Transcriptomic Responses of the Softwood-Degrading White-Rot Fungus *Phanerochaete carnosa* during Growth on Coniferous and Deciduous Wood[∀]†

Jacqueline MacDonald,¹ Matt Doering,² Thomas Canam,²‡ Yunchen Gong,³ David S. Guttman,³ Malcolm M. Campbell,^{2,3} and Emma R. Master^{1,2}*

Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON,

Canada M5S 3E5¹; Department of Cell and Systems Biology, University of Toronto, 25 Harbord Street, Toronto,

ON, Canada M5S 3G5²; and Centre for the Analysis of Genome Evolution and Function,

University of Toronto, 25 Willcocks Street, Toronto, ON, Canada M5S 3B3³

Received 21 October 2010/Accepted 10 March 2011

To identify enzymes that could be developed to reduce the recalcitrance of softwood resources, the transcriptomes of the softwood-degrading white-rot fungus Phanerochaete carnosa were evaluated after growth on lodgepole pine, white spruce, balsam fir, and sugar maple and compared to the transcriptome of P. carnosa after growth on liquid nutrient medium. One hundred fifty-two million paired-end reads were obtained, and 63% of these reads were mapped to 10,257 gene models from P. carnosa. Five-hundred thirty-three of these genes had transcripts that were at least four times more abundant during growth on at least one wood medium than on nutrient medium. The 30 transcripts that were on average over 100 times more abundant during growth on wood than on nutrient medium included 6 manganese peroxidases, 5 cellulases, 2 hemicellulases, a lignin peroxidase, glyoxal oxidase, and a P450 monooxygenase. Notably, among the genes encoding putative cellulases, one encoding a glycosyl hydrolase family 61 protein had the highest relative transcript abundance during growth on wood. Overall, transcripts predicted to encode lignin-degrading activities were more abundant than those predicted to encode carbohydrate-active enzymes. Transcripts predicted to encode three MnPs represented the most highly abundant transcripts in wood-grown cultivations compared to nutrient medium cultivations. Gene set enrichment analyses did not distinguish transcriptomes resulting from softwood and hardwood cultivations, suggesting that similar sets of enzyme activities are elicited by P. carnosa grown on different wood substrates, albeit to different expression levels.

Softwood, which is generated by gymnosperm plant species, is the predominant form of land plant biomass in the Northern hemisphere (8). The plentiful renewable supply of wood makes it an attractive feedstock for many industrial uses, including biofuel production (18). Softwood is also among the most recalcitrant lignocellulosic feedstocks, particularly to bioprocess technologies (42). The recalcitrance of softwood lignocellulose to bioprocess technologies has been attributed to its higher lignin content, smaller pore size, and fewer hemicellulose-derived acetyl groups (25). Despite this recalcitrance, various microorganisms have evolved the ability to transform softwood fiber, the best studied of which are the white-rot and brown-rot fungi of the phylum Basidiomycota (13). White-rot fungi are the only microorganisms known to effectively degrade all components of lignocellulose, while brown-rot fungi depolymerize wood polysaccharides and leave the lignin as a modified residue (41).

While the majority of white-rot fungi characterized to date

effectively degrade hardwood, *Phanerochaete carnosa* is a white-rot fungus that was isolated almost exclusively from softwood (2). Previous analyses of proteins secreted by *P. carnosa* grown on spruce and cellulose identified peptides corresponding to enzymes involved in lignocellulose degradation, including cellulases, xylanases, glyoxal oxidases (GLOX), and peroxidases (19). Notably, many of the peptide sequences recovered in the proteomic analysis of *P. carnosa* matched conserved regions of multigene families, so the contributions of specific genes could not always be determined (19). The emergence of high-throughput methods for transcriptome analysis (38) opens the door for in-depth exploration of the contributions of specific genes to degradation of softwoods by *P. carnosa*.

The current study reports the first transcriptome analysis of the softwood-degrading white-rot fungus *P. carnosa*. This study also represents the first application of next-generation RNAsequencing technologies (mRNA-Seq) to directly compare the transcriptomes of a wood-degrading basidiomycete grown on multiple wood samples, including balsam fir, lodgepole pine, white spruce, and sugar maple. By analyzing *P. carnosa* gene expression following growth on coniferous softwood (fir, pine, and spruce) and hardwood (maple) substrates and by comparing patterns of gene expression to previous analyses of the model *Phanerochaete chrysosporium*, we aimed to characterize the effect of lignocellulose composition on gene expression in *P. carnosa* and to predict key activities that could reduce the recalcitrance of softwood to bioprocess technologies.

^{*} Corresponding author. Mailing address: Department of Chemical Engineering and Applied Chemistry, University of Toronto, 200 College Street, Toronto, ON M5S 3E5, Canada. Phone: 416-946-7861. Fax: 416-978-8605. E-mail: emma.master@utoronto.ca.

[‡] Present address: Agriculture and Agri-Food Canada, 107 Science Place, Saskatoon, SK, Canada S7N 0X2.

[†] Supplemental material for this article may be found at http://aem .asm.org/.

^v Published ahead of print on 25 March 2011.

MATERIALS AND METHODS

Fungal strain and culture conditions. The naturally isolated homokaryotic P. carnosa strain HHB-10118-sp was obtained from the U.S. Department of Agriculture (USDA) Forest Products Laboratory (Madison, WI) and grown on solid or liquid medium. Wood cultivations were prepared by using a blender to grind balsam fir (Abies balsamea), lodgepole pine (Pinus contorta), white spruce (Picea glauca), or sugar maple (Acer saccharum) and then sifting air-dried samples through 3.35-mm²- and 1.5-mm²-pore-size sieves. Fiber that passed through the 3.35-mm² sieve but was retained by the 1.5-mm² sieve was recovered, and 4-g samples were transferred to 500-ml beakers containing 10 ml of B3 buffer (2 g KH₂PO₄, 0.5 g MgSO₄ · 7H₂O, 0.1 g CaCl₂ · 2H₂O, 0.73 g 2,2-dimethylsuccinic acid, 0.5 mg thiamine-HCl, 0.2 g ammonium tartrate, and 10 ml mineral solution per liter in H₂O, pH 4.5) (16). The mineral solution contained 1.5 g nitrilotriacetate, 0.5 g MnSO₄, 1 g NaCl, 100 mg FeSO₄-7H₂O, 100 mg CoSO₄, 100 mg ZnSO₄, 10 mg CuSO₄-5H₂O, 10 mg AlK(SO₄)₂, 10 mg H₃BO₃, and 10 mg NaMoO4 per liter H2O. Thiamine-HCl, ammonium tartrate, and 2,2-dimethylsuccinic acid were added as filter-sterilized solutions, while all other media were steam sterilized for 20 to 30 min. Liquid cultivations contained 14 ml YMPG medium (2 g yeast extract, 10 g malt extract, 2 g peptone, 10 g glucose, 2 g KH₂PO₄, 1 g MgSO₄ · 7H₂O, 1 g asparagine per liter in H₂O) in 500-ml beakers and were steam sterilized for 20 min.

Each culture medium was inoculated with an 11-mm circular agar plug taken from the growing edge of *P. carnosa* cultivated on solid YMPG (with agar). Cultivations were incubated under stationary conditions at 27°C until the diameter of the mycelial mat reached 4 cm (6 to 9 days), at which point the central 28 mm of growth was harvested. Cultivation of *P. carnosa* on fir, pine, spruce, and maple for 6 to 9 days was previously correlated with detectable biotransformation of each lignocellulosic substrate (unpublished data). Since cultivations were initiated using YMPG agar plugs, the transcriptomes of *P. carnosa* grown on fir, pine, spruce, and maple were compared to the transcriptome of *P. carnosa* grown on YMPG liquid medium. After cultivation, excess liquid was removed using Miracloth, and mycelia were flash frozen in liquid nitrogen and then stored at -80° C.

RNA extraction and sequencing. Total RNA was isolated from frozen samples using the RNeasy Plant Mini Kit (Qiagen Inc., Mississauga, ON, Canada) according to the manufacturer's protocol for plant tissues and filamentous fungi and including the optional on-column DNase digestion. Total RNA was sent to the Centre for the Analysis of Genome Evolution and Function (CAGEF, Toronto, ON, Canada) for sample preparation and sequencing. cDNA was synthesized and prepared for sequencing using the mRNA-Seq Sample Prep Kit (Illumina Inc., San Diego, CA). The samples were run in independent lanes, and paired-end sequences of 38 bp were obtained using the Illumina Genome Analyzer IIx.

Sequence annotation. Paired reads were converted to FASTQ format using an in-house PHP script and mapped to version 1.0 of the P. carnosa genome (http://genome.jgi-psf.org/Phaca1) (DOE-JGI, Walnut Creek, CA) using Novoalign (Novocraft) with default parameters, which filters out homopolymers and low-quality reads. Gene models were then predicted using the Maker genome annotation pipeline (3), whereby the Augustus gene prediction tool was used to analyze version 1.0 of the P. carnosa genome (31), and gene predictions were improved using Maker to integrate initial models with mRNA-Seq tag contigs. The BLAST algorithm was used to functionally annotate the resulting gene models based on their similarity to sequences of open reading frames predicted from the P. chrysosporium genome version 2.0 (36). Orthologs with reciprocal best hits were identified, and gene models predicted to encode proteins of interest to this study were reannotated manually. Transcript abundance was calculated based on the number of mRNA-Seq reads mapping to a given gene model and normalized to reads per million per kb of the predicted gene model. The corresponding heat map was created using an in-house PHP script, as was done previously (9).

GO Slim analysis. Individual genes were placed into GO Slim categories based on their automated annotations using the map2slim.pl tool available from the Gene Ontology Consortium (http://www.geneontology.org/GO.slims.shtml). Enzyme categories predicted to participate in lignocellulose transformation were added to the generic GO Slim for molecular function defined by the Gene Ontology Consortium. Each gene product was assigned to a single GO Slim category, and categories with fewer than 15 gene products were merged with the corresponding parent categories. To identify GO Slim categories that were significantly enriched on wood substrates compared to YMPG, an enrichment analysis was performed using Gene Set Enrichment Analysis 2.0 (32). The enrichment analysis applied a log₂ ratio of classes as the metric for ranking genes and gene set randomization as the permutation type. The results were considered significant if the P value was less than 0.05 and the false-detection rate was less than 10% (32).

Phylogenetic analysis. Gene models predicted to encode manganese peroxidase (MnP) and lignin peroxidase (LiP) were aligned using ClustalW within Biology Workbench 3.2 (http://workbench.sdsc.edu) using the following parameters: gap open penalty = 15, gap extension penalty = 0.2, and delay divergent sequences = 30%. Bayesian trees were constructed using MrBayes 3.1 (14, 27) assuming the general time-reversible model for DNA sequence evolution, with gamma-distributed rate variation across sites. Phylogenetic trees were sampled every 100 generations until the average standard deviation of split frequencies was below 0.01, which occurred at 2,160,000 generations. The first 25% of trees were discarded as burn-in, and the remaining trees were used to calculate a 50% majority rule consensus tree rooted with a cytochrome *c* peroxidase (CCP) from *Saccharomyces cervisiae*. CCP belongs to the class I peroxidases, while MnP and LiP belong to class II (22, 39).

Quantitative reverse transcription-PCR (qRT-PCR). Reverse transcription was performed using RevertAID H Minus Moloney murine leukemia virus (M-MuLV) reverse transcriptase (Fermentas Canada Inc., Burlington, ON, Canada), T_{25} VN primer (with 25 thymidine nucleotides, followed by an adenosine, cytosine, or guanosine [represented by "V"], and then any of the 4 nucleotides [represented by "N"]), and 30 ng total RNA in a 50-µl reaction volume. The resulting cDNA was diluted with 150 µl water, and 2 µl of each diluted sample was transferred to a reaction tube containing SYBR green JumpStart *Taq* Ready-Mix (Sigma-Aldrich Canada Ltd., Oakville, ON, Canada) and 1 µM gene-specific primers (see Table S1 in the supplemental material) in a 25-µl volume. The reaction products were quantified based on plasmid standard curves using the DNA Engine Opticon 2 detection system (Bio-Rad Laboratories Canada Ltd., Mississauga, ON, Canada).

RESULTS

Transcriptome sequencing. mRNA-Seq was used to study the transcriptome of *P. carnosa* when grown on fir, pine, spruce, and maple wood samples and on YMPG liquid medium. A total of 152 million paired-end reads were obtained and filtered by the mapping program, and 63% of these reads were mapped to the 10,257 P. carnosa gene models predicted by Augustus and Maker. By mapping the mRNA-Seq data to P. carnosa transcript and genome sequences obtained by JGI (http://genome.jgi-psf.org/Phaca1), an additional 13% of reads were mapped to splice junctions or introns of predicted genes. The remaining reads are likely from untranslated regions (UTRs), intergenic regions, unpredicted genes, or unassembled genes. Notably, 9,154 of the models (88%) could be assigned a molecular function based on the homology of predicted protein sequences to proteins in other organisms and the presence of conserved functional domains within the predicted protein sequence. Where possible, transcript sequences collected in the current study are cross-referenced to GenBank accession numbers and JGI protein identifiers (IDs) to facilitate the retrieval of transcript sequences (see Fig. S1 in the supplemental material).

Of the 10,257 gene models with associated transcript reads, 533 were at least 4 times more abundant in *P. carnosa* grown on at least one wood substrate than in that grown on YMPG (see Fig. S1 in the supplemental material), 162 were at least 4 times more abundant during growth on all wood media than on YMPG, and 115 were at least 4 times less abundant during growth on all wood media than on YMPG. Notably, the 10,257 gene models are close in number to the 10,048 protein-coding genes predicted from the completed genome of *P. chrysosporium* (36). Given the phylogenetic similarity of *P. carnosa* and *P. chrysosporium*, this result suggests that the majority of *P. carnosa* genes were included in this study.

FIG. 1. Biological reproducibility of the transcript abundances determined by mRNA-Seq. Transcript abundance in *P. carnosa* during growth on fir (dark-gray bars) and YMPG (light-gray bars) was determined by qRT-PCR. Transcript ID numbers are indicated. *chs*, chitin synthase; *man*, mannanase; *axe*, acetyl xylan esterase; *cel*, cellulose binding; *xyl*, xylanase; *lip*, lignin peroxidase. The numbers on the bars are the ratios of transcript abundances from mRNA-Seq analysis of cultivations grown on fir and YMPG medium; single asterisks indicate significance at P < 0.05, double asterisks significance at P < 0.005 (n = 4). The error bars indicate the range of the data set. Reference data for each Gene ID are presented in Fig. S1 in the supplemental material.

Validation of mRNA-Seq patterns. To test the technical reproducibility of the mRNA-Seq experiments, four of the five samples were each sequenced in two lanes, and the numbers of reads mapping to each gene model were compared between the lanes. Read numbers per gene model were highly reproducible, with R^2 values greater than 0.99 for RNA from *P. carnosa* grown on YMPG, fir, spruce, and maple (see Fig. S2 in the supplemental material). RNA from the pine-grown culture was sequenced in one lane and was not tested for technical reproducibility.

We used real-time qRT-PCR to test the biological reproducibility of the RNA-Seq data for six transcript sequences in four replicate cultivations of P. carnosa grown on YMPG and ground fir (Fig. 1). These included five transcript sequences that were found by mRNA-Seq to be between 1.7 and 200 times more abundant in P. carnosa during growth on fir than during growth on YMPG and that are predicted to encode a mannanase (transcript 405), acetyl xylan esterase (transcript 1498), cellulose-binding protein (transcript 1122), xylanase (transcript 1006), and lignin peroxidase (transcript 9). A transcript predicted to encode chitin synthase (transcript 1130), which was found in similar amounts during growth on all tested substrates, was also quantified by qRT-PCR. Transcript sequences predicted by mRNA-Seq analyses to be more abundant in P. carnosa during growth on fir than during growth on YMPG were also significantly more abundant in replicate cultivations analyzed by qRT-PCR (Fig. 1). This analysis suggests that transcript counts at least 1.7 times higher in wood cultivations than in liquid cultures represent biologically relevant differences in transcript abundance.

Differentially regulated transcripts. To identify gene classifications that had higher transcript abundance in *P. carnosa* grown on all wood substrates than in those grown on YMPG, individual gene models were placed into GO Slim categories, and transcript abundance patterns were evaluated (Fig. 2).

Fifty-five percent of gene annotations fit into specific GO Slim categories, and transcript sequences that clustered in GO Slim categories predicted to encode lignocellulose-degrading activity, including oxidoreductase activity, peroxidase activity, monooxy-genase activity, hydrolase activity, and glycosyl hydrolase activity, were significantly enriched in *P. carnosa* grown on each of the wood substrates compared to YMPG (Fig. 2). In contrast, transcripts predicted to encode structural proteins had lower abundance in *P. carnosa* grown on each wood than on that grown on YMPG.

To predict specific catalytic activities that had the greatest difference in transcript abundance in *P. carnosa* grown on wood compared to YMPG, the 30 transcripts that were at least 100 times more abundant during growth on wood substrates (average values) than during growth on YMPG were evaluated in more detail (Table 1). Sixteen of these sequences (53%) were predicted to encode proteins involved in plant cell wall degradation, including 6 MnPs, 5 cellulases, 2 hemicellulases, a LiP, glyoxal oxidase, and a P450 monooxygenase. The three most highly abundant transcripts in wood-grown cultivations compared to YMPG-grown cultivations were predicted to encode MnP activity.

Cellulose and hemicellulose degradation. In fungi, cellulose degradation is mediated by at least three concerted cellulolytic activities: endoglucanases, cellobiohydrolases, and β -glucosidases. Endoglucanases hydrolyze internal glycosidic linkages, while cellobiohydrolases release cellobiose from either the reducing or nonreducing end of cellulose polymers. β -Glucosidase alleviates the inhibitory effect of cellobiose on endoglucanase activity by hydrolyzing the substrate to glucose (12, 40).

Among the wood-grown cultivations, transcripts predicted to encode each of these cellulolytic activities were generally most abundant in pine cultivations and lowest in fir cultivations (Fig. 3). Exceptions included a predicted GH 7 (transcript ID 144) and predicted GH61s (transcript IDs 606, 734, 3147, and 2705). Interestingly, these transcripts were most abundant in *P. carnosa* grown on maple. Overall, two gene models were predicted to encode GH7 cellobiohydrolases, and one was predicted to encode a GH6 cellobiohydrolase. Higher expression of GH7 than GH6 activity is also consistent with previous proteomic analyses of culture supernatants from *P. carnosa* grown on cellulosic substrates (19).

Transcripts encoding $\beta(1,4)$ -endoglucanases from glycoside hydrolase (GH) families 5 and 12 were between 2 and over 300 times more abundant in *P. carnosa* cultivations grown on all wood substrates than in those grown on YMPG, while transcript sequences encoding a putative cellobiose dehydrogenase (transcript 493) were between 1.3 and 21 times more abundant in *P. carnosa* cultivations grown on all wood substrates than in those grown on YMPG. Notably, cellobiose dehydrogenase activity might be important for limiting the inhibitory effects of cellobiose and other oligosaccharide hydrolysis products. Similar to previous transcriptomic analysis of *P. chrysosporium* grown on red oak (28), the abundance of transcripts predicted to encode GH3 β -glucosidases in *P. carnosa* grown on wood substrates was comparatively low.

GH61 proteins have been shown to dramatically improve the impact of commercial cellulases, despite the apparent lack of ability to hydrolyze cellulosic substrates (11). In addition to typical cellulase activities, seven transcript sequences predicted

FIG. 2. Relative abundances of GO Slim classifications among *P. carnosa* transcripts isolated from each wood cultivation compared to cultivation on YMPG. The light-gray bars correspond to cultivation on fir, the black bars correspond to cultivation on pine, the dark-gray bars correspond to cultivation on spruce, and the white bars correspond to cultivation on maple. The asterisks indicate GO Slim categories that are significantly enriched in all wood cultivations (P < 0.05); the false-detection rate was less than 10%.

to encode GH61 proteins were between 8.8 and 740 times more abundant in *P. carnosa* cultivations grown on wood substrates than in those grown on YMPG. In fact, among transcripts encoding putative cellulases, a GH61 (transcript 1039) was the most highly abundant in *P. carnosa* grown on wood substrates compared to YMPG, based on the average transcript abundance for all wood cultivations (Table 1). Three additional transcript sequences were predicted to encode GH61 proteins, though their abundances were similar in wood and YMPG cultivations.

While cellulose is a linear polymer of repeating cellobiose subunits, hemicellulose composition and structure vary depending on the plant source, as well as the cell wall layer. For instance, while xyloglucan is the main hemicellulose present in primary cell walls of both hardwood and softwood, the corresponding secondary cell wall hemicelluloses differ. Glucuronoxylan comprises approximately 20 to 30% of the secondary cell wall polysaccharides in hardwood, while galactoglucomannan is the main hemicellulose in secondary cell walls of conifers (29). Minor hemicelluloses in hardwood and softwood fiber include glucomannan (2 to 5%) and glucuronoarabinoxylan (5 to 15%), respectively (29).

Similar to the expression of genes encoding cellulolytic activity, transcripts predicted to encode main-chain hemicellulases were most abundant in pine cultivations and lowest in fir cultivations compared with the other wood substrates (Fig. 3). Transcript sequences predicted to encode GH12 and GH74 endoglucanases (transcripts 5329 and 3295) that target primary cell wall polysaccharides were between 3.7 and 50 times more abundant in *P. carnosa* grown on wood substrates than in those grown on YMPG; four transcript sequences predicted to encode GH10 xylanases (transcripts 254, 1006, 2727, and 1086) were also more abundant in wood cultivations than on YMPG. In particular, transcript 1006 was the most abundant hemicellulase-encoding transcript from wood cultivations and was 900 times more abundant in pine cultivations than in YMPG cultures.

Similar to *P. chrysosporium*, two transcript sequences predicted to encode GH5 mannanases were detected (transcripts 405 and 8675) and were up to 59 times more abundant in wood cultivations than in YMPG cultures. Comparatively low abundance of transcripts encoding two putative GH2 β -mannosidases (transcripts 908 and 1389) was also observed in all cultivations; however, differential abundance between wood and YMPG cultivations was not observed.

In addition to hemicellulose-specific glycoside hydrolases, differential abundance of transcripts predicted to encode a glucuronoyl esterase from carbohydrate esterase (CE) family 15 (transcript 4531) and two CE1 acetyl xylan esterases (transcripts 1498 and 490) were up to 16 and 170 times more abundant in *P. carnosa* grown on wood substrates, respectively. Similar to predicted glycoside hydrolases, among the wood-grown cultivations, the abundance of transcripts predicted to encode hemicellulose-specific carbohydrate esterases was

Gene ID ^a	Due diete die eticite	No. of reads/no. of reads from YMPG									
	Predicted activity	Fir	Pine	Spruce	Maple	Avg					
45	Manganese peroxidase	5,793	3,169	4,360	2,402	3,931					
31	Manganese peroxidase	3,303	2,062	1,136	1,734	2,059					
383 + 781	Manganese peroxidase	1,492	1,017	202	370	770					
23	Serine-threonine rich	765	699	600	719	696					
970	Phosphatidylethanolamine binding	1,468	331	207	290	574					
119	Nonribosomal protein synthetase	549	407	455	416	457					
42	Glyoxal oxidase	657	246	360	372	409					
9	Lignin peroxidase	201	92	64	949	326					
1006	Xylanase GH10	69	904	86	228	322					
1168	Manganese peroxidase	653	236	108	254	313					
1138	Manganese peroxidase	588	185	97	182	263					
1039	Cellulose binding GH61	40	744	114	88	247					
1512	Cellulose binding iron reductase	22	809	90	50	243					
1428	NADPH dehydrogenase	284	247	171	249	238					
314	Aspartic peptidase	416	218	119	169	230					
9500	Dioxygenase	495	38	223	43	200					
697	Manganese peroxidase	431	105	88	119	185					
88	O-Methyltransferase	96	119	158	278	163					
254	Xylanase GH10	31	333	119	119	151					
2506	Aminotransferase	449	11	32	25	129					
361	Cellobiohydrolase GH6	21	345	89	58	128					
664	Endoglucanase GH5	10	333	116	40	125					
144	Cellobiohydrolase GH7	46	12	185	249	123					
732	P450 monooxygenase	98	113	167	110	122					
2246	Cellulose binding GH61	12	179	170	121	121					
6787	Dioxygenase	274	29	124	33	115					
3683	Unknown	115	124	74	128	110					
26	Serine-threonine rich	169	79	69	124	110					
130	S53 protease	84	124	111	118	109					
323	Cellobiohydrolase GH7	11	324	61	32	107					

TABLE 1. The 30 most abundant transcripts from P. carnosa during growth on wood relative to growth on YMPG

^a Reference data for each Gene ID are presented in Fig. S1 in the supplemental material.

highest in pine cultivations, with the exception of transcript ID 490, which was most abundant in *P. carnosa* grown on spruce, followed by maple.

Given anticipated differences in the hemicellulose compositions of softwood and hardwood substrates, a gene set enrichment analysis was performed using transcript data from wood cultivations to identify genes with differential transcript abundance in *P. carnosa* grown on softwood substrates compared to maple cultivations. However, gene product categories that were at least four times more abundant in all softwood cultivations than in maple cultivations were not observed (data not shown), suggesting that similar sets of carbohydrate-active enzymes (CAZymes) are elicited by *P. carnosa* grown on different wood substrates, even though specific CAZymes are expressed to different levels.

Lignin degradation. Fungal degradation of lignin is promoted by the activities of four oxidative enzymes: LiP, MnP, versatile peroxidase (VP), and laccase. Similar to *P. chrysosporium* (21), genes encoding LiP and MnP, but not VP and laccase, were detected in the *P. carnosa* genome sequence. LiP and MnP are hemoproteins that require H_2O_2 to oxidize aromatic substrates and Mn²⁺, respectively. In the case of MnP, Mn³⁺ is then stabilized by organic acids such as oxalate, forming chelates that oxidize phenolic lignin structures (10).

Gene models predicted to encode LiPs and MnPs were aligned to each other and to corresponding gene models from *P. chrysosporium* to ensure that only full-length gene models were reported. In cases where the models appeared to be partial sequences, their locations in the genome were determined and partial models were combined (e.g., transcripts 383 plus 781 and 9982 plus 9923). BLAST analysis of version 1.0 of the P. carnosa genome did not reveal additional lip and mnp sequences, suggesting that P. carnosa encodes seven MnPs (transcripts 31, 45, 383 plus 781, 1138, 1168, 1579, and 697), three LiPs (transcripts 9, 489, and 8106), and one LiP-like protein that does not contain the conserved ligninase domain (transcript 9982 plus 9923). These findings differ from the P. chrysosporium genome, which is predicted to encode five MnPs and 10 LiPs (21). A phylogenetic analysis of peroxidase genes revealed that the four P. carnosa lip and lip-like genes form a cluster, as do five of the seven mnp genes, suggesting that most LiP and MnP activities likely evolved through gene duplication after P. chrysosporium and P. carnosa speciation (see Fig. S3 in the supplemental material).

Transcript sequences from each of the seven *P. carnosa mnp* genes were 27 to 5,800 times more abundant in *P. carnosa* cultivations grown on each wood substrate than in YMPG cultivations (Fig. 3). The relative abundances of transcript sequences in *P. carnosa* grown on wood substrates compared to those grown on YMPG were highest for three *mnp* transcripts (45, 31, and 383 plus 781) (Table 1). While transcripts predicted to encode carbohydrate-active enzymes were generally most abundant in pine cultivations and least abundant in fir cultivations compared to those in other wood substrates, transcripts predicted to encode MnPs were most abundant in fir

APPL. ENVIRON. MICROBIOL.

			No. reads per million:						No. reads per million:							
Transcript ID	Predicted activity	Family	YMPG	Fir	Pine S	Spruce	Maple	Transcript ID	P	Predicted activity	Family	YMPG	Fir	Pine	Spruce	Maple
	Cellulose Degradation								Li	ignin Degradation						
4539	beta-glucosidase	GH3	62	48	214	126	51	31	m	nanganese peroxidase	peroxidase	13	44453	27746	15287	23332
7319	beta-glucosidase	GH3	10	8	326	24	25	45	m	nanganese peroxidase	peroxidase	4	23657	12944	17805	9810
664	endoglucanase	GH5	16	155	5221	1820	626	383+781	m	nanganese peroxidase	peroxidase	5	7941	5412	1075	1968
877	endoglucanse	GH5+CBM1	21	251	4804	653	530	1138	m	nanganese peroxidase	peroxidase	12	6937	2180	1144	2150
1561	endoglucanase	GH5	30	64	962	407	175	1168	m	nanganese peroxidase	peroxidase	6	4153	1499	685	1618
361	cellobiohydrolase	GH6	1/	347	5/13	1468	962	1579	m	nanganese peroxidase	peroxidase	15	3350	891	393	955
323	cellobiohydrolase	GH7	50	568	16271	3061	1618	697	m	nanganese peroxidase	peroxidase		2257	549	461	622
144	cellobiohydrolase	GH7	- 12	396	106	1596	2150	9	lig	gnin peroxidase	peroxidase		474	495	10	267
1039	cellulose binding	GH61	20	265	4096	967	062	489	lig	gnin peroxidase	peroxidase		4/1	09		207
627	cellulose binding	GH61	16	203	2740	1663	1222	8106	lig	gnin peroxidase	peroxidase	<u> </u>	20	4		
1122	cellulose binding	GH61		152	2190	2077	1479	9982+992:	lig	gnin peroxidase-like		<u> </u>	20			7
2246	cellulose binding	GH61	1323	1479	1060	1031	1011		н	.O. Generation						
734	cellulose binding	GH61	12	416	1296	792	1361	42	a		CRO	30	19893	7434	10885	11268
606	cellulose binding	GH61	4	83	3126	347	193	7402	co	copper radical oxidase	CRO	6	5	5	4	3
1512	cellulose binding	GH61	14	127	1722	317	201	8976+1002	c	opper radical oxidase	CRO	4	3	3	4	7
805	cellulose binding	GH61	95	61	302	362	365	192	al	Icohol oxidase	GMCO	72	2684	4360	2817	3281
3147	cellulose binding	GH61	28	17	18	20	22	4441	al	Icohol oxidase	GMCO	26	149	56	46	47
2705	cellulose binding	GH61	48	63	989	265	229	3984	al	Icohol oxidase	GMCO	72	24	50	55	49
493	cellobiose dehydrogenase	GMCO	21	20	923	31	23	297	al	Icohol oxidase	GMCO	13	30	31	29	41
7492	CHO-binding cytochrome b562	GMCO						1191	al	lcohol oxidase	GMCO	15	9	10	13	17
	Hemicellulose Degradation							3317	al	lcohol oxidase	GMCO	19	8	6	10	11
908	beta-mannosidase	GH2	68	72	113	88	92	4757	al	Icohol oxidase	GMCO	2	13	7	3	9
1389	beta mannosidase	GH2	103	18	62	46	63	8833	al	Icohol oxidase	GMCO	12	6	8	7	7
405	beta-mannanase	GH5	38	64	2241	666	333	2539	al	lcohol oxidase	GMCO	4	<u> </u>	6		<u> </u>
8675	beta-mannanase	GH5	11 60	8	290	23	19	4443	al	lcohol oxidase	GMCO	5	2	3	3	3
1554	endoglucanase	GH5		244	234	239	256			lanaawaanaaaa						
254	xylanase	GH10		244	3101	304	803	722		atochrome P450	CVP	8	826	949	1399	923
1006	xylanase	GH10	28	54	1046	431	136	/32	0	stochrome P450	CYP	171	1520	750	755	474
2727	xylanase	GH10		31	292	383	128	618+45		stochrome P450	CYP	37	916	1233	879	413
1086	xylanase	GH10+CBM1	20	271	1024	605	256	362f	: -) : C\	vtochrome P450	CYP	169	942	488	478	265
5329	endoglucanase	GH12	10	47	461	202	116	319	, ,	vtochrome P450	CYP	32	680	350	474	399
3805	xyloglucanase	GH12	8	97	879	115	109	516+20	(C)	vtochrome P450	CYP	36	462	265	276	171
1219	xyloglucanase	GH74	11	73	399	172	39	2172	C	vtochrome P450	CYP	8	322	86	534	23
3295	endoglucanase	GH74+CBM1	8	31	1333	280	204	4115	: cy	ytochrome P450	СҮР	45	98	163	258	32
1498	acetyl xylan esterase	CE1+CBM1	26	76	128	560	265	4685	cy	ytochrome P450	СҮР	27	189	110	110	70
490	acetyl xylan esterase	CE1+CBM1	36	15	560	51	108	3260	cy	ytochrome P450	СҮР	23	89	205	114	60
4531	glucuronylesterase	CE15						6427+857	cy	ytochrome P450	CYP	10	66	171	67	92
	Other Carbohydrate Activity				1005	400	000	2484	cy	ytochrome P450	CYP	10	21	28	8/	149
492	cellulose binding + SGNH hydrolase	e CBM1		44	1235	422	202	3880	cy	ytochrome P450	CYP	19	14	69	94	48
3813	putative xylanase			182	704	000	203	1737	cy	ytochrome P450	CYP		3/	40	99	34
2957	polygalacturonase	GH28	,	201	24	223	112	7114	cy	ytochrome P450	CYP	14	121	94	27	10
7244	polygalacturonase	GH28+CBM	3 10	5 115	24	150	2/12	7510	cy	ytochrome P450	CYP		101	0 82	- S/	17
3474	arabinogalactanase	GH53	46	78	609	217	140	8881	l cy	ytochrome P450	CYP	3	21	28	45	20
171	alpha-galactosidase	GH31		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	009	21/	140	7996	cy	ytochrome P450	CYP		21	39	35	8
								2298	cy	ytochrome P450	СҮР	,	10	13	10	g
	reads/million/kb							6816	cy	ytochrome P450	СҮР		4	9		4
0			50 000					9292	cy	ytochrome P450	CYP			Ŭ	- Ĩ	,

FIG. 3. Heat maps and abundances for selected transcripts expressed by *P. carnosa* during growth on wood and YMPG substrates. CBM, carbohydrate-binding module; CE, carbohydrate esterase; CRO, copper radical oxidase; CYP, cytochrome P450 monooxygenase; GH, glycosyl hydrolase; GMCO, GMC oxidoreductase.

cultivations and lowest in spruce cultivations, except transcript 45, which was lowest in maple cultivations (Fig. 3).

Of the three *lip* sequences, transcript 9 was between 64 and 950 times more abundant in wood cultivations than in YMPG cultivations, with the greatest abundance in the maple cultivation. Similarly, *lip* transcript 8106 was most abundant in *P*.

carnosa grown on maple, where it was 3.5 times more abundant than in YMPG cultivations; however, this transcript was less abundant in the other wood cultivations than on YMPG. The *lip* transcript 489 was 2.6 to 18 times more abundant in *P. carnosa* grown on fir, pine, and maple than on that grown on YMPG, with the greatest abundance during growth on fir.

Transcript 9982 plus 9923, which is predicted to encode a LiP-like protein, was 4.5 times more abundant in *P. carnosa* grown on fir and was less abundant in the other wood cultures than on YMPG.

Several enzymes have been proposed to provide the H_2O_2 required for LiP and MnP activity, including GLOX, GLOXrelated copper radical oxidases (CRO), and alcohol oxidase (AOX) (17, 37). Transcript 42, corresponding to a candidate *glox*, was the third most abundant transcript in *P. carnosa* grown on wood substrates in absolute terms (see Table S2 in the supplemental material), and it was 250 to 660 times more abundant in wood cultivations than on YMPG. Two related sequences that were also predicted to encode CRO enzymes (transcripts 7402 and 8976 plus 10028) were less than 1.9 times more abundant in *P. carnosa* grown on wood. Four predicted *aox* genes were up to 91 times more abundant during growth on wood (transcripts 192, 4441, 297, and 2539), while six others were generally less abundant during growth on wood (transcripts 3984, 1191, 3317, 4757, 8833, and 4443).

Monooxygenases. Various monooxygenases have been implicated in the degradation of small lignin fragments and other aromatic compounds. Accordingly, it is conceivable that monooxygenase activities could facilitate growth on softwood substrates by detoxifying lignin degradation products and the higher extractive content than is present in most hardwood species (23, 26). In P. carnosa, 322 transcript sequences were predicted to encode monooxygenase activity, and approximately 40% of these were identified as putative cytochrome P450 monooxygenases. Twenty-one of the sequences predicted to encode P450 monooxygenases were at least five times more abundant in one or more wood cultivations than on YMPG (Fig. 3). Notably, transcripts predicted to encode P450 monooxygenase activity likely represent a subset of all P450 genes in the P. carnosa genome. Accordingly, since P. chrysosporium carries approximately 150 full-length P450 genes (5), an intriguing possibility is that the complement of P450 genes of P. carnosa is expanded compared to that of P. chrysosporium. Detailed analysis of the P. carnosa genome is required to confirm this prediction.

DISCUSSION

To date, most analyses of softwood decay have focused on brown-rot fungi that initiate the degradation of wood polysaccharides using Fenton chemistry (15). These include a systematic analysis of the genome, transcriptome, and proteome of the lignocellulose-degrading brown-rot fungus *Postia placenta* (20, 35). These analyses identified oxidases predicted to generate extracellular Fe²⁺ and H₂O₂ and relatively few cellulolytic GHs or GHs with carbohydrate-binding modules compared to the white-rot fungi that have been characterized to date (20).

Similar to other white-rot fungi, the current analysis of *P. carnosa* identified glycoside hydrolases from families 2, 3, 5, 6, 7, 10, 12, 28, 31, 53, 61, and 74 that were more abundant in cultivations grown on softwood substrates than in those grown on YMPG. Notably, the number of transcript sequences predicted to encode GH61 proteins was higher than the number of transcript sequences predicted to encode cellulolytic activity.

Overall, the relative abundance of transcripts predicted to

encode cellulase activity was higher than that of transcripts predicted to encode hemicellulase activity. Given the differences in hemicellulose compositions typically present in softwood and hardwood fiber, the profile of hemicellulase-encoding transcripts that were elicited by P. carnosa during growth on spruce, fir, and pine was expected to differ from the profile of those expressed during growth on maple. Although close analysis of transcript abundances summarized in Fig. 3 reveals higher abundance in pine cultivations of transcripts encoding cellulases, main-chain hemicellulases, and hemicellulose-specific carbohydrate esterases, a gene set enrichment analysis indicated that the overall distributions of transcripts predicted to encode CAZymes involved in cellulose and hemicellulose hydrolysis were similar in softwood and hardwood cultivations. It is possible that the grinding and steam sterilization of the wood samples increased the availability of cellulose and hemicellulose present in the lignocellulosic substrates and thereby reduced substrate differences. Alternatively, the expression of CAZymes in P. carnosa may be a concerted response to growth on lignocellulose, at least at the early growth stage investigated here. A time course study is now under way to determine whether differential expression of CAZymes in P. carnosa grown on fir, pine, spruce, and maple is more pronounced at later stages of cultivation.

Transcripts encoding enzymes involved in lignin degradation (peroxidases and H_2O_2 -generating enzymes) were the most abundant gene products isolated from *P. carnosa* grown on wood substrates, both in absolute terms and in comparison to growth on YMPG (Table 1; see Table S2 in the supplemental material). In contrast, of the 80 most abundant transcripts expressed by *P. chrysosporium* grown on red oak, 22 corresponded to GHs or carbohydrate-binding modules (CBMs), and only 4 were predicted to encode lignin-degrading enzymes (28).

The ratio of *lip* to *mnp* genes and transcripts also appears to differ between *P. carnosa* and *P. chrysosporium*. The draft sequence of the *P. carnosa* genome predicts seven genes that encode MnP and only three genes that encode LiP; the abundance of transcripts corresponding to individual *mnp* genes was also generally higher than the number corresponding to individual *lip* genes in *P. carnosa* grown on wood substrates. In contrast, the *P. chrysosporium* genome predicts five *mnp* and 10 *lip* genes (21), and transcripts from individual *lip* genes appear to be more numerous than *mnp* transcripts in *P. chrysosporium* grown on wood and under low-nitrogen (ligninolytic) conditions (6, 28, 34).

Differences in modes of lignin degradation catalyzed by MnP and LiP could affect the efficiency of lignocellulose degradation by *P. carnosa* and *P. chrysosporium*. LiPs can directly oxidize a variety of aromatic substrates, whereas MnPs mediate lignin degradation through chelates of oxidized Mn^{3+} ions. Compared to LiP, the Mn^{3+} chelates have weaker oxidizing power and mainly act on phenolic structures. However, chelates of Mn^{3+} ions are likely more able to diffuse through plant cell walls than the larger lignin peroxidases (10). This property could facilitate the degradation of guaiacyl (G) lignin in softwood, which can form more dense structures than guaiacylsyringyl (GS) lignin (4), perhaps due to its higher fraction of condensed biphenyl C-C bonds (30). In fact, differences between G and GS lignins have been shown to affect the rate of degradation by *P. chrysosporium*, which depolymerizes natural and synthetic G lignins more slowly than natural and synthetic GS lignins (7, 24).

Our analysis of *P. carnosa* transcriptomes revealed a consistent genetic response to growth on both coniferous and deciduous substrates whereby enzymes involved in lignin degradation were the most highly expressed, followed by cellulase and then hemicellulase activities. This expression pattern is consistent with analyses of wood fiber isolated from *P. carnosa* cultivations, which predominantly reveal loss of lignin (Mahajan et al., submitted). Since the expression of ligninases and CAZymes is expected to change as lignocellulose is degraded (1, 33), future studies will evaluate temporal regulation of these transcripts to predict which are most critical to early and late stages of wood decay.

ACKNOWLEDGMENTS

We thank all members of the Centre for the Analysis of Genome Evolution and Function (University of Toronto) for assistance in cDNA synthesis and sequencing.

This work was supported by grants from the Natural Sciences and Engineering Research Council to E.R.M., M.M.C., and D.S.G.; J.M. is a recipient of the William and Dorothy Palm/Government of Ontario Graduate Scholarship in Science and Technology.

REFERENCES

- Bogan, B. W., B. Schoenike, R. T. Lamar, and D. Cullen. 1996. Expression of lip genes during growth in soil and oxidation of anthracene by *Phanerochaete* chrysosporium. Appl. Environ. Microbiol. 62:3697–3703.
- Burdsall, H. H. 1985. A contribution to the taxonomy of the genus *Phanerochaete*. Mycologia Mem. 10:1–165.
- Cantarel, B. L., et al. 2008. MAKER: an easy-to-use annotation pipeline designed for emerging model organism genomes. Genome Res. 18:188–196.
- Cathala, B., L. T. Lee, V. Aguie-Beghin, R. Douillard, and B. Monties. 2000. Organization behavior of guaiacyl and guaiacyl/syringyl dehydrogenation polymers (lignin model compounds) at the air/water interface. Langmuir 16:10444–10448.
- Doddapaneni, H., R. Chakraborty, and J. S. Yadav. 2005. Genome-wide structural and evolutionary analysis of the P450 monooxygenase genes (P450ome) in the white rot fungus *Phanerochaete chrysosporium*: evidence for gene duplications and extensive gene clustering. BMC Genomics 6:92.
- Doddapaneni, H., and J. S. Yadav. 2005. Microarray-based global differential expression profiling of P450 monooxygenases and regulatory proteins for signal transduction pathways in the white rot fungus *Phanerochaete chryso-sporium*. Mol. Genet. Genomics 274:454–466.
- Faix, O., M. D. Mozuch, and T. K. Kirk. 1985. Degradation of gymnosperm (guaiacyl) vs angiosperm (syringyl guaiacyl) lignins by *Phanerochaete chryso-sporium*. Holzforschung 39:203–208.
- Galbe, M., and G. Zacchi. 2002. A review of the production of ethanol from softwood. Appl. Microbiol. Biotechnol. 59:618–628.
- Gong, Y. C., et al. 2009. An atlas of chaperone-protein interactions in Saccharomyces cerevisiae: implications to protein folding pathways in the cell. Mol. Syst. Biol. 5:275.
- Hammel, K. E., and D. Cullen. 2008. Role of fungal peroxidases in biological ligninolysis. Curr. Opin. Plant Biol. 11:349–355.
- Harris, P. V., et al. 2010. Stimulation of lignocellulosic biomass hydrolysis by proteins of glycoside hydrolase family 61: structure and function of a large, enigmatic family. Biochemistry 49:3305–3316.
- Henrissat, B., H. Driguez, C. Viet, and M. Schulein. 1985. Synergism of cellulases from *Trichoderma reesei* in the degradation of cellulose. Biotechnology 3:722–726.
- Hibbett, D. S., and M. J. Donoghue. 2001. Analysis of character correlations among wood decay mechanisms, mating systems, and substrate ranges in homobasidiomycetes. Syst. Biol. 50:215–242.
- Huelsenbeck, J. P., F. Ronquist, R. Nielsen, and J. P. Bollback. 2001. Evolution—Bayesian inference of phylogeny and its impact on evolutionary biology. Science 294:2310–2314.
- Jensen, K. A., C. J. Houtman, Z. C. Ryan, and K. E. Hammel. 2001. Pathways for extracellular fenton chemistry in the brown rot basidiomycete *Gloeophyllum trabeum*. Appl. Environ. Microbiol. 67:2705–2711.

- Kenealy, W. R., and D. M. Dietrich. 2004. Growth and fermentation responses of *Phanerochaete chrysosporium* to oxygen limitation. Enzyme Microb. Technol. 34:490–498.
- Li, K. C. 2003. The role of enzymes and mediators in white-rot fungal degradation of lignocellulose. ACS Symp. Ser. 845:196–209.
- Lin, Y., and S. Tanaka. 2006. Ethanol fermentation from biomass resources: current state and prospects. Appl. Microbiol. Biotechnol. 69:627–642.
- Mahajan, S., and E. R. Master. 2010. Proteomic characterization of lignocellulose-degrading enzymes secreted by *Phanerochaete carnosa* grown on spruce and microcrystalline cellulose. Appl. Microbiol. Biotechnol. 86:1903– 1914.
- Martinez, D., et al. 2009. Genome, transcriptome, and secretome analysis of wood decay fungus *Postia placenta* supports unique mechanisms of lignocellulose conversion. Proc. Natl. Acad. Sci. U. S. A. 106:1954–1959.
- Martinez, D., et al. 2004. Genome sequence of the lignocellulose degrading fungus *Phanerochaete chrysosporium* strain RP78. Nat. Biotechnol. 22:695– 700.
- Morgenstern, I., S. Klopman, and D. S. Hibbett. 2008. Molecular evolution and diversity of lignin degrading heme peroxidases in the Agaricomycetes. J. Mol. Evol. 66:243–257.
- Nielsen, N. P. K., L. Norgaard, B. W. Strobel, and C. Felby. 2009. Effect of storage on extractives from particle surfaces of softwood and hardwood raw materials for wood pellets. Eur. J. Wood Wood Prod. 67:19–26.
- Otjen, L., R. A. Blanchette, and G. F. Leatham. 1988. Lignin distribution in wood delignified by white-rot fungi—X-ray microanalysis of decayed wood treated with bromine. Holzforschung 42:281–288.
- Palonen, H., A. B. Thomsen, M. Tenkanen, A. S. Schmidt, and U. Viikari. 2004. Evaluation of wet oxidation pretreatment for enzymatic hydrolysis of softwood. Appl. Biochem. Biotechnol. 117:1–17.
- Pettersen, R. C. 1984. The chemical composition of wood, p. 57–126. *In* R. Rowell (ed.), The chemistry of solid wood. American Chemical Society, Washington, DC.
- Ronquist, F., and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics 19:1572–1574.
- Sato, S., F. A. Feltus, P. Iyer, and M. Tien. 2009. The first genome-level transcriptome of the wood-degrading fungus *Phanerochaete chrysosporium* grown on red oak. Curr. Genet. 55:273–286.
- Scheller, H. V., and P. Ulvskov. 2010. Hemicelluloses. Annu. Rev. Plant Biol. 61:263–289.
- Sjöström, E. 1993. Wood chemistry: fundamentals and applications. Academic Press, San Diego, CA.
- Stanke, M., A. Tzvetkova, and B. Morgenstern. 2006. AUGUSTUS at EGASP: using EST, protein and genomic alignments for improved gene prediction in the human genome. Genome Biol. 7:S11.
- Subramanian, A., et al. 2005. Gene set enrichment analysis: a knowledgebased approach for interpreting genome-wide expression profiles. Proc. Natl. Acad. Sci. U. S. A. 102:15545–15550.
- Suzuki, H., K. Igarashi, and M. Samejima. 2009. Quantitative transcriptional analysis of the genes encoding glycoside hydrolase family 7 cellulase isozymes in the basidiomycete *Phanerochaete chrysosporium*. FEMS Microbiol. Lett. 299:159–165.
- Vanden Wymelenberg, A., et al. 2009. Transcriptome and secretome analyses of *Phanerochaete chrysosporium* reveal complex patterns of gene expression. Appl. Environ. Microbiol. 75:4058–4068.
- Vanden Wymelenberg, A., et al. 2010. Comparative transcriptome and secretome analysis of wood decay fungi *Postia placenta* and *Phanerochaete chrysosporium*. Appl. Environ. Microbiol. **76**:3599–3610.
- 36. Vanden Wymelenberg, A., et al. 2006. Computational analysis of the *Phanerochaete chysosporium* v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet. Biol. 43:343–356.
- Vanden Wymelenberg, A., et al. 2006. Structure, organization, and transcriptional regulation of a family of copper radical oxidase genes in the lignindegrading basidiomycete *Phanerochaete chrysosporium*. Appl. Environ. Microbiol. 72:4871–4877.
- Wang, Z., M. Gerstein, and M. Snyder. 2009. RNA-Seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:57–63.
- Welinder, K. G. 1992. Superfamily of plant, fungal and bacterial peroxidases. Curr. Opin. Struct. Biol. 2:388–393.
- 40. Wood, T. M. 1992. Fungal cellulases. Biochem. Soc. Trans. 20:46-53.
- Yelle, D. J., J. Ralph, F. C. Lu, and K. E. Hammel. 2008. Evidence for cleavage of lignin by a brown rot basidiomycete. Environ. Microbiol. 10: 1844–1849.
- Zhu, J. Y., and X. J. Pan. 2010. Woody biomass pretreatment for cellulosic ethanol production: technology and energy consumption evaluation. Bioresour. Technol. 101:4992–5002.