a quantitative, predictive analysis
tool for achieving this tissue engineering design goal, Jabbarzadeh and Abrams, 2007
recently developed a discrete model of VEGF-mediated endothelial cell chemotaxis through
a porous membrane in response to three different time and position-dependent VEGF
presentation strategies: (1) line source, (2) line source plus point sources distributed along
boundaries of the construct, and (3) line source plus release throughout the construct
boundary [13]. VEGF diffusion over 2, 6, and 10 days was simulated using standard
reaction-diffusion equations, and the model was used to address the central question: How
does VEGF transport inside the porous membrane regulate EC migration? Based on their
model predictions, the authors conclude that Strategy #3 leads to a microvascular network
that has a more uniform distribution over the area of the construct. The model also suggests
that longer release durations of VEGF lead to more extensive vascular coverage of the
construct. Likewise, a continuous release, even if it is at a lower release rate, sustains the
concentration of VEGF so that new vascular branches can form and vessel elongation can
continue into the construct. The model permits the quantitative evaluation of how key
parameters, including porosity and pore size of the membrane, and VEGF release rate,
location, and duration impact angiogenesis in a simulated tissue engineered construct.
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Corneal angiogenesis
A popular model for studying angiogenesis is the corneal pocket model, in which exogenous
growth factors can be supplied in a controlled manner to induce reproducible angiogenic
sprouting from the limbic vessels. This experimental model has also been the subject of a
mathematical model developed by Tong and Yuan, 2001 [30]. They developed a 2-
dimensional model of angiogenesis in the rat cornea, considering the diffusion of an
exogenously delivered pro-angiogenic factor, bFGF, and its activation of and uptake by
endothelial cells. The model accounted for the following processes: 1) release of
exogenously delivered bFGF from an implanted pellet, 2) diffusion of bFGF into the
interstitial space and uptake of bFGF by endothelial cells, 3) formation and growth of
angiogenic sprouts in response to bFGF, and 4) anatamoses between vessels. The model
excluded the effects of subsequent vessel remodeling via recruitment of perivascular cells
(smooth muscle cells and pericytes). The model used a system of 6 coupled PDEs that was
solved numerically using a finite difference method carried out on 2-D discrete meshes.
Since the formation of sprouts and direction of vessel growth were governed by stochastic
rules (i.e. probabilities), each simulation was repeated 10 times. The simulated time window
encompassed 12 hours. Although the simulation predicted rather intuitive relationships (e.g.
that a decrease in endothelial cell uptake of bFGF resulted in increases in vessel density,
number of vessel loops, and the speed of the advancing vascular front), the authors validated
their model by performing an extensive quantitative comparison of geometric parameters
(e.g. vessel lengths and numbers) to in vivo assays of corneal angiogenesis [3]. They also
performed a sensitivity analysis to the parameter, Smax, the rate constant of sprout
formation. By varying this parameter a factor of five above and below the baseline value,
they were able to establish that this parameter is a key modulator of the “brush border” that
has been observed experimentally in the cornea assay.

Impact of hemodynamics on angiogenesis and remodeling
Godde and Kurz, 2001 developed a vessel network-level model to probe the effects of
hemodynamics on angiogenesis and vascular remodeling. Their 2-D model was
implemented on an isometric grid in which simulated bifurcating vessels could proliferate or
regress based on random deterministic processes. Pressure, flow, and velocity distributions
in the network were considered, and the Fahraeus-Lindqvist effect was included. When a
shear-stress-dependent growth probability was incorporated, their model recapitulated
experimentally-observed interdigitation between the terminal branches of arterioles and
venules. Inclusion of pressure-dependent remodeling lead to a reduction in the number of
venules. The authors noted qualitative similarities to the remodeling patterns observed in the
network to chick chorioallantoic membrane.

Peirce et al., 2004, developed an agent-based model to study biomechanical and biochemical
phenomena impacting microvascular growth and remodeling at the tissue-level [23]. The
effects of altering circumferential wall stress on arterialization and the impact of focal
exogenous VEGF delivery on angiogenesis were modeled. The initial simulated vessel
network architectures were obtained directly from in vivo tissues in a small animal model
(rat), and the predictions of the agent-based model were validated against the actual
remodeling responses measured empirically. The independent validation suggested that the
module of rules governing cell behaviors was sufficient for quantitatively capturing key
network-level features of the multi-cell system.

The impact of flow on intussusceptive angiogenesis was modeled by Szczerba and Szekeley
[29]. Although their model ignores biochemical factors and oxygenation, it recapitulated
translumenal pillar formation and splitting of vessels in response to steady-state flow-driven
remodeling, and suggested that shear stress is the primary driving force of the
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intussusceptive remodeling under these conditions. Ji and Popel, 2006 developed a
computational model of muscle at a moderate and high oxygen consumption rates (i.e.
exercise) to assess how different modes of capillary growth, capillary sprouting vs.
intussusceptive splitting, impact oxygen transport [15]. The model predicts that under
moderate oxygen consumption rates, these two modes of angiogenesis give rise to similar
volume fractions of hypoxic tissue. However, at high oxygen consumption rates where the
pressure drop from the arteriole to venule is equal, the splitting regime generated the
smallest volume fraction of hypoxic tissue. Interestingly, the sprouting network delivered
oxygen more homogeneously and more extensively throughout the muscle when total blood
flow was normalized. This model is particularly interesting because it gives quantitative
predictions of phenomena that are currently impossible to approximate in vivo.

Angiogenic growth factors
A series of molecularly-detailed models have been developed to study the role of the VEGF
receptors in physiological and pathological angiogenesis in response to various stimuli, such
as exercise [19], pathological levels of ischemia [18], and breast tumorigenesis [20]. Mac
Gabhann and Popel, 2006 developed a computational model that included, in addition to
VEGF and the VEGF receptors, Neuropilin-1, a non-signaling co-receptor for VEGF [20].
In this paper they extend a previous model to simulate in vivo VEGF transport and binding
in breast cancer and use the model to compare three different putative therapeutic
approaches (i.e. “drug interventions”) for inhibiting VEGF signaling via Neuropilin
manipulation: 1) blockade of Neuropilin-1 expression, 2) inhibition of VEGF-Neuropilin-1
binding, and 3) inhibition of VEGF-R/Neuropilin-1 coupling. The model describes the
system by a set of coupled nonlinear ODEs, which are solved to find the steady state-
concentrations of all the molecular species. The model simulates the 48 hours following
each of the three “drug” interventions, and all parameters were either obtained or estimated
from the literature. Importantly, their model predicts that targeting the same molecule (i.e.
VEGF) using different molecular-level strategies may result in different angiogenesis-
related outcomes with different levels of therapeutic efficacy. Specifically, the model
predicts that blocking VEGF-R/Neuropilin coupling may be the most effective strategy
because it effectively transforms Neuropilin into an endogenous anti-angiogenic co-receptor
that sequesters VEGF and prevents its signaling through the VEGF-R. An experimental
study has since confirmed the ability of a Neuropilin antibody to inhibit pathological
angiogenesis in the eye. This work also generated testable predictions, including the increase
in interstitital VEGF concentration in response to all three therapeutic manipulations. Thus,
the model was useful for assisting in the design of experimental studies in addition to aiding
in the design of therapeutic strategies.

In 2007, Mac Gabhann et al. developed a 3-D model of exercise-induced hypoxia in the rat
extensor digitorum longus (skeletal) muscle in order to approximate in vivo spatio-temporal
concentrations and concentration gradients of VEGF at the single cell level—information
that is impossible to obtain using currently available experimental techniques, and
information that is critical for understanding how cells sense and respond to growth factor
gradients in tissues [19]. Their model is multi-scale in that it integrates molecular details of
VEGF distributions with tissue-level details, including oxygen transport and blood flow.
Specifically, blood flow levels are calculated based on the microvascular network
architecture. The simulated hemodynamics also account for the Faraheus-Lindqvist effect
and variable hematocrit that occurs due to phase separation at microvascular bifurcations.
Tissue oxygenation levels, resulting from the hemodynamic calculations (blood flow) and
the oxygen consumption rate by myofibers, are determined by using a previously developed
model of the same tissue [15]. VEGF secretion rates, in turn, are calculated according to a
function that depends on local myocyte oxygen tension. VEGF transport within the ECM is
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described by mass balance equations, while the kinetics of VEGF binding to its receptor on
endothelial cells is calculated based on data obtained in in vitro studies with receptor
concentrations based on in vivo measurements. The majority of parameters were estimated
or obtained directly from the literature. Their model predicts that hypoxic muscle contains
large gradients of VEGF (spanning distances of single endothelial cells) and spatially
heterogeneous VEGF receptor activation levels. While longitudinal VEGF gradients along
the length of muscle fibers are considerable, the transverse gradients perpendicular to the
muscle fibers are ten times steeper. The authors suggest that this steep VEGF gradient,
predicted for the first time by their multi-scale model, may explain an important observed
behavior of capillary sprouting in muscle tissue: why sprouts bud off parent vessels at angles
perpendicular to muscle fibers.

More recently, this model has been used to investigate the effects of therapeutically
manipulating VEGF concentrations and gradients in the face of ischemic insult using three
different strategies: 1) VEGF gene therapy, 2) VEGF cell-based therapy, and 3) chronic
exercise, or upregulation of VEGF-receptor expression [18]. The model predicted that
exercise training causes increased VEGF secretion from hypoxic muscle fibers, as well as
increased VEGF receptor expression levels, and this combination of downstream events is
suggested to both elevate local VEGF concentrations and generate steeper VEGF gradients.
Thus, their model suggests that exercise is the most effective of the three stimuli for treating
peripheral arterial disease (PAD).

Challenges of modeling angiogenesis
As with any analysis technique, be it experimentally or theoretically-based, there are certain
challenges, caveats, and pitfalls that must be acknowledged and dealt with in a scientifically
rigorous manner if the data/predictions produced by the analysis are to be trusted. The next
section will overview some of the conceptual hurdles that arise when building computational
and/or mathematical models of complex biological processes. Although these are challenges
are not limited to angiogenesis models, we will use published models of angiogenesis to
showcase how modelers have attempted to overcome issues relating to systems-level
complexity, parameter identification, and model validation.

Model complexity, assumptions, and simplification strategies
Angiogenesis and related processes (e.g. microvascular remodeling, regression, and
intusussception) can be considered complex biological phenomena in that their systems-
level behaviors are dynamic, spatially heterogeneous, frequently non-linear, and they span
many orders of magnitude, both spatially and temporally. In order to construct models of a
complex process that generate meaningful and useful results (and are solvable and/or
computable), it is necessary to make assumptions about the system and to employ
simplification strategies. For angiogenesis modeling, these simplification strategies can be
broadly parsed into geometric simplifications, process simplifications, and temporal
simplifications. One type of geometric simplification is assuming a 2-dimensional geometry
for a 3-dimensional tissue structure by defining the boundaries of the model to simulate a
cross-sectional slice through the tissue. Another geometric simplification strategy is
abstracting the complex branching pattern of a microvascular network into a more regular
pattern that has attributes of the complex network (e.g. vessel length density) but does not
simulate the exact structure of the network on a vessel-by-vessel basis. An example of a
process simplification strategy is consolidating the number of growth factors in a model that
impact a certain process by focusing on a few key factors or by attributing key behaviors to
one “hypothetical” growth factor (e.g. TAF). A frequently employed temporal simplification
in angiogenesis modeling is the modeling of discrete timeframes during which key
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phenomena are thought to occur. Specific examples of these types of simplification
strategies that have been used in published models of angiogenesis are provided in Table 2.

Parameter identification
Another challenge in modeling any complex biological phenomena, including angiogenesis,
is the identification of suitable parameters—fixed or adjustable variables that quantitatively
dictate how the model will behave. Depending on the type of model (e.g. discrete,
continuous, stochastic, deterministic), there can be anywhere from one to hundreds of
parameters, and often these are derived from (or estimated from) published experimental
data. Some parameters, are difficult, if not impossible to measure in vivo using currently
available experimental techniques, but they may be attainable in in vitro assays. It is,
therefore, quite common for an angiogenesis model builder to cull parameter values from a
combination of experimental assays and techniques. On occasion, model parameters will be
determined by making incremental adjustments in their values until the model output “fits” a
realistic or observed experimental output. The abundance of published angiogenesis models
use a combination of fit and literature-derived parameters [11;17], although there are some
models that rely exclusively on published parameter values [23]. It can be quite informative
to perform a sensitivity analysis, whereby the levels of certain parameters are adjusted
systematically in order to quantitatively appreciate the impact that different parameters will
have on generalized outcomes of the model [5]. Quite often, sensitivity analyses are capable
of providing insights into how the system functions as a whole, identifying targets for
therapeutic manipulation, and serving as reality-checks for the biological accuracy of the
model.

Model validation and verification
To assess the predictive power of a model (i.e. how realistically it recapitulates the
biological process), it is necessary to validate the model. Model validation is accomplished
by comparing model outputs to experimentally observed phenomena. This comparison can
be accomplished using qualitative and/or quantitative metrics, although the latter is arguably
more rigorous [5;23]. A noteworthy distinction is the difference between model validation
and model verification. Model verification is the process of confirming that the model is
“working” as the model builder expects it to—that the equations are accurately
implemented, that model outputs match what is expected based on the model inputs, that the
model was built “correctly”. When verifying a model it is perfectly suitable to compare
model outputs to the data set that was used to construct the model (i.e. model inputs), with
the expectation that they will match one another if the model has been constructed properly.
In contrast, the process of validating a model requires that independent data sets be used for
model construction (i.e. model inputs) and validation. Thus, validating a model answers a
fundamentally different question: “Does the model generate outputs that are realistic or
observed in nature.” It is immediately apparent that the reliance of models on experimental
data is critical for each stage in a model’s development—from construction, to verification,
to validation. Without intimate pairing of theoretical and experimental approaches
throughout a models inception and implementation, the model’s utility and applicability is
undermined.

Conclusions
We have overviewed different types of mathematical and computational modeling
approaches that have been employed in the study of angiogenesis and summarized an array
of published models aimed at answering different questions relevant to angiogenesis-related
processes. A main focus of this review has been to showcase how these models have
contributed to either basic understanding of angiogenesis or improved design of
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angiogenesis-targeted therapies. We have also discussed some of the challenges associated
with constructing and utilizing mathematical and computational angiogenesis models.

Arguably, theoretical models of angiogenesis are as diverse as their experimental
counterparts, and the type and value of information they provide are equally as varied. We
submit, however, that the value of modeling a complex biological process, such as
angiogenesis, is not simply in the end result—a validated model that (perhaps to some
extent) recapitulates, or predicts, relevant or observed phenomena. Rather, the model
building process itself adds value to the discovery process by pinpointing voids in
understanding, suggesting new experiments, providing an additional framework for
hypothesis testing, and by generating new hypotheses that have quantitative basis and may
not be immediately apparent from experimental pursuits alone. With the ability to track the
individual behaviors of thousands of cells, perform in silico “knockout” experiments that are
technically infeasible genetic manipulations experimentally, and perform high-throughput/
low-cost sensitivity analyses to identify key parameters in complex systems, mathematical
and computational modeling serve as additional quantitative “assays” that complement the
available experimental models.

With the explosion of research in this area over the last twenty years, the field is rich in
experimental data and yet critical, long-standing questions remain: How does the multitude
of identified pro- and anti-angiogenic growth factors and their receptors orchestrate
angiogenesis? How do vascular support cells and circulating cells interact with endothelial
cells during angiogenesis and remodeling, and what biochemical signals modulate their
interactions? What role do mechanical signals play in modulating capillary sprouting?
Answering each of these questions relies on obtaining information—regarding spatio-
temporal gradients of growth factors, single cell trafficking patterns, and high-resolution
appreciation of the hemodynamic and interstitial flow environments--that cannot completely
be assessed using existing experimental approaches alone. Mathematical and computational
models, and particularly multi-scale models that are emerging with capabilities to integrate
biological processes that span spatial and temporal scales across orders of magnitude, can be
constructed in such a way complement experimental studies and address some of these
important, unanswered questions in our field.
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Box 1

Abstracted key questions that prior models of angiogenesis have been developed to
answer

• If there are alternate, competing, or conflicting hypotheses, which one should be
pursued and/or how should the hypothesis be refined?

• What experiments should be conducted next?

• What are the key variables/parameters in the system and which ones are
necessary, sufficient, or unnecessary for the system to function properly? What
parameters are targets for therapeutic manipulation?

• To variations in which parameters is the system robust? To variations in which
parameters is the system sensitive?

• What is the predicted set-point of variables that are difficult to quantify
empirically, such as the in vivo concentration of growth factors?
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Table 1

The biological scales encompassed by published mathematical and computational models.
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Table 2

Types of simplification strategies and examples of each from published models of angiogenesis.

Geometric Process Temporal

Initial parent vessel configuration is a single
straight line vessel [13;21;27]

Treat cell as a black box; ignore specific
intracellular signaling events [5;23]

Model blood flow through the network at
steady state [8]

Model considers a two-dimensional cross-section
through a spherical tumor [11] or a two-
dimensional (flattened) cornea [30]

Simplify/reduce the number of
angiogenic growth factors [13;24]

Cell behaviors (e.g. migration, proliferation)
are modeled on a coarse (e.g. 6-hour) time
scale [23;31]

Tree-like architecture of network is sacrificed at
the expense of fractal analysis [4]

Simplify the number of cell types (e.g.
consider endothelial cells exclusively)
[13;24]

Total time required for certain biological
processes to occur is compressed [23;30]
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