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ABSTRACT

MemPype is a Python-based pipeline including pre-
viously published methods for the prediction of
signal peptides (SPEP), glycophosphatidylinositol
(GPI) anchors (PredGPI), all-alpha membrane
topology (ENSEMBLE), and a recent method
(MemLoci) that specifically discriminates the local-
ization of eukaryotic membrane proteins in: ‘cell
membrane’, ‘internal membranes’, ‘organelle mem-
branes’. MemLoci scores with accuracy of 70% and
generalized correlation coefficient (GCC) of 0.50 on
a rigorous homology-unbiased validation set and
overpasses other predictors for subcellular localiza-
tion. The annotation process is based both on inher-
itance through homology and computational
methods. Each submitted protein first retrieves,
when available, up to 25 similar proteins (with
sequence identity �50% and alignment coverage
�50% on both sequences). This helps the identifica-
tion of membrane-associated proteins and detailed
localization tags. Each protein is also filtered for the
presence of a GPI anchor [0.8% false positive rate
(FPR)]. A positive score of GPI anchor prediction
labels the sequence as exposed to ‘Cell surface’.
Concomitantly the sequence is analysed for the
presence of a signal peptide and classified with
MemLoci into one of three discriminated classes.
Finally the sequence is filtered for predicting its
putative all-alpha protein membrane topology
(FPR<1%). The web server is available at: http://
mu2py.biocomp.unibo.it/mempype.

INTRODUCTION

In Eukaryotes, most protein functional features are con-
strained by the different cell compartments and their

enclosing membranes (1–3). Functional features of bio-
logical membranes strictly depend on proteins that specif-
ically interact with them. Membrane proteins can be
classified into two major classes: integral membrane
proteins, which span the lipid bilayer [transmembrane
(TM) proteins (TPs)] or covalently bind a lipid molecule,
and peripheral membrane proteins, which physically
interact with the membrane surfaces. About 30% of eu-
karyotic proteins in SwissProt are annotated with the
keyword ‘membrane’ (48 963 sequences out of 166 219),
and 75% of them are also annotated as ‘transmembrane’
(37 659 sequences). In most cases, the experimental deter-
mination of the structure and function of membrane
proteins is presently hampered by technical problems
and their function is often annotated on the basis of
sequence similarity. Our annotation procedure takes ad-
vantage of both inheritance of annotation (annotation
transfer) after homology search and annotation by pre-
dicting features with different machine learning appro-
aches. To this purpose MemPype integrates methods
that are specifically suited to predict the presence of
signal peptides, lipid anchors, membrane protein local-
ization and topology of all-alpha membrane proteins,
thus providing an integrated computational resource for
annotation of eukaryotic membrane proteins. However,
the main novelty in MemPype is the integration of
MemLoci, a method that allows a reliable classification
of both eukaryotic integral and peripheral membrane
proteins into three classes: cell membrane (CM), organelle
membranes (OMs) and internal membranes (IMs) (4).
This is a key step for functional annotation of
membrane proteins in relation to their membrane type
(5,6). We propose MemPype to support annotation
of membrane proteomes of eukaryotic organisms with
the unique feature of also identifying proteins present
on the cell surface. These chains are likely candidates to
be characterized as biomarkers and/or targets for new
drugs.
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MEMPYPE WORKFLOW

MemPype includes two flows of annotation (Figure 1).
The first collects information directly from SwissProt in
terms of keywords and Gene Ontology (GO) terms
associated with proteins sharing high similarity with the
target sequence (�50% sequence identity with an align-
ment coverage �50% on both sequences, see below).
The second parallel flow of annotation includes machine
learning-based methods that score at the state of the art
for the specific problem at hand. Each sequence is filtered
for the presence of: (i) signal peptides with SPEP (7); (ii)
presence and location of glycophosphatidylinositol (GPI)-
anchoring domains with PredGPI (8); then (iii) the
subcellular localization of both integral and peripheral
membrane proteins is predicted with MemLoci, a recent
predictor based on support vector machine (SVM); and
finally (iv) the location and topology of all-alpha integral
membrane proteins is predicted with ENSEMBLE 3.0 (9).
The only input is the residue sequence of the target
protein. The first step of the pipeline is a BLAST search
against SwissProt that produces alignments of the target

sequence with an E-value �10�3 (leftmost path in Figure
1). Homologous sequences are used both for performing
annotation transfer by sequence similarity and for
compiling the sequence profiles that are used as input to
most of the predictive methods included in the pipeline
(rightmost path in Figure 1). Both flow outputs are
given as a result of MemPype running (Figure 2). The
results of the first search gives at the most 25 aligned se-
quences and their features as derived from SwissProt. This
information can or cannot be present depending on the
target sequence. The second output is always present and
gives computed features whose reliability is statistically
computed according to the different predictors and can
be inspected in relation to the results of the SwissProt
search when available. The platform integrates predictors
that have been previously described and validated on their
specific task. Presently a set of proteins with experimen-
tally validated features to be used in cross-validation for
the joint combination of all the predictors is not available.
Prediction performances are therefore calculated inde-
pendently for each method with never seen before

Figure 1. Workflow of the MemPype annotation pipeline. MemPype performs annotation with homology search and prediction tools. See text for
further details.
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proteins carrying along the experimentally validated
property to be predicted.

ANNOTATION THROUGH INHERITANCE

Transfer of annotation on the basis of sequence similarity
is a widely adopted procedure that relies on the assump-
tion that similar sequences share similar structural and
functional features (10). The threshold value of sequence
similarity necessary for ensuring a reliable inference of
function depends on the specific task. It is well known
that the overall protein structure is conserved for proteins
sharing some �30% identical residues, while the conser-
vation of molecular function requires higher identity
thresholds [�50% (11)]. In relation to subcellular localiza-
tion, sequence identity �30% ensures a reliable annota-
tion transfer within non-membrane proteins (12).
However, to our knowledge, the same threshold has not
yet been determined for membrane proteins. To this aim,
we collected from SwissProt 24 640 membrane proteins
endowed with experimental annotation of subcellular lo-
calization [the set is described in (4)]. Twelve localization
classes are considered. Upon an extensive pairwise align-
ment procedure, we determined that the subcellular local-
ization is conserved in 99.7% cases, when two proteins
share �50% sequence identity with coverage �50%
on both sequences (data not shown). The MemPype
annotation transfer procedure considers therefore only
the set of annotated SwissProt sequences fulfilling these
constraints with respect to the target proteins. When
many annotated sequences with identity �50% and

coverage �50% are retrieved, only the most similar
25 are taken into account. If existing, the annotations
reported in the ‘KEYWORD’ field of the retrieved se-
quences and referring to structural and localization
features are collected, as well as the GO annotations
coming from experimental evidences. All the annotation
terms are then represented as a tag cloud, where each tag
is coloured with a scale representing the frequency of each
keyword in the set (Figure 2). By pointing over each tag,
the detailed statistics of each annotation appears. The set
of entries promoting a specific annotation can then be
retrieved by clicking on the corresponding tag. In some
cases, the annotation transfer procedure allows a very
specific and detailed annotation such as ‘Endoplasmic
reticulum-Golgi intermediate compartment membrane.’
Moreover, the system can be useful for annotating
proteins endowed with multiple localizations. It is not
always possible to find annotated proteins fulfilling the
constraints of sequence identity necessary for a reliable
transfer of annotation based on homology search. A com-
plementary approach is therefore the adoption of predict-
ive methods that run in the same platform and whose
results can be either compared/confirmed with those
obtained with the homology search or provides the
unique annotation resource.

PREDICTION OF SIGNAL PEPTIDE AND GPI
ANCHOR

The first step of the prediction pipeline is to determine the
sequence of the mature protein, where N-terminal signal

Figure 2. MemPype output results. Two outputs are returned: (i) a list of at the most 25 proteins sharing sequence identity �50% on an alignment
covering �50% of both sequence lengths (when available). Both keywords and GO terms can be transferred on the basis of sequence similarity to the
query sequence. (ii) A list of all the predicted features including signal peptide [with SPEP (7)], GPI-anchor [with PredGPI (8)], all-alpha TM
topology [with ENSEMBLE3.0 (9)] and prediction of subcellular localization [with MemLoci (4)]. See text for further details.
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peptides and/or the GPI-anchoring propeptides, when
present, are cleaved. To this aim, SPEP in its version for
eukaryotic sequences (7) and PredGPI (8) are applied.
Both methods analyse the residue sequence and efficiently
determine the presence of peptides as well as the position
of the cleavage sites. SPEP is a neural network (NN)-
based system, trained on 2300 eukaryotic proteins
endowed with experimental annotation (13). Two NNs
scan the 65-residue long N-terminal segment of the
query sequence, scoring the probability of each residue
to be part of a signal peptide and to be the cleavage site,
respectively. The allowed signal peptide length ranges
between 11 and 59 residues. A signal peptide is predicted
if the sum of the outputs of the NNs are greater than a
threshold that was selected in order to optimize the per-
formance. By this, when performing the discrimination
task on the training data set with a cross-validation pro-
cedure, SPEP scores with a Matthews correlation coeffi-
cient (CC) as high as 0.91 and overall accuracy (Acc) equal
to 95% (7). Here a validation set consisting of 1287
eukaryotic proteins has been extracted from (14) with
the exclusion of sequences present in the SPEP training
set. The results of the blind validation are reported in
Table 1 and show a performance consistent with the
scores obtained in cross-validation (CC=0.87 and
Acc=93%). PredGPI is trained on a data set comprising
340 and 10 630 GPI- and non-GPI-anchored proteins, re-
spectively (8). It includes a SVM, whose discrimination
threshold is selected in order to limit the false positive
rate (FPR) to 0.5% on the training set. By this, the
cross-validation performances are CC=0.78 and
Acc=99% (8). When a protein is predicted as GPI
anchored, the cleavage site is predicted with a hidden
Markov model (HMM) that casts the features of the
cleaved propeptide and its surrounding regions. Here we
collect a validation set consisting of 19 GPI-anchored
proteins (with unknown cleavage site) released after
training PredGPI, and 391 non-GPI-anchored proteins
released after Jan 2011. On this blind set PredGPI scores
with CC=0.87 and Acc=99.2%, with FPR of the
GPI-anchored class as low as 0.8% (Table 1). MemPype

outputs list, when present, cleaved peptides highlighted
along the sequence. Sequence and sequence profile of the
mature protein are then obtained by deleting the sequence
segments corresponding to the cleaved peptides. When a
sequence contains a GPI-anchor domain, its subcellular
localization is labelled ‘cell membrane’ (15). The low
FPR of PredGPI ensures that the rate of wrong localiza-
tion annotation due to misprediction of GPI anchor is
about 1%. Irrespective of this labelling, the sequence is
predicted by the complete pipeline and results of
MemLoci and the possible presence of TM helices are
reported (see next sections). To further assess the error
rate that could arise from the combination of PredGPI
and MemMoci, PredGPI was also scored on a blind val-
idation subset of MemLoci comprising 68 proteins in OM
and IM with the exclusion of CM proteins. Only one
protein is wrongly predicted as GPI anchored and thus
reported as ‘cell membrane’, confirming the low FPR of
PredGPI.

PREDICTION OF SUBCELLULAR LOCALIZATION

Prediction of subcellular localization of eukaryotic
membrane proteins is performed with MemLoci [4], a
SVM-based method able to discriminate the localization
of membrane proteins within three classes: CM, OMs and
IMs. The OM class comprises proteins located at mito-
chondrial or plastidial membranes: the IM class comprises
all the remaining intracellular membranes (the endo-
plasmic reticulum, the nuclear membranes, the Golgi
apparatus, the vesicles, the vacuoles, the lysosomes, the
peroxisome, the microsomes and the endosome).
MemLoci is the first tool specifically suited to predict
the subcellular localization of both integral and peripheral
membrane proteins. Other available predictors of sub-
cellular localization explicitly exclude membrane proteins
from their training sets (16,17), group all the membrane
proteins into a single class referred as ‘membrane’ or ‘cell
membrane’ (18,19), or focus on specific membrane types
and organisms (20,21). MemLoci scores with generalized
CC (GCC) (22) in the range of 0.50 when tested on both

Table 1. Performance of the different predictors included in MemPype on never seen before validation sets

Method Blind validation set Sen, % Sp, % FPR, % Acc, % CC

SPEP 543 proteins with SP 89 95 3 93 0.87
744 proteins without SP 97 91 11

PredGPIa 19 GPI-anchored proteins 89 85 0.8 99 0.87
391 non-GPI-anchored proteins 99 99 11

ENSEMBLE3.0a 15 TM proteins 100 83 0.4 99 0.91
208 non-TM proteins 99 100 0

MemLocia 32 CM proteins 56 75 9 70 0.50b

18 OM proteins 50 56 9
50 IM proteinsc 86 72 34

aThe validation set collects never seen before chains by the method and deposited after January 2010. Predictions are scored with the following
indexes: Sen: sensitivity= (no. of correctly predicted proteins in the class)/(total no. of proteins in the class); Sp: specificity= (no. of correctly
predicted proteins in the class)/(total no. of proteins predicted in the class); FPR=(no. of mispredicted proteins in the class)/(total no. of proteins in
the complementary class); Acc= (no. of correctly predicted proteins)/(total no. of proteins); Matthews CC is adopted for binary classifications, while
GCC (b) is computed for multiclass classifications (22).
cIMs comprising all the endomembrane system except the cell membrane. All the validation sets are available at the MemPype website in the ‘Info’
page.
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the 10 634 sequences included in the training set and the
100 sequences of an independent validation set (Table 1).
For each sequence, MemPype lists the localizations pre-
dicted with MemLoci and three values scoring their like-
lihood. The highest value indicates the most likely
prediction.

TOPOLOGY PREDICTION AND DISCRIMINATION
AND OF ALL-ALPHA TPs

The mature sequence (after signal peptide and GPI-anchor
propetide cleavage) is predicted for the presence and top-
ology of all-alpha TM domains with ENSEMBLE3.0, an
updated version of ENSEMBLE (9) and based on an
ensemble prediction of different machine learning tools
that analyse the information contained in sequence pro-
files, including the capability of discriminating between
all-alpha membrane and globular protein. ENSEMBLE
3.0 is trained on a non-redundant data set of 138
all-alpha membrane proteins (including only three eukary-
otic chains), whose structure is known with atomic reso-
lution and was deposited in the Protein Data Bank (PDB)
before January 2010. Performing a rigorous cross-
validation, ENSEMBLE3.0 is able to correctly locate the
TM segments of 126 proteins (91%) and to predict the
correct orientation with respect to the membrane plane
of 119 proteins (86%) of the training/testing set, respect-
ively. Here we test ENSEMBLE 3.0 on a validation set of
15 independent membrane proteins sharing low identity
(�25%) with the training set and whose structures have
been deposited after January 2010. This set includes only
three proteins from eukaryotes, and two of these are
endowed with one validated and one putative signal
peptide, respectively. When the sequences of all 15
mature proteins are predicted, ENSEMBLE3.0 correctly
computes the topology of all of them. Alternatively, when
the full-length sequence of the 15 proteins is submitted to
ENSEMBLE 3.0, the topology of only 13 proteins is cor-
rectly predicted (87%), with the exclusion of the two eu-
karyotic proteins endowed with signal peptide. These
proteins are correctly predicted when SPEP is combined
with ENSEMBLE3.0. In order to test whether
ENSEMBLE3.0 is capable of discriminating membrane
from globular proteins, we trained a filter on a data set
also including 1611 globular structural domains, relative
to proteins sharing <25% sequence similarity with the
training set and released before January 2010 [extracted
from PDB with PISCES (23)]. On a validation set
comprising 208 never seen before globular domains (in
proteins released after January 2010 and with sequence
identity �25% to the training set) and the 15 TM
proteins, FPR was 0 and 0.4%, respectively (Table 1).
When the total set of eukaryotic full-length globular and
membrane proteins (67 and 3, respectively) were jointly
predicted by SPEP and ENSEMBLE, FPR was 0 and
2%, respectively. For TPs, MemPype lists the membrane
spanning segments and their topological organization
(cytoplasmic, non-cytoplasmic; Figure 2). When the
sequence does not contain predicted membrane-spanning
segments or GPI-anchored domains, a warning message is

visualized indicating that MemLoci prediction should be
taken with caution and possibly validated by merging
features derived from the homology search.

WEB SERVER

The MemPype web server requires protein sequences in
FASTA format as input. Each sequence must at least be
50-residue long. Upon request submission the server
displays the prediction result page that is periodically
updated until the completion of the prediction procedure.
This page can be bookmarked and accessed later.
Moreover, a unique identifier marks each prediction re-
quest as a future reference to retrieve prediction results.
For each sequence the current queue state is reported, and
upon completion the prediction results are shown. These
are stored in a local database and will remain available for
at least 1 month. The web server can be accessed either
from anonymous or registered users. Registration is free
of charge. Registered users can submit up to five sequences
per request and up to 30 different requests per hour, while,
to enforce a fair use policy, anonymous users are allowed
for only 1 sequence per request and 10 requests per hour.
For facilitating the retrieval of the results the web server
provides a ‘Recent Jobs’ page, where the predictions of
anonymous users are publicly available, while registered
users can retrieve their own jobs in the private ‘My Jobs’
page. All the software used to build MemPype (except for
BLAST+) is written in Python language. The web server
runs on a web2py engine, and the annotated sequences are
stored in SQLite database adopting the BioSQL schema.
Parsing of SwissProt annotation data is performed with
the BioPython uniprot-xml parser. HMMs and SVMs
needed for all the prediction steps were implemented in
Python as well.
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