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An Application of Collaborative Targeted
Maximum Likelihood Estimation in Causal

Inference and Genomics
Susan Gruber and Mark J. van der Laan

Abstract

A concrete example of the collaborative double-robust targeted likelihood estimator (C-
TMLE) introduced in a companion article in this issue is presented, and applied to the estimation
of causal effects and variable importance parameters in genomic data. The focus is on non-
parametric estimation in a point treatment data structure. Simulations illustrate the performance of
C-TMLE relative to current competitors such as the augmented inverse probability of treatment
weighted estimator that relies on an external non-collaborative estimator of the treatment
mechanism, and inefficient estimation procedures including propensity score matching and
standard inverse probability of treatment weighting. C-TMLE is also applied to the estimation of
the covariate-adjusted marginal effect of individual HIV mutations on resistance to the anti-
retroviral drug lopinavir. The influence curve of the C-TMLE is used to establish asymptotically
valid statistical inference. The list of mutations found to have a statistically significant association
with resistance is in excellent agreement with mutation scores provided by the Stanford HIVdb
mutation scores database.

KEYWORDS: causal effect, cross-validation, collaborative double robust, double robust,
efficient influence curve, penalized likelihood, penalization, estimator selection, locally efficient,
maximum likelihood estimation, model selection, super efficiency, super learning, targeted
maximum likelihood estimation, targeted nuisance parameter estimator selection, variable
importance
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1 Introduction
Targeted maximum likelihood estimation (TMLE) is a double robust method for es-
timating causal effects and their non-causal analogs, variable importance measures
(van der Laan and Rubin, 2006). Observed data can be viewed as realizations of
random variables arising from some true underlying data-generating distribution.
An association or causal effect corresponds with some particular parameter of this
unknown underlying distribution. TMLE is a two stage semi-parametric estimation
methodology that minimizes bias in the estimate of this parameter of interest. Stage
one estimates the density of the data-generating distribution. In stage two this ini-
tial density estimate is fluctuated in a manner specifically designed to provide the
maximal change in the estimate of the target parameter. This targeted fluctuation
is based on the efficient influence curve of the parameter, and involves estimating a
nuisance parameter that can include a treatment mechanism, a missingness mecha-
nism, and/or a censoring mechanism.

Collaborative targeted maximum likelihood estimation (C-TMLE) is an exten-
sion of TMLE that pursues an optimal strategy for nuisance parameter estimation.
Theory advanced in van der Laan and Gruber (2010) provides the key insight that
only the portion of the nuisance parameter that is not adequately accounted for in
the first stage needs to be incorporated into the second stage fluctuation. Stage two
of the C-TMLE approach exploits this collaborative double-robustness finding by
creating a sequence of nuisance parameter estimates that grow increasingly larger,
i.e., more and more non-parametric. Construction of the nuisance parameter esti-
mates is guided data-adaptively based on the goodness-of-fit of the overall density
estimate and its effect on the mean squared error of the estimate of the target param-
eter. In other words, each nuisance parameter estimate in the sequence is carefully
constructed to provide the next in a series of fluctuations of the initial density es-
timate, and each fluctuation is carried out to create a series of candidate TMLE
estimators. Likelihood-based cross-validation (possibly using the penalized likeli-
hood) selects the best candidate for the given stage one estimator. This procedure
can be carried out for multiple stage one estimators. The C-TMLE estimator is
defined as the best among the set of candidate TMLE estimators indexed by stage
one and stage two candidates, as chosen by likelihood-based cross-validation. In
finite samples the C-TMLE estimator will often be more efficient than the standard
TMLE estimator that utilizes an estimate of the entire nuisance parameter in the
targeting step. C-TMLE enjoys all the properties of the standard TMLE estimator,
namely, it is double robust and asymptotically efficient under appropriate regularity
conditions..

C-TMLE is a general methodology that can be applied to a variety of estima-
tors in many settings, including survival analysis, gene association studies, and
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longitudinal data structures. In this article we focus on one specific application of
C-TMLE, non-parametric estimation of a point treatment effect. For simplicity, we
limit the discussion of C-TMLE methodology to the simplest case in which there
is only one stage one estimate. The extension to multiple stage one candidate es-
timators is straightforward. The performance of collaborative targeted maximum
likelihood estimation methodology is compared with that of established estima-
tion methods: G-computation, inverse probability of treatment weighting (IPTW),
propensity score-based causal effect estimation, and unadjusted regression estima-
tion of a point treatment effect. Results from three simulation studies designed
to mimic commonly-encountered scenarios demonstrate the versatility of the C-
TMLE estimator. A fourth simulation contrasts C-TMLE with standard targeted
maximum likelihood estimation (TMLE) introduced in van der Laan and Rubin
(2006).

The paper is organized as follows. Section 2 describes TMLE and defines a
new collaborative double robustness property that motivates the development of C-
TMLE. Other common estimators of causal effects and variable importance param-
eters found in the literature (G-computation, propensity score-based, unadjusted,
and inverse probability of treatment weighted estimators) are reviewed in Section
3. A particular C-TMLE implementation and an influence curve-based method for
obtaining inference is described in Section 4. Section 5 presents three simulations
designed to offer a performance comparison across a variety of scenarios common
to many analyses of real-world data. In Section 6 we compare the performance of
the new C-TMLE estimator with standard TMLE. Variable importance estimates of
the effect of HIV mutations on resistance to the anti-retroviral drug lopinavir are
presented in Section 7. The paper concludes with a discussion in Section 8. An
appendix provides a note on modification to the TMLE procedure that maintains
its properties but also enforces Ψ(Qn) as an imputation estimator. In addition, R
source code that implements and demonstrates applying C-TMLE to analyze simu-
lated data is provided as supplemental materials.

2 Collaborative targeted maximum likelihood estima-
tion

We review targeted maximum likelihood estimation of the additive treatment effect
before defining the collaborative targeted maximum likelihood approach. Suppose
we have a data set containing n independent and identically distributed observa-
tions, O1, . . . , On, of a random variable O = (W,A, Y ), where W is a set of base-
line covariates, A is a treatment variable, and Y is the outcome variable. For sim-
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plicity we focus on binary A, A = 1 denotes treatment, and A = 0 denotes control.
The outcome variable can either be continuous or binary. Assume we are interested
in estimating the marginal additive causal effect of treatment on the outcome. The
parameter of interest of the probability distribution P0 of O is therefore defined
non-parametrically as ψ0 = EW (E(Y | A = 1,W ) − E(Y | A = 0,W )). Under
the appropriate causal graph assumptions ψ0 corresponds with the G-computation
formula for the marginal additive causal effect.

The probability distribution/density of O can be factored as P0(O) =
Q0(O)g0(A | W ), where Q0(O) = QY 0(Y | A,W )QW0(W ) and g0(1 | W ) =
P0(A = 1 | W ). We used the notation QY for a conditional distribution of Y , given
A,W , and QW for the marginal distribution of W . For notational convenience, let
Q0(A,W ) = E0(Y | A,W ) be the true conditional mean of Y , given A,W , which
is thus a parameter of QY 0. We note that ψ0 = Ψ(Q0) only depends on the data
generating distribution P0 through its Q0-factor. The targeted maximum likelihood
estimator of ψ0 is a particular substitution estimator

ψ(Qn) =
1

n

n∑
i=1

(Qn(1,Wi)−Qn(0,Wi)),

where Qn(A,W ) is an estimated conditional mean of Y given A,W , and the
marginal distribution QW0 is estimated with its empirical probability distribution.

Targeted maximum likelihood estimation involves obtaining an initial estimate
of the true conditional mean of Y given A and W , and subsequently fluctuating this
estimate in a manner designed to reduce bias in the estimate of the parameter of in-
terest. LetQ0

n(A,W ) be the initial estimate of the true conditional meanQ0(A,W ).
For example, if Y is binary, then one constructs a parametric (least favorable) model
logit(Q0

n(ε)(A,W )) = logit(Q0
n+εh), fluctuating the initial estimateQ0

n, where ε is
the fluctuation parameter. The function h(A,W ), known as the “clever covariate”,
depends on the treatment assignment mechanism g0, and is given by

h(A,W ) =
I(A = 1)

g0(1 | W )
− I(A = 0)

g0(0 | W )
. (1)

The theoretical basis for this choice of clever covariate is given in van der Laan and
Rubin (2006). In particular, it has the bias-reduction property that if one estimates
ε with the parametric maximum likelihood estimator, and one sets Q1

n equal to the
resulting update, then the resulting substitution estimator Ψ(Q1

n) is asymptotically
unbiased, even if the initial estimator Q0

n is inconsistent. These results indicate
that estimating g0 is crucial for reducing bias. However, the choice of an estimator
gn should be evaluated by how it affects the mean squared error of the resulting
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targeted maximum likelihood estimator Ψ(Q1
n), making it a harder and different

problem than estimating g0 itself.
TMLE has been shown to be double robust, i.e. the estimate is consistent if

either the limits of Q1
n or gn are correctly specified. When both are correct, the

estimator is efficient (van der Laan and Rubin, 2006). Recent theoretical advances
show that TMLE is also collaboratively double robust (van der Laan and Gruber,
2010). That is, if the initial estimator converges to a possibly misspecified Q, then
gn needs to only converge to a conditional distribution of A that properly adjusts
for a covariate that is a function of Q0 −Q. This result is intuitively a natural con-
sequence of the fact that the clever covariate can only reduce bias if it is predictive
of the outcome after taking into account the initial estimator. This collaborative
double robustness property and a corresponding asymptotic linearity theorem are
proven in a companion article in this issue.

A particular method for construction of a collaborative estimator gn involves
building candidate treatment mechanism estimators that grow towards an unbiased
estimator of the fully adjusted g0. In a departure from current practice, the construc-
tion of these candidates is guided by the log-likelihood loss function for Q0, thus
not by the log-likelihood loss function for the conditional distribution of A given
W , hence our use of the term “collaborative.”

Clever covariates based on these candidates give rise to a sequence of updated
estimates, Q1

n(Q0
n, g

1
n), . . . , QK

n (Q0
n, g

1
n, . . . , g

K
n ), each of which provides a candi-

date TMLE estimate of ψ0. The C-TMLE estimate is the best among these candi-
dates, as determined by V-fold Q0-log-likelihood-based cross-validation.

3 Current methods for estimating marginal
causal treatment effects

Current methods for estimating the marginal causal effect of a treatment A on out-
come Y are compared with C-TMLE on simulated data below. The estimators
under consideration are the G-computation estimator (Robins, 1986), the IPTW
estimator (Hernan et al. (2000), Robins (2000b)), a double robust IPTW estimator
(DR-IPTW), (Robins and Rotnitzky (2001); Robins et al. (2000); Robins (2000a)), a
propensity score estimator (Rosenbaum and Rubin, 1983) that calculates the
marginal treatment effect as the mean across strata defined by the conditional prob-
ability of receiving treatment, and an extension to propensity score estimators im-
plemented in Matching, a publicly available R package (Sekhon (2008)).

Recall that our parameter of interest is given by: ψ0 = EW [E[Y | A = 1,W ]−
E[Y | A = 0,W ]]. Each of the estimators we are considering rely on estimates
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of one or both of the following: Q0(A,W ) ≡ E[Y | A,W ] and g0(A,W ) ≡
P (A | W ). The first conditional distribution can be estimated by, for example,
a regression of Y on A and W . The second, which we refer to as the treatment
mechanism, is sometimes known, for example in a randomized trial. When the
treatment mechanism is unknown it can be estimated by a logistic regression of A
on W . Each estimator is defined below.

ψGcompn =
1

n

n∑
i=1

(Q0
n(1,Wi)−Q0

n(0,Wi))

ψIPTWn =
1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]
Yi

gn(Ai,Wi)

ψDR−IPTWn =
1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]

gn(Ai | Wi)
(Yi −Q0

n(Wi, Ai))

+
1

n

n∑
i=1

(Q0
n(1,Wi)−Q0

n(0,Wi))

ψC−TMLE
n =

1

n

n∑
i=1

(Q∗n(1,Wi)−Q∗n(0,Wi))

ψPropScoren =
1

n

n∑
i=1

(Q0
n(1, si)−Q0

n(0, si))

ψMatching
n =

1

n

n∑
i=1

(Q0
n(1,mi)−Q0

n(0,mi))

whereQ0
n refers to an initial estimate ofQ0(A,W ),Q∗n refers to an updated targeted

estimate of Q0(A,W ), described in detail in the next section. For the propensity
score method, si indicates a stratum of the propensity score of covariate vector
Wi, and Q0

n(a, s) denotes an estimator of the true conditional mean E(Y | A =
a, S = s) given treatment and propensity score. In the last equation mi indicates
a set of matched observations to which subject i is assigned, where matches are
based on minimizing a distance between the user supplied covariates W . Each set
of matched observations indexed by m results in a corresponding mean regression
Q0
n(a,m) representing an estimate of E(Y | A = a,M = m). The creation of the

partitioning in sets of matched observations is only a function of the data (Wi, Ai),
i = 1, . . . , n, thus ignoring the outcome data.

Regarding asymptotic properties of the estimators, the G-computation estima-
tor relies on consistent estimation of Q0, the IPTW estimator relies on consistent
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estimation of g0, while the DR-IPTW estimator yields consistent estimates if one or
both nuisance parameters are estimated consistently.

Notice that ψC−TMLE
n is a G-computation estimate. However, unlike G-compu-

tation, which is consistent only when Qn is a consistent estimator for Q0, C-TMLE
estimates are consistent if either Q0 or g0 is estimated consistently. ψC−TMLE

n can
equivalently be formulated as a double-robust IPTW estimator:

ψC−TMLE
n =

1

n

n∑
i=1

[I(Ai = 1)− I(Ai = 0)]

g∗n(Ai | Wi)
(Yi −Q∗n(Wi, Ai))

+
1

n

n∑
i=1

(Q∗n(1,Wi)−Q∗n(0,Wi))

The propensity score method implemented uses the Deletion/Substitution/
Addition (DSA) algorithm (Sinisi and van der Laan, 2004) to model conditional
treatment probabilities given covariates W . This data-adaptive algorithm searches
over a large space of polynomial models by adding, subtracting, or substituting
terms, starting with a base user-specified regression model. The final model, se-
lected by cross-validation with the L2 loss function, was used to estimate a propen-
sity score for each observation. Observations were then divided into five strata
based on the quantiles of these propensity scores. Regression of Y on A and strata
indicator variables using the full model enabled the calculation of stratum-specific
treatment effects, which were averaged to obtain the marginal effect. The Matching
estimator generalizes the propensity score approach by carefully matching observa-
tions in the treatment and control groups in such a way that potential confounders
are evenly distributed, across the matches.

The Matching procedure relies on the genetic algorithm (Holland and Reitman
(1977)) to achieve this goal. This is a non-parametric approach for selecting weights
on covariates that are in turn are used to determine which observations are matched.
Candidate sets of matches are evaluated based on a loss function and a distance
metric specified at run-time, and are used to generate successive sets of candidates
that achieve good balance Sekhon (2008). The marginal treatment effect is the
average effect across strata defined by the matches.

Propensity score methods are especially effective when overall match quality
is a function of true confounders. Estimates can suffer even when overall match
quality is high if a small subset of covariates responsible for introducing the most
bias into the estimate is unevenly distributed between treatment and control groups.
Because matches are made without regard to the outcome variable, these methods
do not exploit all information available in the data and are known to be less than
fully efficient (Abadie and Imbens, 2006). A violation of the experimental treatment

6

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 1, Art. 18

http://www.bepress.com/ijb/vol6/iss1/18
DOI: 10.2202/1557-4679.1182



assignment assumption, also called the positivity assumption, is known to reduce
the quality of the match and introduce bias into the estimate, and can be detected
once the matches have been specified. The lack of identifiability as measured by
such an assumption results in potential bias for each method, but the augmented
IPTW, targeted MLE, and G-computation method allow reliance on extrapolation.

4 C-TMLE implementation
The general C-TMLE procedure is to create several stage 1 (non-targeted) density
estimators and carry out stage 2 procedures for each of these. Penalized cross-
validation is used to choose among the final candidate estimators that are indexed
by stage 1 and stage 2 candidates. The implementation presented here is based
on only one initial stage 1 estimate for simplicitly. We describe specific choices
that were employed for the simulations and data analysis presented in the following
sections, occasionally noting other implementation options.

Step 1: Obtain an estimate Q0
n of Q0(A,W ). A data-adaptive machine learning

approach to obtaining this initial estimate is recommended. The super learner
(SL) is a prediction algorithm that creates a weighted combination of predic-
tions of many individual prediction algorithms, with weights selected using
V-fold cross-validation (van der Laan et al., 2007). In practice, it is impor-
tant to include algorithms in the SL library of predictors that cover different
model spaces, e.g. support vector machines, splines, neural nets, etc., since
the true best estimation method is unknown. If SL is not used, any particular
data adaptive machine learning algorithm providing a consistent estimate is
acceptable. For the simulations described in the next section, the DSA algo-
rithm was used to provide the initial estimate of the the true regression of Y
on treatment A and confounders W .

Step 2: Generate candidate second stage estimatorsQk
n. In the simulations forward

selection was used to build a sequence of updates for g0 that are increasing in
size.

Though not required, a sensible approach is to use the intercept model for g to
construct a first clever covariate, h1, used to create the first targeted maximum
likelihood candidate, Q1

n.

g1
n(1 | W ) = P (A = 1), g1

n(0 | W ) = P (A = 0)

h1 =

(
I[A = 1]

g1
n(1 | W )

− I[A = 0]

g1
n(0 | W )

)
.
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This results in the first candidate second stage estimator Q1
n = Q0

n + ε1h1,
where ε1 is fitted by least-squares regression of Y on h1 with offset Q0

n. Next
we create an updated model for g by adding a main term to the intercept,
and the resulting targeted MLE using the corresponding clever covariate is
evaluated. The best main term is selected based on a penalized log-likelihood
criterion for the targeted MLE fit. Additional terms are incorporated in the
g-fit as long as they increase the overall penalized log-likelihood for the re-
sulting Q0-targeted MLE fit. Thus the penalized likelihood is defined as the
empirical sum of squared residuals at the resulting Q0-fit plus a penalty term
proportional to the estimated variance of the target parameter, the empirical
variance of D∗, the main component of the efficient influence curve (see be-
low), at the resulting Q0-fit and the candidate g-fit. In the event that no terms
in the model for g increase the penalized likelihood of the resulting Q0-fit,
the targeted MLE update is carried out with the clever covariate that provided
the best penalized log-likelihood, and the above process is iterated with this
new initial estimator and next clever covariate indexed by g fits that are still
building on last g-fit.

As an example suppose that in addition to the intercept term, m terms, or-
dered 1, . . . ,m, are incorporated into the model for g, at which point no fur-
ther increase of the penalized log likelihood is possible. We define candidate
estimators Q2

n through Qm+1
n as:

Q2
n = Q1

n + ε2h2

Q3
n = Q1

n + ε3h3

...
Qm+1
n = Q1

n + εm+1hm+1

where the corresponding models gi+1
n contains all the terms in the model for

gin plus one additional term, i = 2, . . . ,m. At this point Qm+1
n is considered

as a new “initial” estimate of the true regression, and the entire process starts
over in order to build a second clever covariate augmenting the previous fit
gm+1
n used in hm+1. To continue the example, Qm+2

n = Qm+1
n + εm+2hm+2.

This process is iterated until all terms are incorporated into the final model
for g. If the maximal number of terms that can be added is given by K, then
this results in K candidate estimators Qk

n, k = 1, . . . , K, corresponding with
treatment mechanism estimators gkn, k = 1, . . . , K. Note that the number of
clever covariates in Qk

n that are added to the initial estimator Q0
n cannot be

predicted, and depends on how many covariates can be added to the treatment
mechanism estimator in each iteration before reaching the local maximum
(not allowing a further increase of the penalized log-likelihood).
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Note that the model for g is not restricted to main terms only. For example,
variables can be created that correspond to higher-order terms. In addition, a
categorical or continuous covariate can be split into many binary covariates,
thereby allowing for more nonparametric modeling of the effect of a single
covariate. When there are many covariates it might be desirable in practice to
terminate the procedure before all covariates have been incorporated into the
model for g, though care must be taken to ensure that none of the candidates
thereby excluded from the subsequent selection process potentially maximize
the penalized log-likelihood criterion. SL can be integrated into the second
stage as well. A series of increasingly non-parametric propensity score SL
estimates can be obtained based on different adjustment sets. These SL fits
are used as the main terms for the stage 2 forward selection to build candidate
ĝ estimators.

The presented algorithm illustrates that the number of clever covariates used
to update the initial estimator Q0

n depends entirely on the likelihood and can-
not be pre-determined. Terms are incorporated into the model for g for a
single clever covariate until there is a decrease in the likelihood. At that point
the estimate is updated from Qm

n → Q
(m+1)
n and the process iterates until all

candidate TMLEs have been constructed.

We also note that we can represent these estimators Qk
n and corresponding

treatment mechanism estimators gkn as mappings Q̂k and ĝk applied to the
empirical distribution Pn: Qk

n = Q̂k(Pn), gkn = ĝk(Pn), k = 1, . . . , K. These
mappings Pn → Q̂k(Pn) represent our candidate estimators of the true re-
gression Q0, and in the next step we use cross-validation to select among
these candidate algorithms.

Step 3: Select the estimator that maximizes the V-fold cross-validated penalized
likelihood, where V was set to 5. Maximizing the penalized likelihood is
equivalent to minimizing the residual sum of squares (RSS) plus a penalty
term corresponding to the mean squared error (MSE), which can be decom-
posed into variance and bias terms:
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k∗ = argmin
k

cvRSSk + cvV ark + n ∗ cvBias2
k.

These terms are defined as follows:

cvRSSk =
V∑
v=1

∑
i∈V al(v)

(Yi − Q̂k(P 0
nv)(Wi, Ai))

2

cvV ark =
V∑
v=1

∑
i∈V al(v)

D∗2(Q̂k(P 0
nv), ĝk(Pn),Ψ(Q̂k(P 0

nv)))(Oi)

cvBiask =
1

V

V∑
v=1

Ψ(Q̂k(P 0
nv))−Ψ(Q̂k(Pn))

D∗(Q, g,Ψ(Q))(O) =
I[A = 1]− I[A = 0]

g(A | W )
(Y −Q(A,W ))

+
1

n

n∑
i=1

Q(1,W )−Q(0,W )−Ψ(Q)

where v ranging from 1 to V indexes the validation set V al(v) for the vth
fold, Ψ(Q) is a mapping from Q to the parameter of interest, and Q̂k(P 0

nv)
denotes the k-th C-TMLE applied to the corresponding training sample P 0

nv,
containing n(1− p) observations, with p = 1/V .

There are many variations for obtaining ψC−TMLE
n . For example, given an a

priori set of candidate nuisance parameter estimators, ĝj , that includes highly non-
parametric candidates we could construct clever covariates hj(g), and then use for-
ward selection with this set of clever covariates, using the initial estimator as off-set,
to build (second stage) model-fits for Q0 of increasing size, where each term in the
model corresponds to one of the clever covariates. The number of clever covariates
that are added in this forward-selection algorithm can be selected using likelihood-
based cross-validation.

Note that in contrast with the algorithm described above, in which previous co-
efficients are used as fixed offsets in the regression, coefficients in front of each term
are estimated by least squares, thereby solving the efficient influence equation cor-
responding to each ĝj , in particular the most non-parametric of these. Because these
covariates are highly correlated, refitting all coefficients in front of clever covariates
at each step in the forward selection algorithm is likely to result in highly variable
coefficient estimates, and therefore less stability in the estimate of the parameter of
interest.
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Another alternative approach is to define ψC−TMLE
n = ψ(Q1

n), where Q1
n =

Q0
n + εnh(gk

∗
n ) is the targeted MLE updating the initial estimator with the final se-

lected clever covariate defined by carrying out the k∗ moves in the above forward
selection algorithm to obtain a g-fit, where k∗ is the optimal number of moves se-
lected by likelihood-based cross-validation (exactly as above). This variation did
not improve performance in simulation studies not presented in this article. We
mention these alternatives only to underscore the fact that C-TMLE methodology
can be implemented in a variety of ways, and is not limited to the specific imple-
mentation presented here.

4.1 Inference
The variance of the influence curve (IC) of the C-TMLE provides suitable in-
ference, under certain regularity conditions, and assuming that the collaborative
estimator gn converges to a g0 = g0(Q), where g0(Q) represents a true condi-
tional distribution of A given W (Q) for a subset or reduction W (Q) of all covari-
ates W , so that P0D

∗(Q, g0(Q), ψ0) = 0. For example, it suffices that the limit
g0(Q) is a true conditional distribution of A, given W (Q), for a W (Q) such that
(Q0 − Q)(1,W ), (Q0 − Q)(0,W ) only depend on W through W (Q). For details
we refer to the companion paper van der Laan and Gruber (2010). The asymptotics
theorem presented in that paper states that ψn is an asymptotically linear estimator
of ψ0 with influence curve

IC(P0) = D∗(Q, g0, ψ0) + ICg0 ,

where ICg0 denotes the influence curve of the linearization of P0D
∗(Q, gn, ψ0)

viewed as an estimator of P0D
∗(Q, g0, ψ0). This additional term ICg0 represents

the contribution to the influence curve from the estimator gn. The formula for
the efficient influence curve/canonical gradient D∗(Q, g0, ψ0) is given in the pre-
vious section for the particular causal effect parameter, ψ0 = EW [E[Y | A =
1,W ]− E[Y | A = 0,W ]].

In our application of C-TMLE, gn is a data adaptively selected logistic regres-
sion model fitted with maximum likelihood estimation. Thus, if we define {gα : α}
as the logistic regression model selected, and αn is the MLE, then gn = gαn .
We will approximate ICg0 with the influence curve of the asymptotic lineariza-
tion of P0D

∗(Q, gαn , ψ0)−D∗(Q, gα, ψ0). This ICg0 can now be determined with
a straightforward application of the delta method. The formula for ICg0 we derived
is given by:
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ICg0(O) = −a0 · ICα(O)

where

a0 = P0(Y −Q(A,W ))
−→
Whα(A,W ),

hα(A,W ) =

[
Agα(0 | W )

gα(1 | W )
− (1− A)gα(1 | W )

gα(0 | W )

]
,

ICα(O) = P0

[−→
W
−→
W Tgα(1 | W )gα(0 | W )

]−1

(A− gα(1 | W ))
−→
W.

The notation
−→
W is used to denote the vector of main terms that is included in

the logistic regression model gαn . Note that a0 is a vector of the same dimension as
−→
W .

This influence curve is estimated by its empirical analog, given by:

ÎCg0(O) = −an · ÎCα(O)

where

an =
1

n

n∑
i=1

(Yi − Q̂(Ai,Wi))
−→
Wihαn(Ai,Wi),

hαn(Ai,Wi) =

[
Aigαn(0 | Wi)

gαn(1 | Wi)
− (1− Ai)gαn(1 | Wi)

gαn(0 | Wi)

]
,

ÎCα(O) =

[
1

n

n∑
i=1

−→
W i
−→
W T

i gαn(1 | Wi)gαn(0 | Wi)

]−1

(A− gαn(1 | W ))
−→
W.

The standard error of the C-TMLE is now estimated as SE(ψn) =
√
var(IC)/n,

where var(IC) = 1/n
∑

i
ˆIC

2

i is the sample variance of the estimated influence
curve. A 95% confidence interval (CI) is constructed as ψn ± 1.96SE(ψn). The
bootstrap is an alternative valid method for asymptotically valid inference, but it is
much more computationally intensive.

We remark that it is good practice to incorporate the additional term ICg0 in the
influence curve, thereby targeting the true influence curve of the estimator. We can
provide the following qualitative understanding of the contribution of ICg0 to the
influence curve of the estimator. If Q0

n converges to the true Q0, then the term ICg0
equals zero, and ifQ0

n is inconsistent, and gn converges to the fully adjusted g0, then
ICg0 is known to reduce the variance of the influence curve (section 2.3.4 van der
Laan and Robins (2003)). Based on these two facts, we suggest that ignoring the
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contribution ICg0 will typically result in asymptotically conservative confidence
intervals. Empirical evidence presented in Section 6 using finite samples (n =
1000) supports this. However, from a theoretical point of view, there seems to be
no guarantee that ICg0 always reduces the variance.

5 Simulation studies
For each simulation we have a data structureO = (W,A, Y ), whereW = (W1, . . . ,
W6) is a set of potential confounders of the relationship between binary treatment
variable A and continuous outcome Y . Our parameter of interest is the marginal
causal effect of treatment on the outcome: ψ = EW [E[Y | A = 1,W ] − E[Y |
A = 0,W ]]. The simulations are designed to demonstrate estimator performance in
the face of confounding of the relationship between treatment and outcome, com-
plex underlying data-generating distributions, and practical violations of the Exper-
imental Treatment Assumption (ETA), i.e., P (A = a | W ) < α, for some small α,
implying that there is very little possibility of observing both treated and untreated
subjects for some combination of covariates present in the data.

These simulations are designed specifically to illustrate features of the C-TMLE
estimator, and there are other simulations for which the relative performance of the
estimators would differ. For example, when a correct model for the underlying data
generating distribution is known, a parametric regression approach would be opti-
mal. When the outcome is rare, as is often the case in safety analysis, we would
not expect the initial fit, Q0

n, to have much predictive power. In this case, the fully
adjusted g0 is very likely needed for full bias reduction, so creating and evaluating
intermediate candidates with C-TMLE may be needlessly computationally expen-
sive. Standard TMLE might be a better approach. Adjusting for many confounders
may lead to violations of the ETA assumption when n is small relative to the num-
ber of confounders or if the confounders are very strongly predictive of treatment.
There are two ways to deal with this. First, one could extrapolate based on model
assumptions to arrive at an estimate of the desired parameter. Secondly, one could
acknowledge that the parameter of interest is not identifiable from the data, and
choose an adjustment set that provides bias reduction without yielding an estimate
with variance so large that it is essentially meaningless. This latter approach is
taken by second stage of the C-TMLE procedure, by basing the selection of con-
founders based on the penalized log-likelihood, while the extrapolation approach is
still present through the initial first stage estimator.
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5.1 Data generation
CovariatesW1, . . .W5 were generated as independent normal random variables. W6

is a binary variable.

W1,W2,W3,W4,W5 ∼ N(0, 1)

logit(P (W6 = 1 | W1,W2,W3,W4,W5)) = .3W1 + .2W2 − 3W3

Two treatment mechanisms were defined:

logit(g1,0)= logit(P(A=1 |W1, W2, W3, W4, W5, W6))= .3W1 + .2W2 − 3W3

logit(g2,0)= logit(P(A=1 |W1, W2, W3, W4, W5, W6))= .15(.3W1 + .2W2 − 3W3)

The observed outcome Y was generated as

Y = Qi,0(A,W ) + ε, ε ∼ N(0, 1)

with corresponding regression equations:

Q1,0(A,W ) = A+ .5W1 − 8W2 +W3 + 8W3 − 2W5

Q2,0(A,W ) = A+ .5W1 − 8W2 +W3 + 8W 2
3 − 2W5

We consider three different data-generating distributions, (Q1,0, g1,0) in simulation
1, (Q2,0, g1,0) in simulation 2, and (Q2,0, g2,0) in simulation 3. Note that W6 is
strongly correlated with treatment mechanismA in simulations 1 and 2 (corr=0.54),
but is not an actual confounder of the relationship between A and Y . W1,W2, and
W3 are confounders. The linear nature of the confounding due toW3 in simulation 1
differs from that in simulations 2 and 3, where the true functional form is quadratic.
In this way simulations 2 and 3 mimic realistic data analysis scenarios in which the
unknown underlying functional form is seldom entirely captured by the regression
model used in the analysis. Finally, the treatment mechanism in simulations 1 and
2 leads to ETA violations (p(A = a | W ) ranges between 9× 10−7 and 0.9999978,
approximately one-third of the probabilites are outside the range (0.05, 0.95)). In
simulation 3 there are no ETA violations (0.11 < p(A = a | W ) < 0.88). In each
simulation the true value of the parameter of interest is 1.

5.2 Simulation
1000 samples of size n = 1000 were drawn from each data generating distribu-
tion. Marginal treatment effect estimates were calculated based on the unadjusted

14

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 1, Art. 18

http://www.bepress.com/ijb/vol6/iss1/18
DOI: 10.2202/1557-4679.1182



regression of Y on A, Gcomp, IPTW, DR-IPTW, propensity score and C-TMLE
methods.

A main-effects model for Gcomp and DR-IPTW, Q̂, was obtained using the
DSA algorithm with the maximum model size set to seven. A model for the treat-
ment mechanism ĝ used in IPTW, DR-IPTW, propensity score, and Matching es-
timation was also selected by DSA, again restricted to main terms. The Matching
function considered this treatment mechanism model as merely one additional co-
variate, indistinguishable from the other potential confounders, W . The procedure
was run using default settings, except population size for each generation was in-
creased to 200. In contrast, the C-TMLE algorithm includes an aggressive search
through a larger space of models to obtain an initial estimate of the density. As a
proxy for the super-learner algorithm we used the DSA algorithm to select a model
for Q̂ containing at most six terms, allowing quadratic terms and two-way interac-
tions.

We expect to see that the estimators that rely on consistent estimation of Q0

are unbiased in simulation 1, (Gcomp, DR-IPTW, C-TMLE), while estimators rely-
ing on consistent estimation of g0 are unbiased in simulation 3 (IPTW, DR-IPTW,
propScore, Matching, C-TMLE).

5.3 Results

Table 1: Mean estimate and standard error (SE) for each estimator based on 1000
iterations with sample size n = 1000. ψ0 = 1.

Simulation 1 Simulation 2 Simulation 3

ψn SE ψn SE ψn SE

Unadj −11.97 0.64 −0.98 0.91 0.29 0.86
Gcomp 0.99 0.09 0.76 1.22 0.95 0.68
IPTW −4.36 0.72 0.03 0.76 0.83 0.90
DR-IPTW 0.99 0.09 0.94 0.62 1.03 0.80
C-TMLE 0.99 0.09 1.00 0.10 1.00 0.07
PropScore -1.09 1.27 0.42 1.38 0.93 0.59
Matching −1.22 0.82 0.54 0.73 0.96 0.25

Mean estimates of the treatment effect and standard errors are shown in Table 1
for each simulation. Mean estimates and (0.025, 0.975) quantiles of the probability
distribution of each estimator are plotted in Figures 1 and 2.
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Figure 1: Mean estimates and (0.025,0.975) quantiles for each estimation method,
simulations 1 and 2. Dashed line is at true parameter value.
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Figure 2: Mean estimates and (0.025,0.975) quantiles for each estimation method,
simulation 3. Dashed line is at true parameter value.

Figures 1 and 2 illustrate each estimator’s behavior. As expected, estimators re-
lying on consistent estimation ofQ0 are unbiased in simulation 1, estimators relying
on consistent estimation of g0 are unbiased in simulation 3.

• The unadjusted estimator yields biased results in all three simulations due to
its failure to adjust for confounders.

• The G-computation estimator performs well in simulation 1 when the model
is correctly specified. We understand that misspecification (simulations 2 and
3) will often, though not always, lead to bias in the estimates. However the
plots highlight another phenomenon that is easy to overlook. the inability of
the misspecified model to adequately account for the variance in the outcome
often leads to large residual variance of the estimator, and in practice would
have low power to reject a null hypothesis.

• Truncation bias due to ETA violations causes the IPTW estimator using trun-
cated weights to fail in simulations 1 and 2. The estimate is not biased in
simulation 3, but the variance is so large that even in this setting where we’d
expect IPTW to be reliable it would fail to produce a significant result.
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• DR-IPTW estimates are unbiased and have low variance when the functional
form is correctly modeled by the regression equation (simulation 1). Though
we see little bias in the other two simulations, the variance is large due to
misspecification of the treatment mechanism. Because W6 is a strong predic-
tor of A and is indistinguishable from a true confounder of the relationship
between Y and A it is always included in the treatment mechanism, behavior
that does not help achieve an accurate estimate of the true treatment effect.

• Propensity score estimators are known to perform poorly when there are ETA
violations, e.g. simulations 1 and 2 (Sekhon (2008)). Researchers construct-
ing the propensity score could observe this and choose an alternate propensity
score model, but without using information about the outcome this choice
would likely be made based on the predictive power of the model, not the po-
tential bias reduction. Both propensity score-based methods do a reasonable
job in simulation 3. Abadie and Imbens (2006) shows that matching esti-
mators will not obtain the semi-parametric efficiency bound. This theory is
borne out in simulation 3, where neither matching methodology confidence
interval is as tight as that of the collaborative targeted maximum likelihood
estimator.

6 Comparison of C-TMLE and TMLE
The double robust property of the targeted maximum likelihood estimator obviates
the need for accurate estimation of both Q0 and g0 since correct specification of
either one leads to consistent estimates of the parameter of interest. However, ac-
curate estimates of both are needed to achieve the Cramer-Rao efficiency bound.
Implementations of the standard targeted maximum likelihood estimator (TMLE)
therefore strive for ideal estimates of both Q0 and g0.

In contrast, the collaborative nature of the second stage of the C-TMLE esti-
mation algorithm leads to selection of an estimator, gn, that targets that portion of
the treatment mechanism needed to reduce bias not already adequately addressed
by the first stage estimator for Q0. For example, covariates included in the model
for Q0

n might not be selected into the model for gn because they do not increase the
penalized log-likelihood. At the same time, confounders that are not adequately ad-
justed for in the initial density estimate are quickly added to model for gn unless the
gain in bias reduction is offset by too great an increase in variance. When the initial
estimate of the density is a very good fit for the true underlying density, TMLE and
C-TMLE have similar performance w.r.t bias, but the C-TMLE will have smaller
variance by selecting a gn that targets non fully adjusted g0, resulting in a possibly
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super efficient estimator. When the initial fit is less good, C-TMLE makes judicious
choices regarding inclusion of covariates in the treatment mechanism. As predicted
by theory, again, this might lead to lower variances when no covariates cause ETA
violations. When inclusion of all confounding covariates does violate the ETA
assumption, the C-TMLE estimator, in essence, targets a less ambitious data adap-
tively selected parameter that is identifiable. Data were simulated to illustrate these
phenomena.

6.1 Data generation
Covariates W1,W2, and W3 were generated as independent random uniform vari-
ables over the interval [0, 1]. W4 and W5 are independent normally distributed ran-
dom variables.

W1,W2,W3 ∼ U(0, 1)

W4,W5 ∼ N(0, 1)

Treatment mechanism g0 was designed so that W3 is highly predictive of treatment:

logit(g0) = logit(P (A = 1 | W )) = 2W1 +W2 − 5W3 +W5

The observed outcome Y was generated as

Y = Q0(A,W ) + ε, ε ∼ N(0, 1)

with corresponding regression equation:

Q0(A,W ) = A+ 4W1 − 5W2 + 5W4W5

6.2 Simulation
C-TMLE and TMLE estimates of the parameter of interest, again defined as ψ =
EW [E[Y | A = 1,W ] − E[Y | A = 0,W ]], were obtained for 1000 samples of
size n = 1000 drawn from data generating distribution (Q0, g0). For this study
we deliberately select a misspecified main-terms only model for Q0 by running
the DSA algorithm on 100,000 observations drawn from that same distribution.
P (A = a | W ) for these observations ranges from 0.004 to 0.996. Approximately
17% of the observations have covariates indicating that the probability of receiving
treatment is less than 0.05, indicating that practical ETA violations in finite samples
will cause unstable TMLE estimates.

For each iteration an initial regression, Q0
n, was obtained by fitting the DSA-

selected model, Y = A + W1 + W2, on n observations in the sample. We expect
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that any estimate of ψ based solely on this model is likely to be incorrect because the
model fails to take into account the effect on the outcome of the missing interaction
term, and also fails to adjust for the confounding effect of W5. The targeting step
for both targeted maximum likelihood estimators reduces this bias.

In order to construct the covariate used to target the parameter of interest in the
updating step of the TMLE algorithm we obtain an estimate gn of g0 by running the
DSA algorithm, allowing quadratic terms and two-way interaction terms to enter
the model. This model was not fixed over the 1000 iterations; the model selection
process was carried out each time a sample was drawn from the population. Simi-
larly, covariates that were candidates for inclusion in the model for gn in the second
stage of the C-TMLE estimation algorithm include (W1, . . . ,W5, W 2

1 , . . . ,W
2
5 ),

and all two-way interaction terms (WiWj), where i 6= j.

6.3 Results
Results of the simulation are shown in Table 2. A small number of aberrant TMLE
estimates were major contributers to the variance of that estimator. The three high-
est TMLE estimates of the treatment effect were (771.91, 37.22, 9.52). It is likely
that these high values arise from atypical samples containing observations that pre-
sented unusually strong ETA issues. In contrast, all C-TMLE estimates calculated
from those same samples range between 0.307 and 1.698. Both estimators’ average
treatment effect estimates are not far from the true value, ψ0 = 1. As expected,
the variance of the TMLE estimator is many times larger than that of the C-TMLE
estimator.

Not surprisingly, W3, the strong predictor of treatment that is not a true con-
founder of the relationship between treatment and outcome, is included in every
one of the 1000 models for gn selected by the DSA algorithm, but it is included in
only 35 of the models constructed in the second stage of the C-TMLE algorithm. At
the same time, the interaction term W4W5 is included in only two out of 1000 mod-
els for g0 selected by DSA, but is present in 576, more than half, of the collaborative
models.

This clearly demonstrates the differences between TMLE’s reliance on an ex-
ternal estimate of g0 and the collaborative approach to estimating the treatment
mechanism used by C-TMLE. However, we note that the degradation of TMLE
performance under sparsity is due to the unboundedness of the fluctuation function,
and can be mitigated by employing an alternative fluctuation function that respects
known bounds on the data model. Though a full discussion is beyond the scope of
this paper, details may be found in Gruber and van der Laan (2010).
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Table 2: Comparison of C-TMLE and TMLE estimators at different levels of trun-
cation. Mean estimate and variance based on 1000 iterations.

truncation # obs
level truncated ψn variance

C-TMLE ∞ 0 0.98 0.04

TMLE ∞ 0 1.73 597.52
40 1 1.36 162.38
10 2 0.94 1.99
5 9 0.92 1.68

6.4 Confidence intervals
The variance of the influence curve provides the basis for calculation of a 95%
confidence interval for the C-TMLE estimate.

95%CI = ψC−TMLE ± 1.96
√

(var(IC)/n)

Two sets of confidence intervals were constructed for each of the 1000 iterations
in simulation 4, with Q0

n misspecified by a main-terms only regression model. As
described above, one set of CIs is based on D∗(Q, g), the first term of the IC.
The second set is based on the variance of D∗(Q, g) + ICg, which includes the
contribution from the estimation of gn. Table 3 shows that CIs based on D∗ alone
are conservative when the model for Q0

n is misspecified, as expected. In contrast,
observed coverage closely approximates the nominal 95% coverage rate when the
contribution from the ICg term is taken into account.

Confidence intervals were also created for an additional 1000 samples from the
same data generating distribution that were analyzed using a correct model for Q0

n.
Coverage rates for these confidence intervals are given in Table 3. When Q0

n is
correctly specified we observe little difference in the coverage rate whether or not
we take the contribution from ICg into account, indicating zero contribution to the
variance from the estimate of gn. Attaining the nominal rate indicates that inference
is reliable even when the estimator is super efficient.
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Table 3: Empirical coverage of 1000 confidence intervals constructed at a nominal
95% level. SE calculated as

√
var(IC)/n, where the IC was estimated with and

without ICg.

Coverage
D∗(Q, g0) D∗(Q, g0) + ICg

Q0
n misspecified .979 .943

Q0
n correct .932 .933

7 Data analysis
We apply the C-TMLE estimator to an observational dataset previously analyzed
with the goal of identifying HIV mutations that affect response to the antiretrovi-
ral drug lopinavir. (Bembom et al., 2009, 2008) The data includes observations on
O = (W,A, Y ), where the outcome, Y , is the change in log10 viral load measured
at baseline and at follow-up after treatment has been initiated. If follow-up viral
load was beneath the limit of detection Y was set to the maximal change seen in the
population. A ∈ {0, 1} is an indicator of the presence or absence of a mutation of
interest, taking on the appropriate value for each of the 26 candidate mutations in 26
separate analyses. W consists of 51 covariates including treatment history, baseline
characteristics, and indicators of the presence of additional HIV mutations. Practi-
cal ETA violations stemming from high correlations among some of the covariates
and/or low probability of observing a given mutation of interest make it difficult
to obtain stable low variance estimates of the association between A and Y . Bem-
bom used a targeted maximum likelihood estimation approach incorporating data-
adaptive selection of an adjustment set that relies on setting a limit on the maximum
allowable truncation bias introduced by truncating treatment probabilities less than
α to some specified lower limit. Covariates whose inclusion in the adjustment set
introduces an unacceptable amount of bias are not selected. That study’s findings
showed good greement with Stanford HIVdb mutation scores, values on a scale of
0 to 20 (http://hivdb.stanford.edu, as of September, 2007, subsequently modified ),
where 20 indicates evidence exists that the mutation strongly inhibits response to
drug treatment and 0 signifies that the mutation confers no resistance. Because the
C-TMLE method includes covariates in the treatment mechanism only if they im-
prove the targeting of the parameter of interest without having too adverse an effect
on the MSE, we expect similar performance without having to specify truncation
levels or an acceptable maximum amount of bias.
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7.1 Analysis description
The dataset consists of 401 observations on 372 subjects. Correlations due to the
few subjects contributing more than one observation were ignored. Separate analy-
ses was carried out for each mutation. In each, an initial density estimate, Q0

n, was
obtained using DSA restricted to addition moves only to select a main-terms model
containing at most 20 terms, where candidate terms in W include pre-computed
interactions detailed in Bembom et al. A was forced into the model. An estimate of
the effect on change in viral load was recorded for each mutation. Influence curve-
based variance estimates incorporating the contribution from estimating g given by
the ICg term, was used to construct 95% confidence intervals.

7.2 Results
Table 4 lists the Stanford mutation score associated with each of the HIV mutations
under consideration, as well as the C-TMLE estimate of the adjusted effect of mu-
tation on lopinavir resistance. 95% confidence intervals were constructed based on
the variance of the IC. Confidence intervals entirely above zero indicate a mutation
increases resistance to lopinavir. Eight of the twelve mutations having a mutation
score of 10 or greater fall into this category. Point estimates for the remaining four
mutations were positive, but the variance was too large to produce a significant re-
sult. Only one of the six mutations thought to confer slight resistance to lopinavir
was flagged by the procedure, though with the exception of p10FIRVY point esti-
mates were positive. Stanford mutation scores of 0 for four of the five mutations
found to have a significantly negative effect on drug resistance support the conclu-
sion that these mutations do not increase resistance, but are not designed to offer
confirmation that a mutation can decrease drug resistance. However, Bembom et
al. report that there is some clinical evidence that two of these mutations, 30N and
88S, do indeed decrease lopinavir resistance.

Our findings are quite consistent with the Stanford mutation scores and with
the results from the previous analysis using the data-adaptively selected adjustment
set targeted maximum likelihood estimation approach. The C-TMLE method was
able to achieve these results without relying on ad hoc or user-specified tuning
parameters.
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Table 4: Stanford score (2007), C-TMLE estimate and 95% confidence interval for
each mutation. Starred confidence intervals do not include 0.

mutation score estimate 95% CI

p50V 20 1.703 ( 0.760, 2.645)∗

p82AFST 20 0.389 ( 0.091, 0.688)∗

p54VA 11 0.505 ( 0.241, 0.770)∗

p54LMST 11 0.369 ( 0.002, 0.735)∗

p84AV 11 0.099 (-0.139, 0.337)
p46ILV 11 0.046 (-0.222, 0.315)
p82MLC 10 1.610 ( 1.377, 1.843)∗

p47V 10 0.805 ( 0.282, 1.328)∗

p84C 10 0.602 ( 0.471, 0.734)∗

p32I 10 0.544 ( 0.325, 0.763)∗

p48VM 10 0.306 (-0.162, 0.774)
p90M 10 0.209 (-0.063, 0.481)
p33F 5 0.300 (-0.070, 0.669)
p53LY 3 0.214 (-0.266, 0.695)
p73CSTA 2 0.635 ( 0.278, 0.992)∗

p24IF 2 0.229 (-0.215, 0.674)
p10FIRVY 2 −0.266 (-0.545, 0.012)
p71TVI 2 0.019 (-0.243, 0.281)

p23I 0 0.822 (-0.014, 1.658)
p36ILVTA 0 0.272 (-0.001, 0.544)
p16E 0 0.239 (-0.156, 0.633)
p20IMRTVL 0 0.178 (-0.111, 0.467)
p63P 0 −0.131 (-0.417, 0.156)
p88DTG 0 −0.426 (-0.842,-0.010)∗

p30N 0 −0.440 (-0.853,-0.028)∗

p88S 0 −0.474 (-0.781,-0.167)∗

8 Discussion
Simulation studies demonstrate the collaborative double robustness and efficiency
of C-TMLE methodology, which allows for consistent efficient estimation in situa-
tions when other estimators can fail to perform adequately. In practice these failures
may lead to biased estimates and to confidence intervals that fail to attain the correct
coverage, as suggested by the IPTW results in simulations 1 and 2, where weights
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depend on a variable highly predictive of treatment that is not a true confounder of
the relationship between Y and A. It is worth noting that the unadjusted estimator
applied to data from a randomized controlled trial in which randomization fails to
evenly distribute confounders across treatment arms will also yield (finite sample)
biased results, as we saw in simulations 1,2, and 3.

As simulations 2 and 3 demonstrate, a misspecied parametric model not only
results in biased estimates, but can also easily fail to adequately explain the vari-
ance in the outcome. Therefore estimates of the parameter of interest will have a
larger variance than the semiparametric information bound achieved by an efficient
estimator, such as C-TMLE. Such misspecified parametric models can easily result
in the construction of a confidence interval that contains 0, and therefore a failure
to reject a false null hypothesis, even when the point estimate is close to the true
value of the parameter of interest. Since misspecied parametric models are the rule
rather than the exception, in the analysis of data from an unknown data-generating
distribution, using C-TMLE combined with super learning for the initial estimator,
is a prudent course of action.

Estimators that rely on nuisance parameter estimation (IPTW, DR-IPTW, TMLE,
propensity score-based estimation) break down when there are ETA violations, fail-
ing to reduce bias, or even increasing bias, while incurring high variance that ren-
ders estimates meaningless (no statistical signicance). An effort to reduce variance
through truncation introduces bias into the estimate, and requires a careful trade-off.
C-TMLE addresses these issues, in the sense that it is able to utilize the covariates
for effective bias reduction, avoiding harmful bias reduction efforts. As a targeted-
MLE, the bias-variance tradeoff is targeted towards the estimation of the parameter
of interest, not the estimate of the entire density. The collaborative nature of the
estimation of the treatment mechanism in the C-TMLE confers three advantages:

1. The treatment mechanism model will exclude covariates that are highly pre-
dictive of treatment but do not truly confound the relationship between treat-
ment and the outcome.

2. The treatment mechanism model will include only covariates that help adjust
for residual bias remaining after stage 1 adjustment.

3. Cross-validation based on a penalized log-likelihood will not select a treat-
ment mechanism model that includes a term that leads to violations of the
ETA assumption and thereby large variance of the corresponding targeted
MLE without the benefit of a meaningful bias reduction.

Influence-curve based inference is theoretically sound, and achieves the desired
coverage rate across a wide range of simulations, in addition to the ones presented.

25

Gruber and van der Laan: An Application of Collaborative TMLE

Published by Berkeley Electronic Press, 2010



An implementation of C-TMLE methodology written for the R statistical en-
vironment that includes a demonstration based on the data-generating scheme for
simulation 2 is available as supplemental materials.

Appendix

TMLE as an imputation estimator
Consider the goal of estimating EY1. It is desirable for the estimator Qn to satisfy
0 =

∑
i{EQn(Y1|Oi)− PQn(Y1 = 1)}, which makes Ψ(Qn) an imputation estima-

tor. In other words, averaging the imputed values EQn(Y1|Oi) for Y1 under Qn for
i = 1, .., n, gives the same estimator as the mean of Y1 under Qn. Below, we show
that this holds if Qn solves the score equation

∑
iAi(Yi − EQn(Y |Ai,Wi)). With

this insight, we can now compute a targeted maximum likelihood estimator that is
also an imputation estimator, by using a bivariate ε fluctuation function involving
both the clever covariate and the term A. Similarly, we can construct a targeted
maximum likelihood estimator that is also an imputation estimator for the additive
causal effect parameter EY (1) − Y (0). This problem was presented in Rubin and
van der Laan (2008).

Details of this derivation follow. Let O = (W,A, Y ), with Y binary. Consider
the score D(Q)(O) = EQ(Y1 | O)− EQY1. We note that

EQ(Y1 | O) = I(A = 1)Y + I(A = 0)EQ(Y | A = 1,W ).

We wish to find the component of D(Q) that is in the tangent space of the condi-
tional distribution of Y , given A,W . We have

E(D(Q) | A,W ) = E(Y | A = 1,W ).

We decompose

D(Q) = D1(Q) +D2(Q)

= {D(Q)− E(Y | A = 1,W )}+ {E(Y | A = 1,W )− EQY1}.

The first component can be written as

{E(D1(Q) | Y = 1, A,W )− E(D1(Q) | Y = 0, A,W )}(Y − EQ(Y | A,W )),

which reduces to A(Y − EQ(Y | A,W )).
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Consider now the score D(Q)(O) = EQ(Y0 | O)− EQY0. We note that

EQ(Y0 | O) = I(A = 1)EQ(Y | A = 0,W ) + I(A = 0)Y.

We wish to find the component of D(Q) that is in the tangent space of the condi-
tional distribution of Y , given A,W . We have

E(D(Q) | A,W ) = E(Y | A = 0,W ).

We decompose

D(Q) = {D(Q)− E(Y | A = 0,W )}+ {E(Y | A = 0,W )− EQY0}.
We can write this first component as

{E(D1(Q) | Y = 1, A,W )− E(D1(Q) | Y = 0, A,W )}(Y − EQ(Y | A,W )),

which reduces to (1− A)(Y − EQ(Y | A,W )).
Suppose now that one wishes to solve the score equation of score D(Q) =

EQ(Y1 − Y0 | Oi)− EQ(Y1 − Y0). We follow the same proof as above. Firstly,

EQ(Y1 − Y0 | O) = I(A = 1){Y − EQ(Y | A = 0,W )}
+I(A = 0){EQ(Y | A = 1,W )− Y }.

We wish to find the component of D(Q) that is in the tangent space of the condi-
tional distribution of Y , given A,W . We have E(D(Q) | A,W ) = EQ(Y | A =
1,W )− EQ(Y | A = 0,W )). We decompose

D(Q) = D1(Q)+D2(Q) ≡ {D(Q)−E(D(Q) | A,W )}+{E(D(Q) | A,W )−EQY1}.
We can write this first component as

{E(D1(Q) | Y = 1, A,W )− E(D1(Q) | Y = 0, A,W )}(Y − EQ(Y | A,W )),

which reduces to (2A− 1)(Y − EQ(Y | A,W ).
Therefore, if we want Q∗n to be an imputation estimator for both EY0, EY1, then

we wish to have an estimator Q∗n that solves the bivariate score equation

0 =
∑
i

(1, Ai)(Yi − EQ∗
n
(Y | Wi, Ai)).

This can be arranged by applying the targeted MLE update with the fluctuation
function corresponding with covariate-extension ε(1, A, hg(A,W )), where hg de-
notes the clever covariate for the target parameter (say) EY1 − EY0. If one wishes
to solve the score equation of score D(Q) = EQ(Y1 − Y0 | Oi) − EQ(Y1 − Y0),
then, one uses the bivariate extension ε1(2A− 1) + ε2hg.
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