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Summary
We develop methods for competing risks analysis when individual event times are correlated
within clusters. Clustering arises naturally in clinical genetic studies and other settings. We
develop a nonparametric estimator of cumulative incidence, and obtain robust pointwise standard
errors that account for within-cluster correlation. We modify the two-sample Gray and Pepe–Mori
tests for correlated competing risks data, and propose a simple two-sample test of the difference in
cumulative incidence at a landmark time. In simulation studies, our estimators are asymptotically
unbiased, and the modified test statistics control the type I error. The power of the respective two-
sample tests is differentially sensitive to the degree of correlation; the optimal test depends on the
alternative hypothesis of interest and the within-cluster correlation. For purposes of illustration,
we apply our methods to a family-based prospective cohort study of hereditary breast/ovarian
cancer families. For women with BRCA1 mutations, we estimate the cumulative incidence of
breast cancer in the presence of competing mortality from ovarian cancer, accounting for
significant within-family correlation.
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1. Introduction
In epidemiological cohort studies, individuals may be followed for more than one type of
event. The survival times are subject to competing risks if the occurrence of one event type
prevents other event types from occurring. There are effective methods for analyzing
competing risks data when individuals are independent (Moeschberger and Klein, 1995).
Furthermore, several approaches have been proposed (Lee, Wei, and Amato, 1992; Cai and
Prentice, 1995) that extend the Cox proportional hazards model to correlated survival data.
However, little attention has been given to competing risks analysis when event times from
different individuals are clustered. Such clustering arises naturally in family-based cohort
studies; but clustering may arise due to several other mechanisms. For example, in clinical
genetic studies, unrelated individuals may be subject to a cluster effect if they share the
same deleterious mutation or if several genes lead to the same clinical syndrome.
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This article was motivated by a prospective cohort study of hereditary breast and ovarian
cancer (HBOC) conducted by the National Cancer Institute (Kramer et al., 2005). In this
study, 451 women from 31 families with multiple cases of breast and/or ovarian cancer in
multiple generations were followed for up to 30 years. Entry of a kindred into the cohort was
initiated by a single family member (the proband) in the United States. The proband was
identified by the diagnosis of either breast or ovarian cancer. The proband and all other
cases of breast and/or ovarian cancer that had been diagnosed prior to the time of family's
ascertainment were excluded from our analysis. Subsequently, 23 of these families were
found to carry a deleterious germ-line mutation in the BRCA1 gene. In these families, there
were 98 mutation-positive and 353 mutation-negative women. Competing risks of interest
are breast cancer and death from causes other than breast cancer. In mutation-positive
women, the latter hazard is substantially elevated due to death from ovarian cancer.

A major objective of the present study is to estimate the cumulative incidence of breast
cancer in the BRCA1 mutation-positive women, accounting for competing mortality and the
effects of within-family correlation. We develop novel methods to account for the effects of
clustering on estimators and test statistics, and we investigate the sensitivity of these
estimators and tests to the degree of correlation.

For independent data, nonparametric maximum likelihood estimators of cumulative
incidence based on cause-specific hazard functions have been well described (Prentice et al.,
1978; Gaynor et al., 1993). In this article, we propose a non-parametric estimator of
cumulative incidence that accounts for within-cluster correlation, and we provide a robust
estimator for the pointwise variance.

The two-sample tests for competing risks have also been explored for independent data.
Gray considers a class of K-sample tests for the cumulative incidence based on weighted
averages of subdistribution hazard functions (Gray, 1988). Pepe and Mori develop test
statistics using weighted averages of cumulative incidences (Pepe and Mori, 1993).
Recently, it is shown that the nonparametric estimator of cumulative incidence obtained
from independent data converges weakly to a zero-mean Gaussian process (Lin, 1997).
Spiekerman and Lin (1998) extend this result to estimate the cumulative hazard function
from clustered data. In this report, we combine these approaches to develop tests for
correlated competing risks data. Three tests are proposed for the two-sample problem:
extensions of the widely used Gray and Pepe–Mori tests, and a novel pointwise landmark
test.

The rest of this article is organized as follows. In Section 2, we adopt counting process tools
to derive an estimator of cumulative incidence appropriate for clustered data, and we
develop a robust variance estimator that can be incorporated into the test statistics. In
Section 3, we consider two-sample tests. In Section 4, we present simulation studies. In
Section 5, we apply our methods to the HBOC dataset. In Section 6, we present concluding
remarks.

2. Nonparametric Estimation
For concreteness, we introduce the notation for the two-state problem with events “breast
cancer” and “death without prior breast cancer.” The notation generalizes to the multistate
problem in an obvious manner. We suppose that there are n clusters involved in the study,

with ni individuals in cluster i, and we let  Note that the cluster size ni may vary
with cluster. We also assume that a finite constant M exists such that max1≤i≤n {ni} < M for
every n. Adopting the notation of cause-specific hazards (Prentice et al., 1978), let (Tik, Jik)
be the age at breast cancer diagnosis (Jik = 1), and age at death without prior breast cancer
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(Jik = 2) for individual k in cluster i, respectively. For i = 1, …, n, failure times 
for individuals in different clusters are assumed to be independent random variables.
However, individuals within the same cluster may have correlated failure times. We further
assume that all failure times Tik have a common marginal survival function S(t). Let Xik =
min (Tik, Cik) be the observed event or censoring time, where Cik is the independent right-
censoring time for Tik; and let Δik = I (Tik < Cik) be the right-censoring indicator.
Furthermore, we denote the indicator function for an event type by δik = Δik × Jik. That is, δik
= j for j = 1 and 2 if a type j event occurs, 0 if a censoring event occurs. Therefore, the
random vectors that can be observed are , i = 1, …, n. We assume that the
marginal distribution (Xik, δik) is the same for all i, k.

Instead of specifying a complete multivariate distribution for the underlying survival data,
we specify the marginal cause-specific hazard function for a type j = 1 and 2 event by

(1)

and let h(t) = h1(t) + h2(t). In the setting of competing risks, the cumulative incidence of a

type 1 event is given by , where  du is the cumulative
hazard function for a type j event, and S(t) is the overall survival function. Adopting the
notation of counting processes (Andersen et al., 1993), for an individual k in cluster i, let

be a count of the number of observed type j = 1, 2 events through time t, respectively. Let
Nik (t) = N1ik (t) + N2ik (t) be the overall event count, at time t. Let Yik (t) = I{t ≤ Xik} be the
indicator function that individual k in cluster i is at risk of either a type 1 event or a type 2

event just prior to time t, and let  be the total number of individuals at
risk at time t −. The risk process Yik (t) can be modified to allow left truncation or other
general at risk processes. The nonparametric Nelson–Aalen type estimators (Aalen, 1978)

for the cause-specific cumulative hazard functions are , and ,
where

Even if event times for individuals within a cluster are correlated, the Nelson–Aalen
estimators Ĥ1 (t) and Ĥ (t) still provide consistent estimators of the cumulative hazard
functions H1 (t) and H(t) when the number of clusters m goes to infinity (Spiekerman and
Lin, 1998). Here we use the Nelson–Aalen type estimate for the overall survival function Ŝ
(t) = exp{−Ĥ (t)} (Nelson, 1972; Aalen, 1978).

The nonparametric estimator of cumulative incidence is obtained by replacing S(t) and H1(t)
with the corresponding estimators
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(2)

When failure times are independent, several variance estimators have been proposed for the
cumulative incidence function, and a detailed comparison of these variance estimators was
recently presented (Braun and Yuan, 2006). Here we construct a novel robust variance
estimator for clustered competing risks data. In the Web Appendix, we show that F̂1 (t) is a
consistent estimator of the cumulative incidence F1 (t), and  can be written
as the sum of mean zero random variables

(3)

using a technique similar to that of Ghosh and Lin (2000). Because Zik (t) only depends on
the observation of subject k in cluster i, the between-cluster variance estimator of the simple

linear statistic  is

(4)

where Ẑik (t) is obtained by replacing the unknown quantities in equation (A.1) with the

corresponding estimator, , and . By using results for the
clustered linear statistic (Williams, 2000), we show in the Web Appendix that V̂ (t) is an
unbiased estimator for the variance of the linear statistic Z(t), or equivalently,

.

3. Two-Sample Tests
When it is of interest to investigate whether the cumulative incidence of the same event type
is equivalent in two groups, say, group 1 and group 0, we have the following null
hypothesis:

where  is the cumulative incidence for cause 1 in group g, for g = 0 and 1. For any
fixed time t, a test for the difference in cumulative incidence at t is given by
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where m0 is the sample size for group 0, m1 is the sample size for group 1, and m = m0 + m1.
In practice, t can be set to a clinically relevant landmark time. Under the null hypothesis, test
statistic Q ̂LM(t) is asymptotically normally distributed with mean zero and asymptotic
variance that can be consistently estimated by

(5)

where  if individual ik belongs to group 1, otherwise,  and

. Here individuals from group 0 and group 1 may come from the
same cluster. However, when the event times for individuals in groups 0 and 1 are
independent, the variance estimator has the following simple form

(6)

where V̂(g) (t) can be obtained from equation (4) for individuals in group g = 0 and 1. The

standardized landmark test is .

To test for an overall difference of the cumulative incidence functions, Gray (1988)
considers the difference of the subdistribution hazard function

where Ŵ (t) is a predictable weight function. With simple algebra, the Gray type test statistic
can be rewritten as:

A common choice for Ŵ (t) is the log-rank weight function .

Alternatively, Pepe and Mori (1993) consider the following test statistic for the overall
difference of the cumulative incidence functions:

where the weight function K̂(t) converges in probability to a certain function K(t). Some
constraints must be imposed on both the weight functions K̂(t) and K(t) to ensure the
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stability of the test statistics (Pepe and Fleming, 1989). For some positive constants Γ and δ,

the constraints are  and  for g = 0 and 1, where 
is the estimator of survival function for the right censoring time in group g. For example,

one can use , that satisfies the constraints.

In the Web Appendix, we show that under the null hypothesis, the variances for Q ̂G and
Q ̂PM can be consistently estimated by

 and

 The null hypothesis is

rejected at significance level α when the standardized Gray test statistic  or the

standardized Pepe–Mori test statistic  is greater than Φ−1(1 − α/2), where Φ
(x) is cumulative distribution function of the standard Gaussian distribution.

4. Simulation Studies
4.1 One-Sample Estimation

For the one-sample estimation problem, we considered total cluster sizes of n = 20 and 40.
Clustered survival data  were generated for ni individuals per cluster, where Pr{ni

= q} = 0.1, for q ∈ {1, 2, …, 10}. Failure times  for individuals within the same
cluster shared a multivariate log-normal distribution with parameter (μj, Σj) for type j events,
j = 1, 2, respectively. The covariance matrix was Σ1 = φI + (1 − φ)1nj×nj and Σ2 = φI + (1 −
φ)1nj×nj, where 1nj×nj was a nj × nj matrix with all entries equal to 1 and I was a nj × nj
identity matrix, here we fix φ = 0.3. The right-censoring time followed an exponential
distribution with parameter λC = 0.05. Xik was the minimum of the two failure times and the
right-censoring time, and δik = 0, 1 or 2, corresponding to right-censored data or to failures
of type 1 and 2, respectively.

To evaluate the impact of within-cluster correlation on estimates of cumulative incidence,
we considered scenarios with varying φ. We reported the biases b(t) = F̂1(t) − F1(t) for the
nonparametric approach (equation 2) at times t corresponding to the 10, 20, 30, 40, 50, 60,
70, 80, 90, and 95 percent quantiles of the normalized subdistribution 
(Gaynor et al., 1993), e.g., the time t90 such that . For μ1 = μ2 = 0.1, the results
based on 10,000 replications for φ = 0.0, 0.3, 0.6, and 0.9 (corresponding to independence,
and low, moderate, and strong within-cluster correlations, respectively, among survival
times for type 1 events) are shown in Figure 1. The overall absolute biases are small, less
then 0.02 in all scenarios considered. As the number of clusters increased, the bias
decreased. Indeed, for a study with n = 40 clusters, the absolute biases are all less than 0.01,
even with very heterogeneous clusters.

Figure 2 shows the empirical standard error (ESE), the robust standard error (RSE) that
accounts for correlation of clustered individuals, and the naïve standard error (NSE) that
ignores correlation of clustered individuals, under the same parameter configuration as
shown in Figure 1. The ESEs were obtained from 10,000 Monte Carlo replications and are
an accurate approximation of the true standard errors. The RSEs closely track the ESEs at all
time points in each scenario. However, the NSEs tend to underestimate the true standard
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errors, substantially so for times beyond the conditional median. Other hazard curves (e.g.,
data were generated from the Weibull distribution with a shared Gamma random effect
variable) were examined, and all gave broadly similar results in terms of bias and standard
error estimations (data not shown).

4.2 Two-Sample Testing
For the two-sample testing problem, we investigated the type I error rates under the null
hypothesis and the power under alternative hypotheses. Under the null, we considered
cluster size m0 = m1 = 20 and 40, and simulated data using the same settings of the one-
sample study for both group 0 and group 1. The test procedures developed in Section 3 were
applied. The Type I errors are reported in Table 1. In all settings considered, the three test
procedures have Type I errors close to the nominal level of α = 0.05. These data suggest that
the variance estimator for each test statistic is asymptotically consistent for large cluster
size. When within-cluster correlations were ignored and the naïve variances were used to
construct the test statistics, similar simulations found that the Type I errors increased to as
large as 0.25, substantially above the nominal level of 0.05.

To study the power of these tests under alternative hypotheses, we considered failure times

with Weibull distributions using hazard functions for event type 1 of  in
groups g = 0 and 1, where υ1g ∼ Gamma(φ, φ −1). Again, the hazard rates for type 2 events

were set to a constant function  in groups g = 0 and 1. Figure 3 shows the powers
of selected scenarios of alternative hypotheses for the landmark test at t90, the Gray test, and
the Pepe–Mori test for φ = 0.5, 1.0, 1.5, 2.0, 3.0, and 4.0. Panel A shows the power to detect
distinct cumulative incidence functions when the baseline hazards for event type 1 are
parallel constant lines. In panels B, C, and D, the two baseline hazards cross, with the
hazards in group 0 being constant and the hazards in group 1 increasing over time at
different rates. The performance of the test statistics depended on the shapes of the hazard
functions and the degree of homogeneity among clusters. Power decreased for all three test
statistics when hazards in different clusters became more heterogeneous, corresponding to a
large random effects variance or small φ The Pepe–Mori test dominated when the
cumulative incidence of one group was consistently greater then the other, while the Gray
test tended to have higher power when the cumulative incidence functions had a different
shape (Ghosh and Lin, 2000). Although all three test statistics were sensitive to within-
cluster correlation, the effect of correlation on each test was variable. The landmark test
performance depended on the time that was selected to conduct the test and could be
underpowered in some scenarios, for example, in panel C, when the landmark time of
interest is located at a point where the cumulative incidence curves are similar.

5. Application to HBOC Data
We applied the proposed methods to the HBOC study. Age is the natural time scale.
Prospective follow-up for family members began at the time that the proband was enrolled
(the ascertainment date). For individuals who were less than 20 years old at the time of
enrollment of the family, the starting date was deferred until their 20th birthday. The left-
truncation times for siblings could depend on each other, but this should not affect our
analysis. It is reasonable to assume that the left-truncation times are independent of the event
times (time of breast cancer or death) for any given family, because the follow-up that is
stipulated in the protocol does not depend on the age at diagnosis of breast or ovarian cancer
of the proband, or the number of affected relatives at any point of time. We extended our
methods in Section 2 to accommodate left truncation by modifying the at-risk processes as
Yik (t) = I{Eik < t ≤ Xik } where Eik is the left-truncation time. All individuals alive without
developing breast cancer at the study closing date (June 30, 2003) were considered as right
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censored. The censoring times are independent of the event times. Thirty-three individuals
among 98 mutation-positive women, and 5 individuals among 353 mutation-negative
women, developed breast cancer during up to 30 years of follow-up. There were 17 and 14
deaths without prior breast cancer in the BRCA1 mutation-positive and mutation-negative
groups, respectively.

We estimated the cumulative incidence of breast cancer for women in BRCA1 mutation-
positive and mutation-negative women, treating death without breast cancer as a competing
risk and taking within-family correlation into account. The lifetime cumulative incidence of
breast cancer in the non-carriers was 6.4% with 95% confidence interval 0.3–12.5%, which
is similar to that observed in the general population. Both the NSEs and the RSEs were
0.031. We also used a Gamma frailty model (Andersen et al., 1993) to investigate the
within-cluster correlation of failure times. The generalized likelihood ratio tests showed no
evidence of family effects for either breast cancer or death without breast cancer in the 353
BRCA1 mutation-negative women, with variance for the frailty variable modulating time to
breast cancer estimated as  (p-value for . is 0.999) and the variance for
the frailty variable modulating time to death estimated by  (p-value for  is
0.122).

The cumulative incidence of breast cancer by age 80 in the BRCA1 mutation-positive group
was 62.3%, with 95% robust confidence interval 43.8–80.1%. The corresponding RSE was
9.4%, compared with 6.5% for the NSE that ignored within-cluster correlation. The
cumulative incidence of breast cancer in the mutation-positive women and the
corresponding pointwise 95% confidence intervals are shown in Figure 4 using the
nonparametric approach. The Gamma frailty model showed significant within-family
correlation for the breast cancer outcome, with . The generalized likelihood ratio
test of the null hypothesis  yielded a p-value 0.029. However, a family effect was
not present for the mortality event, with , and generalized likelihood ratio test
p-value equal to 0.958.

The landmark test statistic for the null hypothesis of no difference between these two groups
at age 80 is QLM = 0.559 (S.E. 0.100), with standardized value Q ̃LM = 5.59, and
corresponding p-value of 2.3 × 10−8. The Gray test statistic is QGT = 14.27 (S.E. 2.74), with
standardized value Q ̃GT = 5.21, and p-value of 1.9 × 10−7. The Pepe–Mori test statistic is
QPM = 20.04 (S.E. 4.07), with Q ̃PM = 4.92, and p-value 8.7 × 10−7. As expected, each test is
highly significant. Although the standardized test statistics are similar, the landmark test is
readily interpreted as a 56% difference between the cumulative risks at age 80 in carriers
versus noncarriers from the same family.

6. Discussion
The competing risks problem for cluster-correlated failure times is frequently encountered in
clinical genetics studies. The HBOC study described here provides an illustrative example
with familial clustering. It has been pointed out by several investigators (Gaynor et al., 1993;
Pepe and Mori, 1993) that use of the Kaplan–Meier method can be misleading in the
presence of competing risks. Therefore, cumulative incidence estimators may be more
appropriate. The goal of our analysis was to develop general methods to estimate cumulative
incidence accounting for cluster correlation, and to develop appropriate test statistics
comparing cumulative incidence curves in the two-sample setting. Our simulation studies
and example suggest that naïve estimators and tests may overestimate precision and suffer
from inflated type I errors. Therefore, our new methods may be broadly applicable and more
appropriate for clinical genetics studies. Our specific finding of a significant family effect

Chen et al. Page 8

Biometrics. Author manuscript; available in PMC 2011 June 29.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



for breast cancer among BRCA1 mutation-positive women is biologically plausible and
should be followed up in other studies.

The methods developed in this article provide asymptotically consistent point estimates of
the cumulative incidence. Simulation studies show that the finite sample biases of the
cumulative incidence curves appear to be small, and diminish as the sample size increases,
even in settings where individuals within the same cluster are highly correlated with each
other. As individuals from different clusters become homogeneous and within-cluster
correlation disappears, the robust variance estimate still provides a consistent estimate for
the true variance, although it may not be as efficient as the naïve variance estimate.

Left truncation can occasionally introduce computational difficulties. If the risk set includes
only a single individual who fails then the Kaplan–Meier curve equals zero beyond that time
even if other individuals enter later. Fortunately, the Nelson–Aalen estimator does not have
computational difficulties in this situation. A second problem is that the risk sets can be very
small, often for early times, and this can result in very large standard errors associated with
estimates of cumulative hazards or cumulative incidence.

For two-sample testing problems, we examined the empirical size of a landmark test, Gray
test, and Pepe–Mori test under the null hypothesis, and we evaluated the empirical power of
these tests under selected alternative hypotheses. All tests controlled the type I error. The
respective powers depended on the extent of within-cluster correlation. The landmark test is
simple to interpret but it may be underpowered if the data are not informative at the
landmark time of interest. Both the Gray and the Pepe–Mori tests can have higher statistical
power over the other; the Gray test is more powerful when the shapes of the two cumulative
incidence curves are different, while the Pepe–Mori test is more powerful when one
cumulative curve is consistently higher than the other curve. Therefore, both can be useful in
practice.

Our methodology can be extended in several settings. In Section 5, we extended it to
accommodate left-truncation by modifying the at-risk processes Yik (t). For the general K-
sample problem, one might design a global test by constructing the optimal linear
combination of results from two-sample test statistics. The Gray and Pepe–Mori tests have
been generalized to the setting of recurrent events (Ghosh and Lin, 2000) and multivariate
recurrent events (Chen and Cook, 2004) in the presence of the competing risk of a terminal
event (death). The robust variance estimator for the regression coefficients has been studied
for clustered recurrent events in the settings of semiparametric models (Schaubel, 2005).
However, it remains to extend those nonparametric tests to cluster-correlated recurrent
events.

In conclusion, we develop estimates and tests for cumulative incidence curves when event
times for individuals from the same cluster are correlated. Such an approach is useful when
interest lies in investigating the absolute risks, as we see from the HBOC study. The HBOC
dataset is available through Dr MHG (greenem@mail.nih.gov). The simulation studies and
data analysis for this article were conducted using Matlab (MathWorks, 2006). Programs are
available from BEC (bingshu@chenstat.com) upon request.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
Biases for the cumulative incidence functions by percentile of the standardized cumulative
incidence function  when μ1 = 0.1 and μ2 = 0.1 for different cluster sizes m and
correlation coefficient φ. Results were based on 10,000 replications.
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Figure 2.
ESEs, RSEs, and NSEs by percentile of the standardized cumulative incidence function

. Results were based on 10,000 replications.
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Figure 3.
Power of the landmark test at t90 (the 90% quantile of the normalized subdistribution
function), the Gray test, and the Pepe–Mori test for value of the frailty parameter φ. Results

were based on 10,000 replications. The baseline hazard rates are: (A)  and

, (B)  and , (C)  and , and

(D)  and .
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Figure 4.
Cumulative incidence of breast cancer in BRCA1 mutation-positive women, and
corresponding pointwise 95% confidence intervals.
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