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ABSTRACT

PILGRM (the platform for interactive learning by
genomics results mining) puts advanced supervised
analysis techniques applied to enormous gene
expression compendia into the hands of bench
biologists. This flexible system empowers its users
to answer diverse biological questions that are often
outside of the scope of common databases in a
data-driven manner. This capability allows domain
experts to quickly and easily generate hypotheses
about biological processes, tissues or diseases of
interest. Specifically PILGRM helps biologists
generate these hypotheses by analyzing the expres-
sion levels of known relevant genes in large
compendia of microarray data. Because PILGRM is
data-driven, it complements a user’s knowledge and
literature analysis with mining of diverse functional
genomic data, thereby generating novel predictions
that can drive experimental follow-up. This server is
free, does not require registration and is available
for use at http://pilgrm.princeton.edu.

INTRODUCTION

High-throughput genomic data contain information about
diverse processes, tissues and diseases. The application of
data-mining algorithms to these large genomic datasets
provides great potential for uncovering novel biology,
but currently this potential is not often realized because
collecting, properly processing and analyzing these data
requires substantial computational resources and sophisti-
cated programming knowledge. On the other hand, setting
up analyses to address important biological questions and
testing novel predictions resulting from such analyses
requires detailed experimental knowledge.

Although there are several successful applications of
sophisticated computing approaches to diverse functional
genomics data collections (1-5), including some that share
results through a web site (6-9), currently there is not an

easy way for a researcher to set up new analyses and ask
specific biological questions by focusing these analyses on
a sub-process or tissue of interest. This greatly constrains
the utility of the novel predictions, because direct experi-
mental validation for some processes or tissues may be
impractical. PILGRM (the platform for interactive
learning by genomics results mining) addresses this limi-
tation by allowing its users to generate specific biological
hypotheses by directing the supervised analyses of global
microarray expression collections simply by defining their
own gold standards (lists of genes relevant to a process,
disease or tissue). Such an approach puts sophisticated
computational tools in the hands of biologists, thereby
combining their biological insight with a powerful compu-
tational strategy. This flexibility lets users address ques-
tions as diverse as their research programs while targeting
predictions to experimentally testable pathways, tissues or
phenotypes.

Efforts to predict protein function, expression or local-
ization from high-throughput data compendia generally
make computational predictions based on annotations
from expert-curated literature-derived databases. The
limited coverage of these databases constrains bioinfor-
matics strategies that use only database standards. These
databases also do not represent unpublished experimental
results that may be informative for future experiments. By
encouraging and enabling users to define their own stand-
ards, PILGRM also alleviates this issue of limited
database coverage.

However, PILGRM does not eschew these expert-
curated literature-derived databases. Indeed as the suc-
cessful prior applications of data mining strategies to
these compendia have shown, these databases have great
value. This is why PILGRM contains extensive collections
of data and database-derived gold standards (detailed
in Table 1) for Homo sapiens and the model organisms
Mus musculus, Rattus norvegicus, Caenorhabditis elegans,
Arabidopsis  thaliana and  Saccharomyces cerevisiae.
We automatically process and integrate many sources
of gene-annotation in PILGRM. We include the Gene
Ontology, which has annotations for a protein’s biological
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Table 1. PILGRM contains large data compendia and standards
derived from literature-curated databases for each the organisms
that it covers

Experiments Arrays Genes Standards Unique

publications
Human 2392 77473 21702 7484 32567
Mouse 2012 31374 24555 6864 14248
Yeast 117 1801 6077 4231 10134
Arabidopsis 408 5465 22121 3929 6836
Rat 440 10376 21416 5242 14395
Worm 53 963 17027 1782 2489

The unique publications column shows how many distinct publications
are represented in the gold standards pre-loaded in PILGRM for each
organism. This table shows the status of these collections as of 31
January 2011.

process involvement, localization and biochemical
function (10,11), the Plant Ontology, which has annota-
tions for a protein’s role in plant development and anat-
omy (12), the Saccharomyces Genome Database
phenotype annotations, which specify phenotypes
observed when genes are knocked out (13) and the
Human Protein Reference Database’s Tissue annotations,
which provide literature-derived annotations of tissue
specific expression, localization and function for human
proteins (14). We are adding new databases as they are
requested by users. These database annotations provide a
convenient starting point for user-defined standards and
analyses.

For example, a researcher studying breast cancer pro-
gression may be interested in identifying novel candidate
genes involved in breast cancer progression while avoiding
genes that appear relevant simply because they are ex-
pressed in mammary epithelium (i.e. genes discoverable
by a simple correlation analysis). This researcher can
take advantage of both custom standards and the
included database annotations in PILGRM. Setting up
such an analysis without PILGRM would require that
he download the full collection of over 70 000 gene expres-
sion experiments for human, develop appropriate data
processing, normalization and integration methods, and
set up a machine-learning framework for the analysis.
He would then have to download the HPRD database
to 1identify genes known to be expressed in the
mammary epithelium, in addition to creating his custom
standard of genes involved in breast cancer progression.

In contrast, this analysis takes minutes in PILGRM:
Figure 1 shows the steps that this user performs during
the preparation and interpretation of this analysis. First,
the researcher develops a gold standard for genes involved
in breast cancer through his own expertise and a literature
search (Figure 1A). The PILGRM server allows each link
between a gene and a gold standard to be associated with
PubMed identifiers and these publication-annotated links
are included in a downloadable document (PDF format)
describing each analysis that is made available to the user
(such a document can be used for additional record
keeping by the users, to inform a Materials and methods
section, or directly as Supplementary Data in publications
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resulting from this analysis). Second, he creates an
analysis and pairs this breast cancer standard with the
HPRD mammary epithelium standard included in
PILGRM (Figure 1B). As a final step, the researcher
runs this analysis and both metrics for the machine-
learning results and novel predictions are returned by
PILGRM.

By combining custom standards with appropriate
literature-curated databases and sophisticated machine
learning of the Support Vector Machine (SVM) classifier
implemented in PILGRM, this researcher discovers genes
relevant to his research and saves time without com-
promising the flexibility or quality of his data-driven
predictions. These relevant genes behave similarly (e.g.
through co-expression) to the genes defined as interesting
by the user (the positive standard) in informative experi-
mental conditions. The machine-learning approach auto-
matically identifies the conditions that best differentiate
positive standard genes from those in the negative
standard (genes with properties that the user wishes to
avoid in new predictions). PILGRM provides both novel
predictions and high-quality interactive visualizations of
analysis results for the researcher to explore.

PILGRM’s main features are as follows.

(1) A flexible interface that encourages user-defined
data-driven analyses that answer diverse questions
of biological interest including those outside the
scope of common databases.

(i) Regularly updated compendia of uniformly pro-
cessed genomic data for human and common
model organisms.

(iii) Regularly updated gold standards for tissue, function
and development from common sources (GO, PO,
HPRD, etc.) that make setting up analyses quick
and easy.

(iv) User-set levels of access control (public, hidden,
private) for standards and analyses, allowing users
to include unpublished results in PILGRM.

SYSTEM DESCRIPTION

Each PILGRM analysis begins with an important bio-
logical question defined by the user. The user translates
this question into appropriate gold standards, thereby
defining the corresponding machine-learning problem.
Gold standards are structured as positives (which repre-
sent genes like those that the user is seeking) and negatives
(which represent genes with properties the user wants to
exclude) and can be drawn from databases or developed
by the user. These standards are added to an analysis that
is run by the user. PILGRM then classifies all other genes
in the organism of interest with a machine-learning algo-
rithm that employs the user-provided positive and
negative standards, thereby generating novel predictions.
This process is summarized in Figure 2 and discussed in
detail in Supplementary Data S1.

In addition to novel predictions, the user is provided
with interactive visualizations of standard quantitative
metrics for evaluating results of classification algorithms
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Figure 1. The flow of a PILGRM analysis that uses one custom standard and a pre-loaded standard to discover genes related to breast cancer
progression while excluding general mammary epithelium genes. (A) The process of creating a standard and adding genes (here shown with optional
PubMed IDs) to it. (B) The process of setting up and running an analysis. The breast cancer standard from (A) is combined with the HPRD
mammary epithelium standard that is pre-loaded into PILGRM. The breast cancer standard is a positive and the mammary epithelium is a negative
(here both are shown together for clarity). The analysis is run and standards quantitative performance metrics and novel predictions are provided to

the user.

including the area under the curve (AUC), a figure
showing the precision-recall trade-off, and a figure com-
paring the true positive rate and false positive rate (shown
in Figure 3A). PILGRM provides this high-quality results
visualization with cross-platform JavaScript that is
accessible without proprietary plugins in all modern web
browsers. JavaScript also allows for interactive figures
that provide additional information on mouseover (as
with the mouseover display of genes from each standard
shown in Figure 3B). This interactivity allows researchers
to more fully understand how each gene in a standard is
classified. Users also have the option of including valid-
ation standards that are also shown on this figure.
Validation standards are not used for classification and
can be used to highlight genes of interest or to further
assess prediction quality. All these results figures can be

exported to JPG, PNG, SVG or PDF for easy inclusion in
reports and publications. Additionally, the web server is
capable of producing a document for each analysis that
provides a detailed explanation of the methods, data and
results specific to a user’s analysis. This document is
formatted as a PDF and is intended as Supplementary
Data for molecular biology manuscripts informed by a
PILGRM analysis.

Our server employs SVMs for classification. Specifically
we use the linear SVM implementation from SVMPT (15).
We have evaluated other implementations (including poly-
nomial and RBF kernels) and linear SVM offers classifi-
cation performance that is better or comparable to more
complex forms often at substantially faster speed (16). Our
server handles running the analysis, parameter selection
and cross validation. The analyses are run on a
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Figure 2. (A) This diagram shows the flow of each PILGRM analysis. We pre-process separate datasets into a gene-expression compendium for each
organism. (B) The user provides positive and negative standards (either input by the user or from common databases) and the data are labeled with
these standards. The SVM algorithm identifies the maximum-margin hyperplane (here a dotted line for the two-arrays in this example, but in practice
this is a plane in very high-dimensional space) that best separates the positive (red) and negative (blue) standards by gene expression. Unlabeled genes
(black) are then ranked by their distance to this plane (C), and the ranked list is returned to the user as predictions (D). The user is also provided

detailed evaluation plots based on cross-validation (Figure 3).

high-performance computing cluster in the Lewis—Sigler
Institute for Bioinformatics at Princeton University.

PILGRM currently contains data and standards for six
organisms (human and the model organisms yeast, worm,
mouse, rat and arabidopsis as detailed in Table 1) and
additional organisms are added upon request. The data
are processed uniformly and in a manner robust to
diverse platforms and many experimental biases. As an
example, for Affymetrix data compendia all supplemen-
tary CEL files available in the Gene Expression Omnibus
(17) are downloaded, and their probes mapped to Entrez
GenelDs using the Entrez BrainArray CustomCDF (18).
All arrays are processed within their experiment (GEO
series) using the affy (19) R package from Bioconductor
(20). Expression values are summarized with the
medianpolish (21) method after RMA background correc-
tion (21) and quantile normalization (22). At this point,
experiment sets with five or fewer arrays are combined
into a single set of arrays. Genes are then normalized
within experiments and combined for learning using our
open-source C++ Sleipnir library for computational func-
tional genomics (23).

Data compendia are updated monthly through an
automated but supervised pipeline. Each new analysis
is assigned to the current organism-specific data compen-
dium when it is created. When data are updated, existing
analyses are not affected. Users can, at the granularity of
individual analyses, elect to have PILGRM re-perform

their exact analysis using the most current data
compendium.

Because experimenters can include their own unpub-
lished experimental results as part of their custom gold
standards and because PILGRM predictions are used to
direct follow-up bench experiments, PILGRM offers
multiple levels of access control. Analyses may be com-
pletely public, which allows anyone to view the analysis.
These are shown in lists of analyses on the site. Analyses
may also be hidden. Hidden analyses and standards are
not shown in lists on the site and are accessible only
through a user-defined web address. With registration,
analyses may be made private. This is the highest level of
protection and prohibits access by anyone other than the
analysis owner. Registration is simple, completely optional
(the only PILGRM capability that needs registration is
making analyses completely private) and requires only a
username, working email address, and password.

PILGRM provides step-by-step tutorials for creating
standards and running analyses. Optional example input,
which builds a hypothetical analysis of genes relevant
to breast cancer but not mammary tissue in general
(one step of this analysis is shown in Figure 4), is
provided for these tutorials. Standards and analyses
created during the tutorials can then be used outside of
the tutorial framework.

The PILGRM server is a flexible tool that biologists can
use to develop data-driven predictions of gene properties



W372 Nucleic Acids Research, 2011, Vol. 39, Web Server issue

A 1

0.8

o
o

True Positive Rate
I
IS

0.2

[ 0.2 0.4

0.6 0.8 1

False Positive Rate

Cenerated by AILGRM

0.15 &
0.1 7'y
A
Ax
0.05 s
)
o %
o
H
s -0.05 SCM4 from GO:0007049 cell cycle :-0.0754861
Rank: 4526 ﬁ
o,
-0.1 \o
*
*
0.15 o
A
°
A
-0.2
<
-0.25
03 1k 2k 3k ak sk
Rank
@® GO:0000278 mitotic cell cycle
4 GO:0007049 cell cycle
A GO:0000077 DNA damage checkpoint

Generated by PILGRM

Figure 3. An example of figures produced by PILGRM. (A) The true positive rate at various false positive rates for the case study of yeast
DNA-damage repair. The area under the curve, shown in blue, is 0.7189 for this analysis and the performance of a random classifier is shown
by the grey line. (B) Illustrations how PILGRM figures are highly interactive. In this visualization, the rank and score from PILGRM are plotted for
each gene in the positive (red) and negative (green) standards. Moving the mouse over a point shows which gene it represents. Clicking on a standard

toggles it between shown and hidden (here GO:0006974 has been hidden).

directly relevant to their experimental questions in
under an hour. Regularly updated data compendia and
database-derived gold standards insure that PILGRM
remains current. Its user-defined access control lets
researchers include unpublished findings to iteratively
improve prediction quality without compromising novel
findings. PILGRM gives expert biologists a chance to
use their expertise to mine large scale genomic compendia
quickly and easily.

CASE STUDY: YEAST DNA-DAMAGE REPAIR

PILGRM’s capabilities are perhaps best illustrated in a
case study. This case study represents a researcher

interested in identifying novel candidate genes that are
involved in DNA-damage repair while excluding genes
only generally related to cell cycle control. The first step
of a PILGRM analysis is to determine what the positive
and negative standards should be. The positive standard
should represent DNA-damage repair genes. In this case,
the researcher uses a PILGRM-provided positive standard
of yeast genes with direct experimental annotations to
GO:0006794 (response to DNA-damage stimulus) and
GO0:0000077 (DNA-damage checkpoint). The negative
standard should represent cell-cycle-related genes. She
elects to use a negative standard containing yeast genes
with direct experimental annotations to GO:0000278
(mitotic cell cycle) and GO:0007049 (cell cycle); this
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Add Selected Genes

Figure 4. PILGRM contains step-by-step tutorials that familiarize users with the system. Optional example input is provided for each tutorial.
The optional example represents an analysis of breast cancer progression that avoids genes that appear relevant simply because they are expressed in

mammary epithelium.

standard is also included in PILGRM (as are all GO-based
standards). Although in this case study the analysis uses
only standards from the Gene Ontology’s biological
process ontology, researchers are free to customize these
standards or add additional ones for their own analyses.

The researcher runs the analysis using PILGRM’s yeast
gene expression compendium, which consists of all
S. cerevisiae expression (GDS) datasets from GEO. The
PILGRM data processing pipeline (invisible to the user),
has already done all the pre-processing for this analysis:
the supplied probe identifiers were mapped to Entrez iden-
tifiers; each array was normalized with a Fisher Z-trans-
form; genes were normalized with experiments and
combined for learning using our Sleipnir library for com-
putational functional genomics (23). In total this compen-
dium of S. cerevisiae GDS datasets from GEO contains
1801 arrays from 117 different experiments covering 6077
Entrez gene identifiers as of 31 January 2011.

She then can interactively interpret the results of her
analysis. She sees an AUC visualization and is informed
that the area under the curve for this analysis is 0.7189
(Figure 3A). She also can examine the list of novel predic-
tions, with link-outs to appropriate model organism data-
bases to provide gene-specific information for each
prediction. In this case, the top novel prediction is the
gene YMRO9OW, which SGD (24) lists as a putative
protein with unknown function. This gene is not essential
(25) and is up-regulated in response to the fungicide
mancozeb in a proteome-wide screen (26). Mancozeb
has been shown, in rats, to induce single strand breaks
in a dose-dependent manner (27). Thus, in this case
study PILGRM discovers a potentially relevant gene not
previously associated with DNA-damage repair that has
promising experimental support. Such analysis would take
a researcher a total of 15 min to perform using PILGRM,
including all analysis setup and definition of gold stand-
ards. This complete analysis is available at http://pilgrm

.princeton.edu/analysis/view/case-study-yeast-dna-
damage-response/.

DISCUSSION

PILGRM is a user-friendly exploratory tool for expert
biologists who wish to use current knowledge and
genome-wide experimental data to guide the design of
future experiments. The extensive pre-loaded data collec-
tions and literature-based standards from common data-
bases make it easy for researchers to start using the system.
PILGRM is being actively developed, and we will continue
adding capabilities based upon user requests. Currently we
are working to include RNA-Seq data and developing an
interface to allow users to perform an analysis on a
user-defined subset of the data compendium. This web
server’s flexibility allows biologists to customize analyses
that address-specific questions of interest within diverse
topics such as protein function, tissue-specific gene expres-
sion and cellular localization by employing computing
approaches for data-driven generation of accurate hypo-
theses. PILGRM thus brings sophisticated machine-
learning methods applied to enormous gene expression
compendia into the lab of any researcher, enabling data-
driven experiment direction complementary to traditional
knowledge-based discovery provided by existing databases.

SUPPLEMENTARY DATA
Supplementary Data are available at NAR Online.
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