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Abstract
Both the transcription of mRNAs from genes and their subsequent translation into proteins are
inherently stochastic biochemical events, and this randomness can lead to substantial cell-to-cell
variability in mRNA and protein numbers in otherwise identical cells. Recently, a number of
studies have greatly enhanced our understanding of stochastic processes in gene expression by
utilizing new methods capable of counting individual mRNAs and proteins in cells. In this review,
we examine the insights that these studies have yielded in the field of stochastic gene expression.
In particular, we discuss how these studies have played in understanding the properties of bursts in
gene expression. We also compare the array of different methods that have arisen for single
mRNA and protein detection, highlighting their relative strengths and weaknesses. In conclusion,
we point out further areas where single-molecule techniques applied to gene expression may lead
to new discoveries.
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INTRODUCTION
Until relatively recently, scientists studying gene expression have measured the properties of
gene expression on populations of cells rather than in individual cells, largely because of the
technical challenges involved in making single-cell measurements. However, the advent of
simple and accurate measurements of gene expression in individual cells has led researchers
to find that the numbers of mRNAs and proteins can vary, sometimes dramatically, from cell
to cell and that this variability is caused by the fundamentally stochastic nature of the
biochemical events involved in gene expression.

Primary among these technical advances is the use of fluorescent proteins, such as GFP,
whose importance in the field of stochastic gene expression is hard to overstate. Of course,
even before fluorescent proteins were available, a few researchers still showed that gene
expression was highly variable; such efforts include the pioneering work of Novick &
Weiner (25), who used serial dilution and amplification of individual bacteria, and Ko et al.
(19), who used single-cell enzymatic assays to show that levels of β-galactosidase
expression varied significantly in individual mammalian cells. Yet, while these studies and
others (35, 50) established the phenomenon, the ease with which GFP can be used to
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measure gene expression in individual cells led to an explosion in experimental work in
stochastic gene expression that continues to this day, beginning with the seminal studies of
Elowitz et al. (11) and Ozbudak et al. (26). These studies and the ones that have followed
have shed light on many of the mechanisms that result in cell-to-cell variability in gene
expression by using GFP and its variants in combination with time-lapse imaging, flow
cytometry, and microscopy.

However, as researchers probe ever more deeply into the stochastic processes underlying
gene expression variability, the limitations of GFP are becoming more and more apparent.
One of the most serious limitations is sensitivity: When using conventional microscopy or
flow cytometry, it is difficult to detect small numbers of fluorescent proteins. Given that
stochastic effects are more prevalent at these low molecule numbers, sensitivity issues may
make GFP an inappropriate choice of assay in some situations. Another problem is that GFP
is typically measured in arbitrary fluorescence units rather than molecular units [with the
notable exceptions of Rosenfeld et al. (34) and Gregor et al. (16)], thus limiting the ability to
quantitatively evaluate increasingly sophisticated models of stochastic gene expression.

Ultimately, the ideal way to study stochastic gene expression would be to monitor the
production, degradation, and functional states of individual biomolecules in real time in
living cells. While such a goal may seem almost laughably unrealistic at first glance, the
work highlighted in this review shows that researchers have made remarkable progress
toward these seemingly unattainable ends. We begin by examining some recent work
demonstrating the ability to count individual mRNAs within single cells, and then discuss
developments in counting individual proteins. One of the key benefits of counting individual
molecules is that it provides rigorous tests for stochastic models of gene expression, and we
examine these connections, focusing in particular on the notion of bursts in transcription and
translation, in which the production of mRNAs and proteins occurs in a pulsatile rather than
continuous fashion. We conclude with some speculations about potential new areas in which
single-molecule detection may drive the field of stochastic gene expression forward.

SINGLE-mRNA DETECTION
The detection of individual molecules of mRNA in single cells has the potential to
dramatically enhance our understanding of transcription, not only in terms of its effects on
cell-to-cell variability in gene expression but also in providing insights into the biochemical
mechanisms involved. Using a variety of experimental methods, researchers have begun to
understand some of these mechanisms, perhaps the most dramatic of which is transcriptional
bursting.

Initially, stochastic models of gene expression assumed that mRNAs are produced and
degraded according to the statistics of a Poisson process (42); that is, while the production
and degradation happen at random, the probability of a transcript produced within any given
time period is a constant that does not change in time (Figure 1). If one looks across a
population of cells that are transcribing in this fashion, then one would expect to see a
Poisson distribution of mRNA per cell:

where m is the number of mRNA molecules per cell and m ̄ denotes the average mRNA
number. The situation becomes more complex, however, when considering models in which
mRNA production does not occur with a constant probability in time but rather occurs with
much greater likelihood at some time periods than others (18, 28, 30). These
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transcriptionally active time periods are often referred to as transcriptional bursts. (In this
review, we explicitly refer to bursts as being either transcriptional or translational to avoid
confusion.)

One important consequence of transcriptional bursts is that they result in much higher
variability in gene expression than the Poisson model predicts. However, experimentally
distinguishing bursty transcription from nonbursty Poissonian transcription requires that
measures of mRNA number per cell be made in molecular units. This requirement arises
from the way in which variability scales as a function of mean mRNA number. For instance,
in the Poisson model, as the mean increases, the relative variability about that mean should
decrease, meaning that for large means, variability should be essentially negligible.

Transcriptional bursting, however, can lead to high variability even with high mean
expression levels. In principle, it should thus be easy to tell the difference between these two
situations, but the problem is that in the absence of molecular units, it is difficult to say
whether an observation of high variability is the result of bursting or simply due to low
levels of Poissonian transcription. Mathematically, one can encapsulate this argument
through the use of the Fano factor, defined as the ratio of the variance to the mean. When
measured in molecular units, the Fano factor for a Poisson distribution is exactly 1, whereas
transcriptional bursts can result in Fano factors much larger than 1. (Some intuition can be
gained from the fact that the Fano factor is approximately equal to the average number of
transcripts produced during a burst, often referred to as the burst size.) However, when
measured in arbitrary fluorescence units, the Fano factor contains an arbitrary scaling factor
that makes such absolute numerical comparisons impossible (27), providing a strong
rationale for counting the actual numbers of transcripts in individual cells.

It was against this theoretical backdrop that Golding et al. (15) began their beautiful study of
the kinetics of transcription in Escherichia coli. Their main tool was the the MS2 mRNA
detection technique developed simultaneously by Bloom and colleagues (4) and Singer and
colleagues (6), which can be sensitive enough to visualize single mRNA molecules (14a). In
the variant of the method used by Golding et al. (15), a gene is engineered to transcribe an
mRNA containing 96 copies of a specific RNA hairpin in its untranslated region, each of
which binds tightly to the coat protein of the bacteriophage MS2. This gene is then
expressed in a cell that already expresses the MS2 coat protein fused to GFP. When 96 of
the MS2-GFP proteins bind to an individual mRNA, enough fluorescent signal is generated
that the individual mRNAs are detectable as diffraction-limited spots by conventional
fluorescence microscopy. One can thus count the number of mRNAs in single cells by
counting spots or, if the spots contain multiple mRNAs, by integrating the fluorescence in
each spot. Upon performing this counting across an entire population of cells, they measured
a Fano factor of roughly 4, which, being greater than 1, provided strong evidence for
transcriptional bursting. Impressively, they went even further by measuring transcriptional
activity in real time by using time-lapse microscopy. The authors found that transcription
did indeed occur in bursts, with the gene itself switching randomly between transcriptionally
active and inactive states. These switching events appeared to happen at exponentially
distributed times, indicating that gene activation and inactivation were themselves Poisson
processes, justifying the assumptions made in many models of transcriptional bursts (18, 28,
30). Moreover, using the temporal statistics of the switching events, they used a model of
transcriptional bursts to predict the statistics of the population snapshots that they had
measured experimentally, which showed a fairly good match between the two.

Another method by which one can count single molecules of mRNAs in individual cells is
fluorescence in situ hybridization (FISH) (12, 31). In this method, samples are fixed and
then a hybridization is performed using a set of fluorescently labeled oligonucleotides, each
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complementary to a unique portion of the target mRNA. As with the MS2 method, the
presence of sufficiently large numbers of fluorophores bound to an individual mRNA
renders the molecule sufficiently fluorescent to be detected by fluorescence microscopy.
One recent application of this method to the study of stochastic gene expression in bacteria
was to the phenomenon of competence in Bacillus subtilis (22). B. subtilis has the
remarkable property of being naturally competent (i.e., it takes up foreign DNA from the
environment). This property only manifests itself, though, at the beginning of stationary
phase, and only a small percentage (~15%) of the total population actually becomes
competent. Maamar et al. (22) showed that noise in the expression of the transcription factor
primarily responsible for competence, comK, underlies the stochastic decision to become
competent or not: Occasionally, a stochastic accumulation of ComK protein will become
large enough to allow the ComK protein to bind to its own promoter, dramatically
upregulating its expression and resulting in cell competence. One difficulty in studying the
expression of comK in noncompetent cells, however, is that ComK is lowly expressed,
making it impossible to measure gene expression from the comK promoter with fluorescent
proteins. Instead, the authors used single-molecule FISH to count the numbers of comK
mRNAs in individual bacteria. They found that comK was indeed expressed at a low level in
noncompetent cells (less than 1 transcript per cell), and that this expression level was
modulated over time, resulting in a concomitant modulation in frequency of transition to
competence. The authors also measured some of the statistical properties of fluctuations in
mRNA numbers throughout the population, finding that the Fano factor was relatively close
to 1 for the mRNAs they measured, indicating that for this gene bursting is not likely to be a
significant source of variability.

Owing to the increased complexity of eukaryotic transcription, one might expect cell-to-cell
variability in eukaryotic transcription to have stochastic properties different from those in
prokaryotic transcription. Also utilizing a single-molecule FISH assay, Raj et al. (30) found
that transcription in mammalian cells was extremely bursty, with short, infrequent bursts
resulting in large variations in mRNA numbers from cell to cell, leading to Fano factors of
40 or higher. Their assay also showed a single, intensely bright spot in some cells (but not
others) resulting from mRNAs that had not yet diffused away from an active site of
transcription. Moreover, cells with these active transcription sites exhibited a larger
percentage of nuclear mRNA than those without active transcription sites. Together, these
facts present a picture of transcription in which short transcriptional bursts cause the
production of large quantities of mRNAs, which are exported from the nucleus to the
cytoplasm, where they slowly decay, highlighting the benefits of measuring the spatial
locations of single mRNAs in individual cells. Further, the authors used multicolor FISH to
visualize simultaneously two different mRNA transcripts, showing that transcription from
genes located far apart from each other on the genome were expressed in uncorrelated
transcriptional bursts, whereas those located near each other were expressed in strongly
correlated transcriptional bursts.

Another completely different approach to counting the number of particular mRNAs within
single cells is the use of single-cell quantitative reverse transcriptase polymerase chain
reaction (RT-PCR). Bengtsson et al. (5) used such a method to show that gene expression in
individual cells isolated from mouse pancreatic islets is subject to large fluctuations. Their
assay, which involves isolating individual cells and performing RT-PCR on each cell, can
yield absolute measures of transcript numbers with appropriate controls and standardization.
The authors found that most population histograms of the numbers of mRNA per cell were
close to lognormal distributions, which are distributions that appear Gaussian when a
histogram is made of the log of the mRNA number. Although such distributions appear
Gaussian in logarithmic coordinates, they can exhibit long tails in nonlogarithmic
coordinates, similar to those observed by Raj et al. (30) and Warren et al. (49).
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Another advantage of their assay is the ability to detect simultaneously the levels of five
different target genes through the use of multiplex PCR. In their assay, Bengtsson et al.
found that two related genes, Ins1 and Ins2, showed highly correlated expression between
cells, whereas the other pairs of genes exhibited no significant correlations. Such
correlations may arise from a number of sources, including fluctuations in common
upstream gene expression factors. Thus, the analysis of correlations has the potential to
uncover previously hidden regulatory connections between genes. Traditionally, the way to
check if the expression of two genes is related would be to use an external trigger (such as a
signaling molecule or some environmental change) and check if the mean levels of the two
genes change concurrently. However, this presupposes the existence of such an external
trigger, which might be available for the genes in question. By looking for correlations in
cell-to-cell variations between the transcript levels of two different mRNAs, one might
effectively perform a coexpression analysis without requiring any such trigger.

One interesting extension of the single-cell RT-PCR technique is so-called digital RT-PCR
(49), which is a variation on digital PCR (47). In this assay, cDNA obtained from reverse-
transcribing mRNA from a single cell is partitioned into many (potentially thousands) of
individual PCR reactions. The result of this massive dilution of the cDNA is that each PCR
reaction will contain either 0 or 1 cDNA molecules as a template, and the presence or
absence of a single cDNA is then detected by the PCR itself in digital fashion. To facilitate
the large amount of liquid handling required, the reactions are typically performed with a
microfluidic device that fractionates the reactions into appropriately sized volumes. By
providing a digital readout of gene expression, one can sidestep the need for the many
careful controls necessary for quantifying mRNA counts by conventional single-cell RT-
PCR. Warren et al. (49) used digital RT-PCR to examine variability in the expression of the
transcriptional factor PU.1, which plays a central role in the process of hematopoiesis, the
process by which blood stem cells differentiate into different blood cell types. Cell fate
decisions in this process are thought to have a significant stochastic component, thus
motivating measurements of variability in the expression of PU.1.

The authors found that PU.1 does indeed display a large variability in all the different blood
cell types examined, although the mean expression level was different in the various
lineages. The authors also performed an experiment in which they presorted common
myeloid progenitors [AU: Acronym not used at least 3 times in manuscript. OK] according
to whether they displayed high or low levels of the cytokine receptor flk2 which has been
correlated with differential functionality of common myeloid progenitors. They found that
cells with high levels of flk2 displayed high expression of PU.1, whereas cells with low
levels of flk2 showed low expression of PU.1. This discovery showed that variability in PU.
1 expression is indeed correlated with functional distinctions between otherwise identical
cells, a finding that has recently been extended by using microarrays (8).

From a methodological standpoint, each of the techniques used in these single-mRNA
detection studies has various advantages and disadvantages (Table 1). For the MS2
technique, one major advantage is the ability to measure mRNA levels in real time—all the
other methods except for molecular beacons (described below) require the use of fixed or
lysed samples. Moreover, it yields spatial information on the locations of the individual
mRNAs, which could prove invaluable in developmental studies in which positional
information is critical (for an example of the use of MS2 in developmental systems, see
Reference 13). The main problem, however, is that one must generate transgenes with large
untranslated regions that may affect mRNA dynamics; for instance, Golding et al. (15)
found that the incorporation of 96 protein-bound hairpins in the untranslated region of
mRNAs rendered the mRNAs resistant to cellular nucleases. Also, the tendency of the MS2
coat protein to multimerize requires that one make a careful estimation of the total
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fluorescence within individual spots to determine the number of mRNAs contained therein
(Table 2).

Another method for the real-time detection of individual mRNAs is in vivo hybridization of
target mRNAs with molecular beacons, which are single-stranded nucleic acid probes that
only fluoresce upon hybridization to a target molecule (45, 46). The most comparable of the
above methods is the MS2 technique. One advantage that molecular beacons possess is that
they have no tendency to multimerize, thus simplifying the image analysis. One downside,
however, is the delivery of the molecular beacons to the cell itself. The most commonly used
methods are microinjection (46) and listeriolysin-O (33, 48), which may result in irregular
doseages and decreased cell viability.

For FISH, the primary advantages in comparison to the MS2 method are the ability to detect
endogenous transcripts, obviating the need for genetic manipulations that are often difficult
to perform in many organisms, and the ability to detect simultaneously at least three separate
transcripts (31). Meanwhile, FISH shares with MS2 the ability to provide spatial
information. However, both FISH and MS2 also share the difficulty of counting transcripts
when the mRNA density is high: If many mRNAs are in close spatial proximity (in bacteria,
for instance), it is hard to distinguish individual fluorescent spots using conventional
microscopy, although it is possible that the use of sophisticated subdiffraction-limit
microscopy techniques can alleviate these problem (37, 38).

The RT-PCR-based methods are notable both for their potentially higher throughput and
possibly simpler setup compared with FISH and MS2, and the data are less prone to
subjective decisions in quantification than the fluorescence spot-finding algorithms required
for FISH and MS2. Also, Bengtsson et al. (5) detected five different transcripts
simultaneously within single cells, a feat difficult to perform with FISH. The two RT-PCR
methods suffer, however, from uncertainties about the efficiency of the reverse transcriptase
enzyme itself. Upon comparison, the single-cell RT-PCR experiments of Bengtsson et al. (5)
are simpler to perform than the digital RT-PCR experiments of Warren et al. (49), which
require the use of microfluidic devices to manage the large number of individual reactions.
However, Bentgsson et al. (5) also note that their method is unable to detect transcripts at
numbers below 10–20 copies per cell, whereas Warren et al. (49) counted mRNAs in
individual cells at arbitrarily low copy numbers.

The studies described above have also contributed greatly to evaluating models of burst-like
stochastic gene expression. The most common model was that first analyzed by Peccoud &
Ycart (28) in which the gene itself transitions randomly between transcriptionally active and
inactive states (Figure 2). Such a model contains four parameters: λ, the rate at which the
gene transitions from the inactive to the active state; γ, the rate at which the gene transitions
from the active to the inactive state; μ, the rate of transcription when the gene is in the active
state; and δ, the rate of mRNA degradation. Peccoud & Ycart solved this model for the
moments of steady-state distribution (28), which was extended to a complete analytic
expression for the distribution by Raj et al. (30). This distribution can then be used to extract
parameters from mRNA-counting experiments, potentially revealing new information about
what parameters are subjected to regulation. For instance, Raj et al. (30) used this model to
show that modulating the amount of transcription factor resulted in a modulation of the
average burst size (μ/γ) while leaving the burst frequency fixed; more generally, it is
possible for transcriptional regulation to occur through a change of any one (or combination)
of the parameters μ, λ, and γ.

One important parameter regime of this model is that of instantaneous bursts, which occur
when the rate of gene inactivation γ is larger than both the rate of mRNA degradation δ and
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the rate of gene activation λ. Intuitively, the former condition allows one to effectively
ignore mRNA degradation during the burst itself and the latter condition ensures that
individual activation events are infrequent enough that their appearance is a Poisson process,
thus allowing one to make the approximation that all the mRNAs are synthesized at the
same time. The number of parameters is thus reduced by 1: The model now consists only of
λ, which can be interpreted as the burst frequency, and μ/γ, which is the average burst size,
with δ unchanged. The steady-state distribution of this reduced model can also be solved
approximately (14, 30), and this model appears to apply well for certain situations (30).
There are situations in which this model cannot apply, though, the most notable being cases
of bimodal mRNA distributions, which are the result of long transcriptional bursts during
which the mRNA level approaches a new steady state.

Implicit in this model is the assumption that the gene activation and inactivation events are
random Poisson processes, in which case the time between events would be exponentially
distributed. Recent theoretical work by Pedraza & Paulsson (29) showed that one would
obtain similar (i.e., experimentally indistinguishable) distributions even if the times between
the gene activation and inactivation events were not close to Poisson. This raises the
possibility that parameters extracted from steady-state measurements do not correspond to
anything physical, an option that cannot be excluded using snapshot data such as those
obtained from fixed or lysed cells. However, real-time imaging of transcription in living
cells has shown that, at least for certain genes in Escherichia coli (15) and Dictyostelium
discoideum (9), the distributions of these events are indeed exponential. Nevertheless, owing
to the complexities of transcriptional regulation in higher eukaryotes, researchers will have
to obtain real-time observations of transcription in those organisms to specify exactly what
sorts of models are applicable.

Yet while there is now a growing body of evidence supporting transcriptional bursts, their
biological origins remain unclear. In prokaryotes, the results of Golding et al. (15)
convincingly show that transcriptional bursts do indeed occur in E. coli, and the authors
proposed a host of possible causes, including simple mechanisms such as transcription factor
binding and unbinding as well as more complex processes such as DNA conformational
changes and sigma factor retention resulting in pulsatile reinitiation of transcription. Indeed,
the very presence of prokaryotic transcriptional bursts themselves may be gene specific,
since Maamar et al. (22) found that the Fano factor for the mRNA distributions they
measured were close to 1, thus arguing against transcriptional bursts in that particular case.
Only further experimentation can provide answers to these questions.

Meanwhile, in eukaryotes in general and higher eukaryotes in particular, it seems as though
transcriptional bursting is most certainly the norm, with most if not all noise studies in the
field providing some evidence for pulsatile transcription. One early candidate for the cause
of transcriptional bursts was chromatin remodeling. Eukaryotic genes are wrapped around
histone proteins that form chromatin fibers, and chromatin can be remodeled from a tightly
bound, transcriptionally inert structure to a more loosely bound, transcriptionally active
conformation through the action of various chromatin-remodeling enzymes. Thus, random
events of chromatin remodeling could result in random bursts of transcription. Yet, despite
the clarity of this hypothesis, it has yet to be decisively proven or disproven; so far, the only
studies providing any hints are those of Raser and O’Shea (32), in which the alteration of
chromatin-remodeling enzymes resulted in changes in stochastic gene expression, and Raj et
al. (30), in which genomic position (and thus chromatin context) appeared to have a strong
effect on covariation in bursting between multiple genes. A conclusive test of the connection
between chromatin remodeling and transcriptional bursting will also require single-molecule
techniques, this time directed at the gene itself. Given that experiments monitoring
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chromatin remodeling in real time have already been carried out (44), a suitable combination
of these different single-molecule techniques will likely settle the question.

Another consideration is the propagation of fluctuations in mRNA levels to those of
proteins. Although no study has yet combined single-molecule mRNA detection with single-
molecule protein detection, two of the single-molecule mRNA studies highlighted here have
used conventional fluorescent proteins to examine these problems. Golding et al. (15) found
that the mRNA and protein levels exhibited a linear correlation in single cells. They also
found that the correlation was weakest in the time just following cell division, which they
ascribed to the randomizing effects of the binomial partitioning of mRNAs and proteins
upon cell division. Raj et al. (30) tried to examine the relationship between protein
degradation rates and the correlation between mRNA and protein levels. They found that
mRNA and protein levels correlated strongly when protein lifetime was short, but that this
correlation decreased when protein lifetime was long, a finding also born out in models of
stochastic protein and mRNA production. The authors found it generally difficult, however,
to detect small numbers of protein molecules in individual eukaryotic cells owing to their
large cellular volumes, making the development of single-molecule techniques to count the
number of proteins in individual cells important. We outline some recent efforts toward this
goal in the next section.

SINGLE-PROTEIN DETECTION
Ultimately, much of cellular function is carried out by the proteins encoded for by the
mRNAs, and hence the enumeration of individual proteins is essential to a complete
understanding of stochastic effects in gene expression. Unfortunately, achieving the required
probe specificity is far more difficult with proteins than with nucleic acids. Nevertheless,
new techniques are emerging that are giving researchers a glimpse into the protein content
of individual cells (Table 2).

Recently, two exciting studies from the laboratory of X. Sunney Xie have detailed their
efforts to detect individual protein molecules in living cells. Although both studies reaching
strikingly similar biological conclusions, their approaches were rather different. In Cai et al.
(7), the authors combined the high efficiency of the β-galacotosidase enzyme with
microfluidics to count protein numbers by measuring enzymatic activity. β-galactosidase is
efficient at cleaving substrates, and several reagents produce easily detectable substances
upon enzymatic activity. However, such product molecules are usually quickly exported
from the cell itself, thus diffusing the signal greatly, which is why such assays are typically
performed on populations rather than single cells. To circumvent this problem, the authors
confined each cell to a defined small volume using a microfluidic device, an approach based
on previously described methods used to detect the activity of single enzymes (36). The
concentration of the fluorescent product from a single enzyme is made high enough so that
the fluorescent signal is easily detectable. Because the nonfluorescent substrate is present in
saturating quantities, the increase in signal is linear, with the slope directly proportional to
the number of β-galacotosidase enzymes present. Thus, by measuring changes in the signal
slope, the authors detected the formation of single enzymes.

Yu et al. (52), used fluorescent proteins in a manner that allowed for the detection of single-
protein molecules. The authors noted that individual fluorescent proteins generate enough
fluorescence for detection given a long enough exposure time, but the problem is that they
diffuse too rapidly to produce a localized signal within such time periods. To solve this
problem, they fused a bright, fast-folding variant of yellow fluorescent protein (Venus YFP)
to a peptide sequence that anchors itself to the membrane, thus dramatically reducing the
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mobility of the YFP molecules. Once anchored in this fashion, they directly imaged the
molecules using a standard fluorescence microscope coupled with laser illumination.

Impressively, although these methods are different in character, the results obtained from
both studies were almost identical. The main finding was that proteins were produced in
short but infrequent bursts, presumably occurring during the lifetime of single, infrequently
transcribed mRNAs. They parameterized their data using a model in with two parameters: a,
referring to the burst frequency; and b, referring to the average burst size. (This model is in
principle similar to models used for describing mRNA distributions arising from short
transcriptional bursts.)The main assumption is that individual burst events are short
compared with the protein lifetime, which, mathematically speaking, means that as the
mRNA lifetime is much shorter than the protein lifetime, likely a valid approximation for a
significant number of genes. During the lifetime of the mRNA, the number of proteins
produced is taken from a geometric distribution, which has a nice biological interpretation:
Once the mRNA is transcribed, it will be continuously translated into protein by ribosomes.
The presence of the ribosomes also confers protection from various ribonucleases. However,
every time a ribosome finishes translating and thus unbinds from the mRNA, there is a
certain probability that a ribonuclease will bind rather than another ribosome. This process
leads to the geometric distribution of burst sizes of mean size b (23), and when one
combines this burst size distribution with the random appearances of bursts (parameterized
by a), Cai et al. (7) found that the distribution of proteins across a population is given by the
γ distribution. This model has been applied to small gene networks such as genetic
autoregulation and transcriptional cascades by Friedman et al. (14), and a recent study has
shown how to extend this work to find distributions in the presence of transcriptional bursts
(40). In terms of the underlying rates of transcription, translation, and mRNA and protein
degradation, parameter a is the rate of transcription and parameter b is the ratio of the
translation rate to the mRNA degradation rate (42).

Yet, although these two techniques are undeniably elegant, it is unclear how well they will
translate to other types of organisms in which the protein count is much higher and the
cellular volume is much larger. Moreover, the use of various reporter gene constructs
presupposes the ability to perform genetic manipulations, which are often difficult or
impossible to perform in many organisms. To circumvent these problems, Huang et al. (17)
used a combination of microfluidics, immunofluorescent labeling, and new optics to count
the number of endogenous protein molecules in organisms both large and small. Their
approach was to lyse cells in small microfluidic chambers and then use fluorescently
conjugated antibodies to label the target protein. They then flowed the now fluorescent
proteins over a confocal microscope to image the individual proteins. The imaging step is
one of the principal difficulties in this type of method, since the field of illumination is
usually much smaller than the channels through which the proteins flow, thus making it hard
to detect all the proteins as they pass by the objective. The authors solved this problem by
utilizing cylindrical optics, thereby illuminating the entire cross section of the protein
channel.

They then used their system to measure the number of β-adrenergic receptors in individual
insect cells and found that the numbers of proteins fluctuated wildly from cell to cell, with
numbers as low as 2000 and as high as 60,000. They also measured the numbers of the
constituents of the phycobilisome (i.e., the complex responsible for harvesting light energy
from the sun) in individual cyanobacteria. Huang et al. found that expression of this
complex was much more variable in nitrogen-starved conditions than in nitrogen-rich
conditions. Some caveats to this method include the limits of its sensitivity (which the
authors estimated to be around seven molecules in their cyanobacteria experiments) and its
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throughput, but it is nevertheless a promising and general methodology for measuring cell-
to-cell variability in endogenous protein levels.

FUTURE DIRECTIONS
The application of single-molecule techniques to the measurement of gene expression in
single cells has provided many new insights into the field of stochastic gene expression, and
the utilization of these and other methods not yet invented for progressively more complex
biological problems will undoubtedly lead to further discoveries. Such research may move
toward studying all the individual stochastic biochemical reactions involved in gene
expression, rather than just counting and monitoring mRNA and protein numbers. Some
work has already been done along these lines, with the study of Elf et al. (10) examining the
kinetics of individual transcription factors searching for their DNA binding site in living E.
coli; further work may reveal the contribution of these random binding and unbinding events
to stochastic expression of the target genes. In higher eukaryotes, the notion that chromatin
remodeling is responsible for transcriptional bursting has still not been proven directly and
remains a ripe target for combining single-molecule DNA measurements with
transcriptional measurements. More generally, virtually all the enzymatic activities involved
in gene expression can be subjected to single molecule scrutiny to determine exactly which
individual processes are the most important in making gene expression stochastic.
Candidates include the stepping behavior of individual RNA polymerases; splicing and other
posttranscriptional mRNA processing; the nuclear export of mRNAs, including gene
translocation to the nuclear periphery (39); the activity(ies) of ribosomes, ribonucleases, and
proteases. These are but a smattering of the many important elements involved in gene
expression, and studying how these individual molecules function in vivo will almost
certainly change our conception of stochastic gene expression.

Another avenue of inquiry in which single-molecule techniques may provide fresh insights
is the biological consequences of noise. Thus far, the field has focused primarily on cases in
which noise in gene expression can be beneficial, providing useful phenotypic variability in
genetically identical populations (2, 20, 21, 43, 51). Often this variability is enhanced by
thresholding and amplification of noise by genetic feedback loops (1, 22, 41). Maamar et al.
(22) used single-mRNA detection to try to infer thresholding behavior at the protein level,
but it is likely that direct observation of individual protein molecules in real time will be
required to truly observe the actions of such feedbacks. Less well studied (but perhaps more
important in general) are instances in which noise is detrimental to robust function, an
example of which is development in multicellular organisms. In such cases single-molecule
detection may be of primary importance in detecting low numbers of important
biomolecules during developmental processes (31), thus allowing researchers to gauge the
extent to which noise is tolerated in such systems.

Biological insights may also arise from parallelization of single-molecule gene expression
measurements to a genomic scale, i.e., measuring the detailed stochastic properties of gene
expression (such as mRNA and protein burst frequency and size) for most genes in an
organism. These sorts of measurements can lead to insights into the nature and
consequences of noise, as demonstrated by using GFP in yeast (3, 24). Single-molecule
measurements allow for the detection of many potentially interesting genes whose
expression levels are below the GFP detection limit, and would allow for more careful
measurements of important parameters that can only be inferred by GFP measurements. It
remains to be seen how easily such methods can be parallelized to facilitate such studies, but
the capacity for new insights is great.
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In conclusion, we feel that these trailblazing single-molecule stochastic gene expression
experiments are pointing in the direction to which the rest of the field will head. The ability
of these methods to yield quantitative data raises several exciting possibilities that seemed
impossible only a few years ago. We look forward to expecting the unexpected as the
combination of single-molecule detection and molecular biology breathe new life into the
still-young field of stochastic gene expression.
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Figure 1.
(a) Promoter dynamics for a gene that is always in the active state (i.e., nonbursting) versus
(b) promoter dynamics for a gene that switches between active and inactive states (i.e.,
bursty dynamics). (c) mRNA dynamics for nonbursting and (d) bursting genes. In the
nonbursting case, one obtains a Poisson distribution of mRNAs per cell across the
population, as shown in the marginal histogram, whereas the distribution of mRNAs per cell
in the bursting case is much wider than a Poisson distribution despite having the same mean.
Protein dynamics for (e) nonbursting and (f) bursting genes, again with the same mean.
Although the underlying gene expression dynamics are bursty, the relatively long half-life of
the protein results in a wide but Gaussian-looking population distribution, pointing out the
need for single-molecule mRNA-counting approaches when studying bursty gene
expression. The marginal histograms on the right of the time courses show the distribution
of the promoter states, mRNAs, and proteins across a population.
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Figure 2.
Distributions resulting from different values of the parameters in the gene activation/
inactivation model of Peccoud & Ycart (28). The top row corresponds to the parameter γ
being larger than the mRNA decay rate δ. The left side of the figure corresponds to high
burst frequency compared with δ, whereas the right side corresponds to low burst frequency.
The transcription rate γ was also altered as indicated. As mentioned in the text, the burst
approximation is only valid when the burst frequency is low and the inactivation rate is
faster than the mRNA decay rate. In particular, the bimodal expression pattern that appears
with high μ and small λ, and γ cannot appear when one uses the burst approximation.
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