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We studied how soil pH (pHs 4 to 8) influenced the mineralization of low-molecular-weight (LMW)-dissolved
organic carbon (DOC) compounds, and how this compared with differences in microbial community structure.
The mineralization of LMW-DOC compounds was not systematically connected to differences in soil pH,
consistent with soil respiration. In contrast, the microbial community compositions differed dramatically. This
suggests that microbial community composition data will be of limited use in improving the predictive power
of soil C models.

The primary connection between soil microbial activity and
carbon (C) cycling is well established (29, 46, 51); however,
there has recently been a call for a more detailed understand-
ing and integration of the microbial community into models for
soil organic C (SOC) cycling to improve their predictive power
(5, 6, 10, 11, 20, 29, 35, 44, 47). To accomplish this, we need to
study the drivers of respiration and composition of microbial
communities together (36).

Low-molecular-weight (LMW)-C compounds dominate the
C used in soil respiration (13, 18, 22, 31, 48, 49, 50). Although
observations regarding factors that affect LMW-DOC cycling
have started to emerge (13, 23, 31), the canonical environmen-
tal factors influencing their mineralization remain unclear.
This study’s aims were to test how one of the most influential
factors for the composition of the soil microbial community,
soil pH (4, 8, 26, 32, 39, 40, 41, 42), influenced the mineraliza-
tion of LMW-C compounds across a wide pH gradient and to
compare our findings with microbial community composition.

Soil was obtained from the Hoosfield pH gradient at
Rothamsted Research, United Kingdom (1, 2, 3, 7, 39). Thirty
topsoil samples (0- to 23-cm depth) were tested along the
gradient in March 2010, sieved (�2 mm), and characterized
(39). The 30 individual soil samples were used for microbial
and chemical analyses (e.g., organic C, total N, pH, phospho-
lipid fatty acid [PLFA] composition, and bacterial growth),
while the gradient was split into four pH levels for the soil
solution analysis and C substrate mineralization assays. For
these, independent replicates (n � 3) were used for each of the
four pH levels (pH 4.1 � 0.04, pH 5.0 � 0.07, pH 6.0 � 0.05,

and pH 7.1 � 0.08). Soil solution was extracted by centrifugal
drainage (19, 43; see also Supplement S1 in the supplemental
material), and the free amino acid and sugar concentrations of
the solutions were determined (21, 30).

Soil (5 g) from each pH level was weighed into polypropyl-
ene tubes. Soil solution from each replicate (450 �l) was then
individually spiked with one of eight different 14C-labeled sub-
strates (50 �l) at a trace level and added to the soil and the
mineralization monitored using 1 M NaOH CO2 traps at 22°C
for 7 days (see Supplement S1 in the supplemental material).
The 14CO2 level in the NaOH traps was determined by liquid
scintillation. Sorption of the added 14C LMW-DOC com-
pounds across the pH gradient was determined in sterilized soil
samples (see Supplement S1). Bacterial growth was estimated
using leucine incorporation (9, 25), and microbial community
structure was determined from PLFA patterns (16, 17, 32).

14C substrate mineralization and half-lives (t1/2) were mod-
eled by fitting a double-first-order decay equation to the ex-
perimental results (13, 23, 33, 48, 49; see also Supplement S1
in the supplemental material). The PLFA composition (mol%
of the 26 most abundant PLFAs) was analyzed by principal-
component analysis (PCA) after values were standardized to
unit variance. Analysis of variance (ANOVA) with Tukey’s
honestly significant difference test post hoc comparisons were
used to determine differences in variables with soil pH, while
regression analyses were used to describe relationships with
pH across all 30 samples. Results were compared to those for
an identical sampling of the pH gradient from 2008 (40). In
addition, a 454-pyrosequencing-based analysis of the bacterial
community composition was also previously performed on the
same 2008 samples (42; based on analyses from references 14,
27, 28, and 34). A type II major-axis regression analysis was
used to investigate the connection between the sequence com-
position (the principal coordinate of variation of the sequence
composition [see Supplement S1]) of the bacterial community
with microbial PLFA composition.
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Soil measurements showed a smooth pH gradient between
pH 4 and 8 with only small differences in most other chemical
variables (39) (Fig. 1). DOC and dissolved organic nitrogen
(DON) concentrations did not systematically change over the
pH gradient (see Table S1 in the supplemental material). The
DOC and DON concentrations derived from both sugars and
amino acids were similar over the gradient (P � 0.05) (Table
S1), averaging 53.5 � 7.1 nmol of C derived from sugar (sugar
C) g�1 soil and 11.4 � 2.1 nmol amino acid C g�1 soil. The
mineralization patterns conformed well to a double-first-order
kinetic model (R2 � 0.99 for all substrates) (Fig. 2 and 3). The
individual amino acids and sugars degraded at different rates
(Fig. 2); however, this did not systematically change with pH
(see Table S2 in the supplemental material).

Combining our estimates of free sugar and amino acid con-
centrations with estimates of their turnover rate enabled esti-
mation of the contribution of LMW-C mineralization to soil
respiration. We estimate that approximately 0.32 and 0.09 �g
of C derived from CO2 (CO2 C) g�1 h�1 of soil respiration
were derived from sugar and amino acid degradation, respec-
tively. Taken together, this is within the range of previous
assessments of the basal respiration rate at the site (0.20 to 0.50
�g CO2 C h�1 g�1) (3, 39, 41).

Bacterial growth increased about 6-fold between pH 4.5 and
8.0 (P � 0.0001) (see Fig. S1 in the supplemental material).
The first component from a PCA of the microbial PLFA com-
position explained 40% of the variation in the data and was

closely related to soil pH (P � 0.0001, R2 � 0.96) (see Fig. S2A
in the supplemental material). The variation of microbial
PLFA composition across the Hoosfield site was highly repro-
ducible, with the major component of variation from a PCA
aligning identically with soil pH (Fig. 4A). There was also a
very close relationship between the variation in the sequence
composition of the bacterial community (42) (Fig. 4B).

The Hoosfield site effectively isolated soil pH from most
other variables associated with microbial community differ-
ences. In addition, it was previously shown that excess Al (or
other unidentified inhibitors) or a lack of P or N did not limit
bacterial and fungal growth across the pH gradient (41). Sol-
uble LMW-C compound concentrations were also not system-
atically affected by pH. Similarly, rates of turnover of individ-
ual LMW-C compounds did not change consistently with pH.
In contrast, the microbial community composition radically
differed along the pH gradient. Direct comparison between the
microbial PLFA composition and its sequence composition
(obtained by 454 pyrosequencing [42]) (Fig. 4B) indicated that
the difference in microbial PLFA composition across the gra-
dient was a consequence of a difference in bacterial species
composition. The enormous pH-related differences in micro-
bial community composition did not affect the mineralization
of LMW C, the dominant source of soil respiration, across the
pH gradient. Therefore, we could not find support for a con-
nection between microbial community structure and function
(the turnover of the LMW-DOC compounds that govern soil

FIG. 1. Soil pH along the Hoosfield acid strip (A), the effect of soil pH on electrical conductivity (B), the organic C (C), and total N (D). Data
points below pH 4.5 (open symbols) were not used in the regression analyses (see Materials and Methods).
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respiration). This is consistent with conjectures derived from
theoretical models of soil organic matter (SOM) turnover that
have suggested high redundancy in the microbial processing of
LMW C (12, 24, 45). We cannot discount the possibility that

processes transforming SOM to LMW DOC are closely related
to microbial community structure. However, there was only a
minor discrepancy between basal respiration (30% difference
across the gradient) and LMW-DOC mineralization across the

FIG. 2. Mineralization of sugars. Amounts of 14C-labeled glucose (A), fructose (B), sucrose (C), and starch (D) remaining in soils of the four
different pH levels after the injection of the isotopically labeled soil solution into the soil. Values represent means � 1 SE (n � 3). The lines
represent the best fits of double-first-order exponential-decay functions (R2 � 0.99 for all curve fits).

FIG. 3. Mineralization of amino acids and amino sugars. Amounts of 14C-labeled glycine (A), alanine (B), leucine (C), and glucosamine
(D) remaining in soils of the four different pH levels after the injection of the isotopically labeled soil solution into the soil. Values represent
means � 1 SE (n � 3). The lines represent the best fits of double-first-order exponential-decay functions (R2 � 0.99 for all curve fits).
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gradient (no difference across the gradient), setting the upper
limit for the functional relevance of the microbial community
difference. This does not lessen the need to identify and incor-
porate the rate-limiting mechanisms in models for SOC turn-
over (6, 29), but it does suggest that adding information about
the microbial community composition may be of limited use.
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