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Abstract

Targeted maximum likelihood estimation is a versatile tool for estimating parameters in
semiparametric and nonparametric models. We work through an example applying targeted
maximum likelihood methodology to estimate the parameter of a marginal structural model. In the
case we consider, we show how this can be easily done by clever use of standard statistical
software. We point out differences between targeted maximum likelihood estimation and other
approaches (including estimating function based methods). The application we consider is to
estimate the effect of adherence to antiretroviral medications on virologic failure in HIV positive
individuals.
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Erratum

After the original publication on April 15, 2010, the authors added a correction, where they
describe important related work that should have been included in the original article. This
literature, with a brief discussion of its connection to “Targeted Maximum Likelihood Estimation
of the Parameter of a Marginal Structural Model,” is now provided in the Appendix (labeled
‘Appendix 2: Addendum’), which was added on June 16, 2010.

The authors also added an acknowledgment which appears in the full-text article, following the
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1 Introduction

Targeted maximum likelihood estimation (van der Laan and Rubin, 2006;
Moore and van der Laan, 2007; Polley and van der Laan, 2009; van der Laan
et al., 2009; Rosenblum and van der Laan, 2010; van der Laan, 2010a,b) is a
versatile tool for estimating parameters in semiparametric and nonparametric
models. For example, in the area of causal inference, it can be used to estimate
(i) the effect of static or dynamic treatments, (ii) direct and indirect effects
of treatments/exposures, and (iii) the parameters or marginal structural mod-
els and structural nested models. Targeted maximum likelihood estimation
can be applied in analyzing cross-sectional as well as longitudinal data, and
data with censoring and missing values. It is useful for analyzing data from
observational studies as well as from randomized trials.

We work through an example applying the methodology of targeted max-
imum likelihood to estimate the parameter of a marginal structural model.
Robins (1997) introduced marginal structural models, an important tool in
causal inference. Our example is a slightly simplified version of an analysis of
the REACH cohort, an observational study of HIV positive, marginally housed
and homeless individuals in San Francisco (Rosenblum et al., 2009); we esti-
mate the impact of percent adherence to antiretroviral therapy on virologic
failure, conditioning on duration of past HIV suppression.

We point out differences between targeted maximum likelihood estimation
and other approaches, including estimating function based methods (Robins
and Rotnitzky, 1992; Robins et al., 1994; Robins, 2000; Robins and Rotnitzky,
2001; Neugebauer and van der Laan, 2002; van der Laan and Robins, 2002). We
do not give an overview of past work related to targeted maximum likelihood
in this paper, but instead refer the reader to (van der Laan et al., 2009).

The papers (van der Laan, 2010a,b) in this International Journal of Bio-
statistics special issue on causal inference give general methods for applying
targeted maximum likelihood methodology to estimate the causal effect of
single and multiple time point interventions. Here we describe a particular
application of these methods to single time point interventions.

In the next section, we give an overview of the targeted maximum likeli-
hood algorithm. Then, in Section 3, we apply targeted maximum likelihood
methodology in a setting where baseline variables, a treatment/exposure, and
an outcome are observed for n individuals; here, the goal is to estimate the
mean outcome, at a set level of treatment/exposure, adjusting for the base-
line variables. This is a special case of the more general problem we tackle
in Section 4, where we work through an example giving a targeted maximum
likelihood estimate of the parameter of a marginal structural model.
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2 Targeted Maximum Likelihood Estimation

Targeted maximum likelihood estimation is an algorithm1 for constructing
a substitution (or “plug-in”) estimator for a given parameter ψ, in a (often
nonparametric or semiparametric) modelM. Here, by parameter, we generally
mean a smooth2 function from the data generating distribution p to a real-
valued vector ψ(p). Examples of such smooth parameters include the mean
treatment difference in a randomized trial, the odds ratio of survival at a given
time point under a static or dynamic treatment regime, and the parameter of a
marginal structural model. We assume that the model M can be represented
as a set of densities with respect to some known measure μ.

Targeted maximum likelihood estimation involves the following three steps:
(i) constructing an initial estimate p̂0 of the density of the data generating dis-
tribution, (ii) using the efficient influence function of the parameter to find
a better fit p̂1 targeted at minimizing mean squared error for estimation of
the parameter ψ, and (iii) computing the substitution estimator ψ(p̂1) at this
estimated density. In general, step (ii) is iterated until convergence (defined
below), though in many examples a single iteration suffices. Below, we elabo-
rate on the three steps of the targeted maximum likelihood algorithm. Then,
in the following sections, we apply the targeted maximum likelihood algorithm
to estimate a treatment specific mean, and then later to estimate the param-
eter of a marginal structural model.

Targeted Maximum Likelihood Algorithm

The first step in the targeted maximum likelihood algorithm involves con-
structing an initial estimator of the density of the data generating distribution.
This can be done in a variety of ways, e.g. by kernel smoothing, by fitting
parametric working models, by machine learning algorithms such as classifica-
tion and regression trees (Breiman et al., 1984), or by other approaches. One
option is to use cross-validation to select among from a variety of estimation
methods, as in (van der Laan et al., 2007). We denote the initial estimator for
the density of the data generating distribution by p̂0.

The second step in the targeted maximum likelihood algorithm is to update
the density estimate p̂0 to a new density estimate p̂1, where the goal, intuitively,
is to minimize the mean squared error of the resulting substitution estimator

1Technically, targeted maximum likelihood estimation is a template for an algorithm,
since it allows the user to make choices in its implementation, such as the choice of initial
density estimators. Nevertheless, we refer to it simply as an algorithm here.

2By “smooth” we mean pathwise differentiable, as defined in e.g. (van der Vaart, 1998).
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for the parameter of interest ψ. This is done by constructing a parametric
model {p(ε) : ε ∈ (−δ, δ)} in the overall model M that (i) equals the initial
density estimate p̂0 at ε = 0 and (ii) has score at ε = 0 whose linear span
contains the efficient influence function of the parameter ψ at p̂0. We then use
maximum likelihood estimation in the parametric model {p(ε) : ε ∈ (−δ, δ)}
to get an estimate ε̂ for ε. Our updated density estimate is then set to be
p̂1 := p(ε̂). In general, we iterate this step, replacing p̂0 by p̂1, until convergence
(that is, until the estimated coefficient ε̂ is sufficiently small).

The motivation for updating the density estimate in this way is that we’d
like to reduce bias in our estimate for the parameter ψ, while minimally in-
creasing the variance in this estimate. The parameter is most sensitive to
small changes in the data generating distribution in the direction correspond-
ing to the efficient influence function, to first order. Thus, we hope that by
restricting our update of the density to the (estimated) direction in which
the parameter is most sensitive, we will achieve bias reduction at the smallest
expense in increased variance. We give examples in the following sections of
how to construct parametric models having the properties (i) and (ii) of the
previous paragraph.

Recall that the parameter ψ, by definition, maps each density p in the
modelM to a real-valued vector denoted by ψ(p). The last step in the targeted
maximum likelihood algorithm is to compute the substitution (or “plug in ”)
estimator for the parameter ψ at our final density estimate. That is, we
evaluate the parameter ψ at the final density estimate. For example, if the
parameter is the mean of a distribution, we would output the mean of the
distribution corresponding to the final density estimate output in step two of
the targeted maximum likelihood algorithm. Similarly, if the parameter were
the odds ratio of survival at time t, we would compute this odds ratio, as if the
final density estimate were the true data generating distribution, and report
this odds ratio as our estimate of the parameter.

The targeted maximum likelihood estimator has many desirable proper-
ties. First, in many settings, it is a doubly robust, locally efficient estimator
for censored data and causal inference models, as described in (van der Laan
and Rubin, 2006) and in the papers (van der Laan, 2010a,b) in this issue. The
targeted maximum likelihood estimator approximately solves the efficient in-
fluence curve estimating function, for nuisance parameter values obtained by a
substitution estimator at the final density estimate. Often the targeted maxi-
mum likelihood algorithm can be easily implemented using standard statistical
software.

We now briefly point out some differences between the targeted maximum
likelihood estimator and estimating-function based estimators, such as those

3

Rosenblum and van der Laan: Targeted Maximum Likelihood for Marginal Structural Model

Published by Berkeley Electronic Press, 2010



in (Robins and Rotnitzky, 1992; Robins et al., 1994; Robins, 2000; Robins
and Rotnitzky, 2001; Neugebauer and van der Laan, 2002; van der Laan
and Robins, 2002). In contrast to targeted maximum likelihood estimators,
estimating-function based estimators (i) may lead to multiple solutions to the
estimating function, without criteria for selecting among them, (ii) may not
respect global model constraints, such as parameters being restricted to the
range [0, 1], (iii) are only defined for situations where the efficient influence
function is an estimating function in the parameter of interest. Targeted max-
imum likelihood estimators do not suffer from these problems.

3 Targeted Maximum Likelihood Estimate of

the Treatment Specific Mean

We apply the targeted maximum likelihood algorithm from the previous sec-
tion to a particular example: estimating the treatment specific mean adjusting
for baseline confounders. This is a special case of estimating the parameter
of a marginal structural model, and may be helpful for understanding the
development in Section 4. We assume our set of data consists of n indepen-
dent, identically distributed realizations {(Wi, Ai, Yi)}ni=1 of a random vector
(W,A, Y ), whereW represents baseline variables, A is a binary treatment, and
Y is a binary outcome. For example, Y = 1 may represent virologic failure,
A = 1 may indicate adherence to an antiretroviral regimen in the last month
(i.e. taking all pills as prescribed), and W may be a list of baseline potential
confounders of the effect of adherence on virologic failure, such as CD4 count,
past adherence, depression, etc.

Our model for the joint density of (W,A, Y ) is nonparametric. (By “joint
density” we mean density in the general sense, so that for discrete variables it
represents a frequency function.) We will use p = pY (Y |A,W )pA(A|W )pW (W )
to denote the joint density of (W,A, Y ). The parameter we’re interested in
is the mean of Y given A = 1, adjusting for the baseline variables W ; more
precisely, the parameter we want to estimate is

ψ(p) := Ep[p(Y = 1|A = 1,W )],

where the outer expectation is with respect to the marginal distribution of
W according to the density p. We call this parameter the “treatment specific
mean.” Under certain assumptions (see Section 4 for these assumptions), ψ
can be interpreted as the causal effect of setting A = 1 on the population
mean of Y .
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Before applying the targeted maximum likelihood algorithm, we note that
the efficient influence function for ψ in the nonparametric model, at a density
p is

A(Y − p(Y = 1|A = 1,W ))

p(A = 1|W )
+ p(Y = 1|A = 1,W )− Ep[p(Y = 1|A = 1,W )]. (1)

This, and the efficient influence functions for a variety of parameters and mod-
els can be found in e.g. (Bickel et al., 1993; van der Laan and Robins, 2002).
We now show one way to implement the targeted maximum likelihood algo-
rithm, as described in the previous section, to the problem of estimating the
treatment specific mean.

Step 1 of Targeted Maximum Likelihood Algorithm Applied to Es-
timating the Treatment Specific Mean: Initial Density Estimate

The first step of the targeted maximum likelihood algorithm is to compute an
initial density estimator for the joint density of (W,A, Y ). For simplicity we
use parametric working models to estimate the density of Y given A,W and
the density of A given W . However, we note that in general one could use
more nonparametric approaches. We estimate the marginal distribution of the
baseline variables W with the empirical distribution of W , and denote it by
p̂0W .

We use a logistic regression working model for the density of Y given A,W :

P (Y = 1|A,W ) = logit−1(β0 + β1A+ β2W + β3AW ). (2)

This is just one possible choice of terms for the model–any set of terms can
be included. We fit the model with maximum likelihood estimation, based
on our n independent, identically distributed observations {(Wi, Ai, Yi)}ni=1, to
produce β̂, and set p̂0Y (Y |A,W ) to be the density corresponding to the fit
model:

p̂0Y (Y = 1|A,W ) := logit−1(β̂0 + β̂1A+ β̂2W + β̂3AW ). (3)

Using a similar procedure, we estimate the density of A given W using logistic
regression with terms 1,W,W 2, and obtain a fit

p̂0A(A = 1|W ) := logit−1(γ̂0 + γ̂1W + γ̂2W
2). (4)

Combining the above, we let p̂0 = p̂0Y (Y |A,W )p̂0A(A|W )p̂0W (W ) be our initial
estimator for the joint density of (W,A, Y ). It follows from our decision to set
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p̂0W (W ) to be the empirical distribution of W , that the substitution estimator
for ψ at the initial density estimate p̂0 is

ψ̂0 :=
1

n

n∑
i=1

p̂0Y (Y = 1|A = 1,Wi). (5)

This can be equivalently expressed as

n∑
i=1

[p̂0Y (Y = 1|A = 1,Wi)− ψ̂0] = 0. (6)

Step 2 of Targeted Maximum Likelihood Algorithm Applied to Es-
timating the Treatment Specific Mean: Constructing and Fitting a
Certain Parametric Model

The second step in the targeted maximum likelihood algorithm involves con-
structing a parametric working model {p(ε) : ε ∈ (−δ, δ)} that (i) equals the
initial density estimate p̂0 at ε = 0 and (ii) has score at ε = 0 whose linear span
contains the efficient influence function of the parameter ψ at p̂0 as given in
(1). We then fit this parametric model using maximum likelihood estimation
to obtain an updated density estimate we denote by p̂1.

Our method for constructing a parametric working model satisfying (i) and
(ii) is to define a logistic regression model with two terms in the linear part:
the “clever covariates”:

C1(A,W ) := A/p̂0A(A = 1|W ),

C2(W ) := p̂0Y (Y = 1|A = 1,W )− ψ̂0.

This type of procedure works in many situations, and is not limited to binary
outcomes; depending on the problem at hand, instead of using a logistic re-
gression working model, one can use a linear model, Poisson regression model,
or any of a set of commonly used generalized linear models with canonical link
functions (Rosenblum and van der Laan, 2010; van der Laan, 2010a,b).

For each ε = (ε1, ε2), we define the density in the parametric model

p(ε)(Y,A,W ) := pY (ε)(Y |A,W )pA(ε)(A|W )pW (ε)(W ),

where we set

pY (ε)(Y = 1|A,W ) := logit−1(β̂0 + β̂1A+ β̂2W + β̂3AW

+ε1C1(A,W )), (7)

pA(ε)(A|W ) := p̂0A(A|W ),

pW (ε)(W ) := sε2 exp(ε2C2(W ))p̂0W (W ),
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where the constant sε2 := 1/[ 1
n

∑n
i=1 exp(ε2C2(Wi))] is chosen so that pW (ε)(w)

integrates to 1 for each ε. In this definition of our parametric model, we
consider β̂, γ̂, and ψ̂0 as fixed numbers (having been computed above). (Here
we slightly abuse notation, sometimes writing ε = 0 to mean ε = (0, 0).) It
follows that conditions (i) and (ii) hold for this model, since substituting 0 for
ε results in the initial density p̂0, and the components of the score at ε = 0
are:

d

dε1
[log p(ε)(Y,A,W )]|ε=0 =

d

dε1
[log pY (ε)(Y |A,W )]|ε=0

= (Y − p̂0Y (Y = 1|A = 1,W ))C1(A,W ), (8)

and
d

dε2
[log p(ε)(Y,A,W )]|ε=0 =

d

dε2
[log pW (ε)(W )]|ε=0 = C2(W ). (9)

Substituting the definitions of C1(A,W ) and C2(W ) in (8) and (9), we see that
the linear span of these components of the score at ε = 0 includes the efficient
influence function at p̂0 as given in (1). Thus condition (ii) above is satisfied.

We fit the above parametric model with maximum likelihood estimation, to
obtain estimates (ε̂1, ε̂2). Because in our case the log likelihood log p(ε)(W,A, Y )
can be written as a sum of a function only of ε1 and a function only of ε2, we can
compute the components ε̂1 and ε̂2 of the maximum likelihood estimate sepa-
rately. To get the maximum likelihood estimate ε̂1, we use standard software to
fit the logistic regression (7); we enter the expression β̂0+ β̂1A+ β̂2W + β̂3AW
in (7) as an offset, since we consider β̂ to be fixed, so that only ε1 can be
varied.

We now compute ε̂2. We have from (9) that at ε2 = 0, the derivative of the
log likelihood with respect to ε2 is

n∑
i=1

C2(Wi) =
n∑
i=1

[p̂0Y (Y = 1|A = 1,Wi)− ψ̂0] = 0, (10)

where the last equality follows from the property (6) of ψ̂0 . Since the log
likelihood here is a strictly concave function of ε2, we then have that the
maximum of the log likelihood is achieved at ε2 = 0. Thus, the maximum
likelihood estimate for ε2 is ε̂2 = 0, and our updated density is then p̂1 :=
p((ε̂1, 0)).

In general, we would now replace p̂0 by our update p̂1 and repeat step
two of the targeted maximum likelihood algorithm; in this example, however,
this is unnecessary, since repeating the above procedure with p̂1 in place of
p̂0 would lead to no change in the resulting density estimate. This follows
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since the clever covariate C1(A,W ) depends only on our current estimate of
p(A|W ), which is not changed in the above procedure; the clever covariate
C2(W ) is updated, but retains the property (10) so that the maximum likeli-
hood estimate ε̂2 would still be 0.

Step 3 of Targeted Maximum Likelihood Algorithm Applied to Es-
timating the Treatment Specific Mean: Computing the Substitution
Estimator

The third and final step in the targeted maximum likelihood algorithm is to
compute the substitution estimator for ψ. Recall that the parameter ψ was
defined as ψ(p) := Ep[p(Y = 1|A = 1,W )]. We will thus compute ψ(p)
evaluated at p = p̂1. Under p̂1, the density of Y given A,W , is

logit−1(β̂0 + β̂1A+ β̂2W + β̂3AW + ε̂1C1(A,W )), (11)

and the marginal density of W is the empirical distribution of W . We then
have

ψ(p̂1) = Ep̂1 [p̂1(Y = 1|A = 1,W )]

= Ep̂1 logit
−1(β̂0 + β̂1 + β̂2W + β̂3W + ε̂1C1(1,W ))

=
1

n

n∑
i=1

logit−1(β̂0 + β̂1 + β̂2Wi + β̂3Wi + ε̂1C1(1,Wi)). (12)

Thus, our final estimator ψ(p̂1) for ψ is given by (12).
We point out that the derivation of (12) above involves setting A to 1 in

each term in the final logistic regression fit

p̂1(Y = 1|A,W ) = logit−1(β̂0 + β̂1A+ β̂2W + β̂3AW + ε̂1C1(A,W ),

including setting A to 1 in the clever covariate C1(A,W ).
To summarize the procedure derived above: we first fit the initial logistic

regression models (3) and (4); we then update the fit for the logistic regression
model (3) by adding the clever covariate as in (7) and refitting the logistic
regression with offset; lastly, we compute the sum (12).

4 Targeted Maximum Likelihood Estimate of

the Parameter of a Marginal Structural Model

We show how to apply targeted maximum likelihood methodology to esti-
mate the parameter of a marginal structural model. The previous section
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gave a special case, corresponding to a saturated marginal structural model.
The setting below is a simplified version of that in the analysis described in
(Rosenblum et al., 2009). In that analysis, data on each subject was longitu-
dinal, and repeated measures regression was used. We first consider a simpler
data generating process, and then discuss a case involving repeated measures
in Section 4.2.

4.1 Estimating Parameter of Marginal Structural Model,
where Each Subject Contributes a Single Vector of
Observations

Below, we assume our set of data consists of n independent, identically dis-
tributed realizations {(Vi,Wi, Ai, Yi)}ni=1 of a random vector (V,W,A, Y ), where
V,W are baseline variables, A is a treatment with four levels, and Y is a binary
outcome. This might occur, for example, in a cross-sectional survey where a
vector of data is collected at a single time point for each subject. These vari-
ables have the following interpretations: Y = 1 represents virologic failure;
A ∈ A := {1, 2, 3, 4} indicates adherence to an antiretroviral regimen in the
last month, at levels 0-49%, 50-74%, 75-89%, and 90-100%, respectively; W
are baseline potential confounders of the effect of adherence on virologic fail-
ure, such as CD4 count, past adherence, depression, etc.; V denotes number
of consecutive months of past viral suppression since initial suppression was
achieved. We restrict attention to the first twelve months since initial sup-
pression, and let V := {1, . . . , 12} denote the possible values taken by V . For
now we assume each subject i contributes just one vector (Vi,Wi, Ai, Yi) to
our data set, and that each subject’s data is independent of all other data;
in Section 4.2 we extend to the case where subjects contribute multiple such
vectors of data.

We are interested in the impact of adherence level A on virologic failure
Y = 1, within subpopulations defined by number of consecutive months of past
suppression V . Thus, we would ideally like to estimate the response curve:

r(a, v) := Ep[Ya | V = v], for a ∈ A, v ∈ V ,

where Ya is the counterfactual response that would have been observed had
treatment assignment A been set to a. See e.g. (van der Laan, 2006) for
discussion of counterfactual outcomes and their relationship to the parameter
considered here. Under the following assumptions, which we make throughout
this section, the response curve r(a, v) is identifiable from the distribution of
the observed data (V,W,A, Y ):

9
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• Time Ordering Assumption: V,W precede A, which precedes Y .

• Consistency Assumption: For all a ∈ A, Ya = Y on the event A = a.

• No Unmeasured Confounding Assumption: {Ya}a∈A ⊥⊥ A | V,W .

These assumptions are described in (Robins, 1997; van der Laan, 2006). Under
these assumptions, the response curve r(a, v) is identified by

r(a, v) = Ep[p(Y = 1|A = a, V,W ) | V = v], for a ∈ A, v ∈ V .

When A, V have many levels, as is the case here, it may be too ambitious to
estimate r(a, v) for all a ∈ A, v ∈ V directly. Instead, we introduce a working
model for r(a, v) defined by

m(a, v, ψ) = logit−1(ψ0 + ψ1a1 + ψ2a2 + ψ3a3 + ψ4v), (13)

where a1, a2, a3 are “dummy” indicator variables for the first three levels of
adherence, respectively. (That is, for any a ∈ A, a1 is the indicator that
a = 1, a2 is the indicator that a = 2, and a3 is the indicator that a = 3.) We
define our parameter of interest ψ to be:

argmax
ψ′

∑
a∈A

Eph(a, V ) log
[
m(a, V, ψ′)Ya(1−m(a, V, ψ′))1−Ya

]
, (14)

for a given, bounded, measurable, weight function h(a, V ) > 0. The definition
(14) can be considered a maximization of a (weighted) expected log likelihood,
under the logistic working model m(a, V, ψ), with weights h(a, V ).

There will either be a unique solution or no solution to (14), since the
corresponding Hessian matrix is negative definite at all ψ′. In what follows,
we assume that there is a solution to (14).3 Under this assumption, the unique
solution ψ∗ to (14) is also the unique solution to the estimating equation:∑

a∈A
Eph(a, V )(Ya −m(a, V, ψ′))(1, a1, a2, a3, V )′ = 0, (15)

as well as the unique solution to the estimating equation:∑
a∈A

Eph(a, V )(p(Y = 1|A = a, V,W )−m(a, V, ψ′))(1, a1, a2, a3, V )′ = 0. (16)

3For large enough sample size, violation of this assumption will be detectable with prob-
ability tending to 1.
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The working modelm(a, v, ψ) is called a marginal structural model (Robins,
1997). Rather than assume that the working model m(a, v, ψ) is a correctly
specified model for r(a, v), we have instead defined ψ nonparametrically by
(14). When the working model (13) is correctly specified, ψ is the param-
eter of the corresponding marginal structural model for the response curve
r(a, v); when it is not correctly specified, which in general will be the case, our
parameter is still well defined.

Before estimating the parameter ψ with targeted maximum likelihood es-
timation, we need its efficient influence function, in the nonparametric model
(which is the model we’ll be assuming), which is, up to a normalizing matrix:

D(p)(Y,A, V,W ) :=[
h(A, V )(Y − p(Y = 1|A, V,W ))

p(A|V,W )
(1, A1, A2, A3, V )′

+
∑
a∈A

h(a, V ) (p(Y = 1|A = a, V,W )−m(a, V, ψ)) (1, a1, a2, a3, V )′
]
.(17)

where A1, A2, A3 are indicator variables of A = 1, A = 2, and A = 3, re-
spectively. Define the normalizing matrix M := −Ep d

dψ
D(p)(Y,A, V,W ).

Then the efficient influence function for ψ in the nonparametric model is
M−1D(p)(Y,A, V,W ). This can be derived, using the general procedure given
in (van der Laan and Robins, 2002), and outlined in (van der Laan, 2006).
For the working model defined in (13), we have d

dψ
m(a, v, ψ) = m(a, v, ψ)(1−

m(a, v, ψ))(1, a1, a2, a3, v)
′, so that we could replace (1, a1, a2, a3, v)

′ in (17) by
d
dψ
m(a, v, ψ)/[m(a, v, ψ)(1−m(a, v, ψ))].

Step 1 of Targeted Maximum Likelihood Algorithm for Marginal
Structural Model: Initial Density Estimate

Step 1 of the targeted maximum likelihood algorithm is to select an initial
density estimator. Analogous to our choices in Section 3, we use parametric
regression models. However, we note that in general one could use more non-
parametric approaches. We use a logistic regression working model for the
density of Y given A, V,W :

P (Y = 1|A, V,W ) = logit−1(β0 + β1A+ β2V + β3W + β4AV + β5AW ). (18)

This is just one possible choice of terms for the model–any set of terms can
be included. We fit the model with maximum likelihood estimation, based on
our n independent, identically distributed observations {(Vi,Wi, Ai, Yi)}ni=1, to

11

Rosenblum and van der Laan: Targeted Maximum Likelihood for Marginal Structural Model

Published by Berkeley Electronic Press, 2010



produce β̂, and set p̂0Y (Y |A, V,W ) to be the density corresponding to the fit
model:

p̂0Y (Y = 1|A, V,W ) := logit−1(β̂0+ β̂1A+ β̂2V + β̂3W + β̂4AV + β̂5AW ). (19)

We estimate the density of A given V,W using multinomial logistic regression
with terms 1, V,W , and obtain a fit using maximum likelihood estimation,
which we denote by p̂0A(A|V,W ). We estimate the density of V,W using the
empirical distribution, which we denote by p̂0VW (V,W ). Our initial estimator
for the density of (V,W,A, Y ) is p̂0 = p̂0Y (Y |A, V,W )p̂0A(A|V,W )p̂0VW (V,W ).
The substitution estimator ψ̂0 for ψ at this joint density p̂0 then satisfies (by
(16))

∑
a∈A

n∑
i=1

h(a, Vi)(p̂0Y (Y = 1|A = a, Vi,Wi)−m(a, Vi, ψ̂0))(1, a1, a2, a3, Vi)
′ = 0.

(20)
This is a generalization of Equation (6) from Section 3.

Step 2 of Targeted Maximum Likelihood Algorithm for Marginal
Structural Model: Constructing and Fitting a Certain Parametric
Model

The second step in the targeted maximum likelihood algorithm involves con-
structing a parametric model {p(ε) : ε ∈ (−δ, δ)} that (i) equals the initial
density estimate p̂0 at ε = 0 and (ii) has score at ε = 0 whose linear span con-
tains the efficient influence function M−1D(p)(Y,A, V,W ) of the parameter ψ
at p̂0. To construct such a parametric model, we first define clever covariates,
which are generalizations of the clever covariates defined in Section 3. Define

C1(A, V,W ) :=
h(A, V )

p̂0A(A|V,W )
(1, A1, A2, A3, V )′,

and C2(V,W ) :=∑
a∈A

h(a, V )
(
p̂0Y (Y = 1|A = a, V,W )−m(a, V, ψ̂0)

)
(1, a1, a2, a3, V )′.

We can define a parametric model that only varies the components p(Y |A, V,W )
and p(V,W ) of p(Y,A, V,W ), leaving p(A|V,W ) unchanged. For each ε =
(ε1, ε2), we define the corresponding density in the parametric model

p(ε)(Y,A, V,W ) := pY (ε)(Y |A, V,W )pA(ε)(A|V,W )pV,W (ε)(V,W ),
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where we set

pY (ε)(Y = 1|A, V,W ) := logit−1(β̂0 + β̂1A+ β̂2V + β̂3W + β̂4AV + β̂5AW

+ε1C1(A, V,W )), (21)

pA(ε)(A|V,W ) := p̂0A(A|V,W ), (22)

pV,W (ε)(V,W ) := sε2 exp(ε2C2(V,W ))p̂0VW (V,W ), (23)

where the constant sε2 := 1/[ 1
n

∑n
i=1 exp(ε2C2(Vi,Wi))] is chosen so that for

all ε, pV,W (ε)(v, w) integrates to 1. It is straightforward to check, just as was
done in Section 3, that this parametric model equals p̂0 at ε = (0, 0), and that
the score at ε = (0, 0) of this parametric model contains the efficient influence
function at p̂0.

The above parametric model is fit using maximum likelihood estimation,
resulting in estimates (ε̂1, ε̂2). The value of ε̂1 is found by fitting the logistic
regression (21), where the expression involving β̂ is treated as an offset. Since
by (20) we have

∑n
i=1C2(Vi,Wi) = 0, this implies, by an analogous argument

as given in Section 3, that ε̂2 = 0. We then set our updated density to be
p̂1 := p((ε̂1, ε̂2)).

A single iteration of the above step suffices, since just as was argued in
Section 3, the clever covariate C1(A, V,W ) defined above is not changed dur-
ing the update in that step, and the clever covariate C2(V,W ) will still satisfy∑n

i=1C2(Vi,Wi) = 0.

Step 3 of Targeted Maximum Likelihood Algorithm for Marginal
Structural Model: Substitution Estimator

The third step of the targeted maximum likelihood algorithm is to compute
the substitution estimator for the parameter at the final density p̂1. That is,
we want to compute, based on the property (16) of our parameter, the solution
in ψ′ to

∑
a∈A

n∑
i=1

h(a, Vi)(p̂1Y (Y = 1|A = a, Vi,Wi)−m(a, Vi, ψ
′))(1, a1, a2, a3, Vi)′ = 0.

(24)
The solution is the substitution estimator ψ̂.

Equation (24) can be solved using iteratively reweighted least squares as
follows: We first construct a new data set, with outcomes
p̂1Y (Y = 1|A = a, Vi,Wi) for each a ∈ A, i : 1 ≤ i ≤ n; these outcomes are
regressed on the working model m(a, Vi, ψ) using weighted least squares with
weights h(a, Vi)/[m(a, Vi, ψ)(1−m(a, Vi, ψ))]. In the statistical programming
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language R, this can be done using the generalized linear model glm function,
with family binomial and logistic link, using h(a, Vi) as weights. If the itera-
tively reweighted least squares algorithm converges to a value ψ, it necessarily
is a solution to (24). Furthermore, if the iteratively reweighted least squares
algorithm converges to a value ψ, it is the unique solution to (24). This is
proved in the Appendix.

In summary, we gave one possible implementation of the targeted maxi-
mum likelihood algorithm to estimate the parameter of a marginal structural
model. This involved first computing initial estimators, such as (19), of the
components of the density of the data generating distribution. Next, clever
covariates were computed and the initial density estimates were updated; this
involved simply using maximum likelihood estimation to fit the logistic regres-
sion model (21). Lastly, the substitution estimator for ψ at the final density
estimate was computed using iteratively reweighted least squares as just de-
scribed.

4.2 Estimating Parameter of Marginal Structural Model,
where Each Subject Contributes Multiple Observa-
tions

Above, we assumed data consisted of i.i.d. vectors {(Vi,Wi, Ai, Yi)}ni=1. This
corresponds to a situation where each subject i contributes one vector of
data (Vi,Wi, Ai, Yi). We now consider the case in which each subject con-
tributes multiple observations, corresponding to measurements on that subject
at monthly intervals. This is similar to the setting in (Rosenblum et al., 2009).

Consider the case in which each subject i contributes 12 time points of
data:

(Vi(1),Wi(1), Ai(1), Yi(1), . . . , Vi(12),Wi(12), Ai(12), Yi(12)).

We denote this vector of observed data by Oi. Here we ignore missing data,
though this can be handled as described in (van der Laan, 2010a,b). For each
month t ∈ {1, . . . , 12} since initial viral suppression was achieved, the variables
V (t),W (t), A(t), Y (t) have the following interpretations: Y (t) = 1 represents
virologic failure at end of month t; A(t) ∈ A := {1, 2, 3, 4} indicates adherence
to an antiretroviral regimen during month t, at levels 0-49%, 50-74%, 75-89%,
and 90-100%, respectively; W (t) are summaries up through month t − 1 of
potential confounders of the effect of adherence on virologic failure, such as
CD4 count, past adherence, depression, etc.; V (t) is an indicator of whether
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continuous viral suppression was achieved during all of months 1, . . . , t − 1;
that is, V (t) = 1 if Y (t′) = 0 for all t′ < t.

We would like to estimate the causal response curve:

r′(a, t) := E(Ya(t)|V (t) = 1),

where Ya(t) denotes the counterfactual outcome (virologic failure or not) had
adherence A(t) been set to a. This is an example of a history-adjusted marginal
structural model (Petersen et al., 2007). Note that we only consider the effect
of setting adherence during a single month on the outcome at the end of that
month; we do not consider the effect, for example, of setting adherence at
multiple time points simultaneously.

Under the following assumptions, which are similar to those given in Sec-
tion 4.1, the response curve r′(a, t) is identified by

r′(a, t) = Ep[p(Y (t) = 1|A(t) = a, V (t),W (t)) | V (t) = 1],

for a ∈ A, t ∈ {1, . . . , 12}. The assumptions are: for all t ∈ {1, . . . , 12},
• Time Ordering Assumption: V (t),W (t) precede A(t), which precedes
Y (t).

• Consistency Assumption: For all a ∈ A, Ya(t) = Y (t) on the event
A(t) = a.

• No Unmeasured Confounding Assumption:

{Ya(t)}a∈A ⊥⊥ A(t) | V (t) = 1,W (t).

We consider a working model m′(a, t, ψ) for r′(a, t), defined by

m′(a, t, ψ) = logit−1(ψ0 + ψ1a1 + ψ2a2 + ψ3a3 + ψ4t). (25)

We define our parameter of interest to be ψ :=

argmax
ψ′

∑
t∈{1,...,12}

∑
a∈A

Eph(a, t)V (t) log
[
m′(a, t, ψ′)Ya(t)(1−m′(a, t, ψ′))1−Ya(t)

]
,

(26)
for a given, bounded, measurable, weight function h(a, t) > 0. In what follows,
we assume that there is a unique solution to (26).

The parameter ψ is a solution of∑
t∈{1,...,12}

∑
a∈A

Eph(a, t)V (t)(Ya(t)−m′(a, t, ψ′))(1, a1, a2, a3, t)′ = 0. (27)
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and under the above assumptions is also a solution of∑
t∈{1,...,12}

∑
a∈A

Eph(a, t)V (t)

×[p(Y (t) = 1|A(t) = a, V (t) = 1,W (t))−m′(a, t, ψ′)](1, a1, a2, a3, t)′ = 0.

(28)

The efficient influence function for this parameter in the nonparametric
model (which is the model we’ll be assuming), is, up to a normalizing matrix:

D′(p)(O) :=
∑

t∈{1,...,12}[
h(A(t), t)V (t)(Y (t)− p(Y (t) = 1|A(t), V (t),W (t)))

p(A(t)|V (t),W (t))
(1, A1(t), A2(t), A3(t), t)

′

+
∑
a∈A

h(a, t)V (t)
(
p(Y (t) = 1|A(t) = a, V (t),W (t))−m′(a, t, ψ)) (1, a1, a2, a3, t)′

]
.

where A1(t), A2(t), A3(t) are indicator variables of A(t) = 1, A(t) = 2, and
A(t) = 3, respectively. Define the normalizing matrix B := −Ep d

dψ
D′(p)(O).

Then the efficient influence function for ψ in the nonparametric model is
B−1D′(p)(O). This can be derived, using the general procedure given in (van der
Laan and Robins, 2002), and outlined in (van der Laan, 2006).

Implementation of the targeted maximum likelihood algorithm for the pa-
rameter ψ defined in (26) is a generalization of that for the parameter (14)
defined earlier. Since by (28) the parameter ψ is a function only of the marginal
distributions pt(V (t),W (t), A(t), Y (t)), for each t ∈ {1, . . . , 12} (and not, for
example, the joint distribution of these variables at different values of t),
we will estimate just these parts of the overall density of the random vec-
tor O = (V (1),W (1), A(1), Y (1), . . . , V (12),W (12), A(12), Y (12)). In fact, we
can make a further refinement by only estimating pt(Y (t), A(t)|W (t), V (t) = 1)
and pt(W (t), V (t)), for each t ∈ {1, . . . , 12}, since the parameter ψ only de-
pends upon these parts of the density of the full observation O.

We now define a repeated measures data set that we will use below. It will
have 12n rows and 5 columns, where n is the number of subjects. For each
t ∈ {1, . . . , 12} we create a separate row of data for each subject i and each
month t ∈ {1, . . . , 12}, consisting of the vector (t, Vi(t),Wi(t), Ai(t), Yi(t)), to
be used in the steps that follow. We refer to the columns of this data set as
(t, V,W,A, Y ) below.

The first step of the targeted maximum likelihood algorithm is to get an
initial density fit for pt(Y (t), A(t)|W (t), V (t) = 1) and pt(W (t), V (t)), for each
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t ∈ {1, . . . , 12}. Though we could obtain the initial density estimate for each
pt(Y (t), A(t)|W (t), V (t) = 1) based only observations at month t, we instead
will borrow information across t, assuming a degree of smoothness over t, as
we now describe. We fit a logistic regression model for the Y column of our
repeated measures data set on the columns t,W,A, using only rows for which
V = 1. For example we could use the regression model:

P (Y = 1|t,W,A, V = 1) = logit−1(β0+β1t+β2W+β3A+β4At+β5AW ). (29)

Denote the fit model by p̂0Y (Y |t,W,A, V = 1). We set the initial density
estimate for pt(Y (t)|W (t), A(t), V (t) = 1) to be p̂0Y (Y |t,W,A, V = 1), for each
t. We similarly fit a multinomial logistic regression model for the A column
of our repeated measures data set on the columns t,W , again using only rows
for which V = 1. We denote the fit model by p̂0A(A|t,W, V = 1), and set the
initial density estimator for pt(A(t)|W (t), V (t) = 1) to be p̂0A(A|t,W, V = 1),
for each t. We use the empirical distribution as initial density estimate for
pt(W (t), V (t)). Let ψ̂0 denote the substitution estimator of ψ at these initial
density estimates.

Step 2 of the targeted maximum likelihood algorithm involves updating
these initial regression fits. We do this exactly as described above in Sec-
tion 4.1, but now using the repeated measures data set and the following
clever covariates:

C ′1(t, A, V,W ) := V
h(A, t)

p̂0A(A|t,W, V = 1)
(1, A1, A2, A3, t)

′,

and C ′2(t, V,W ) :=

V
∑
a∈A

h(a, t)
(
p̂0Y (Y = 1|t,W,A = a, V = 1)−m′(a, t, ψ̂0)

)
(1, a1, a2, a3, t)

′.

The values of these covariates are added on to the repeated measures data
set defined above. We construct a parametric model involving these clever
covariates, analogous to that defined above in (21), (22), (23), and fit it using
the repeated measures data set with maximum likelihood estimation. As in the
case above, a single iteration of the above step suffices. Denote the resulting
density estimate by p̂1.

The third step of the targeted maximum likelihood algorithm is to compute
the substitution estimator for the parameter at the final density p̂1. That is,
we want to compute, based on the property of the parameter in (28), the
solution in ψ′ to
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∑
t∈{1,...,12}

∑
a∈A

n∑
i=1

h(a, t)Vi(t)

×[p̂1(Y = 1|t, A = a, Vi(t) = 1,Wi(t))−m′(a, t, ψ′)](1, a1, a2, a3, t)′ = 0.

(30)

The solution is the substitution estimator ψ̂. Equation (30) can be solved using
iteratively reweighted least squares, as described at the end of Section 4.1, but
now using the repeated measures data set described earlier, where each subject
contributes 12 lines of data.

Construction of confidence intervals can be done with the nonparametric
bootstrap, where the unit of sampling is the subject (not the subject-month).

5 Discussion

Targeted maximum likelihood is a versatile estimation tool, extending some
of the advantages of maximum likelihood estimation for parametric models to
semiparametric and nonparametric models. In many problems it leads to dou-
bly robust, locally efficient estimators. This is the case for the estimators we
give above, under regularity conditions. Double robustness, in the scenarios
we considered, means that whenever at least one of the initial estimators p̂0Y
and p̂0A is correctly specified, the targeted maximum likelihood estimator is
consistent. In contrast, standard propensity score methods and inverse prob-
ability weighting methods are generally not doubly robust, since they require
the model for the density of A given baseline variables be correctly specified
in order to be consistent.

The double robustness property of the targeted maximum likelihood es-
timator results, in part, from its being an approximate solution to the effi-
cient influence function estimating equation (when such an estimating func-
tion in the parameter of interest exists). That is, the targeted maximum
likelihood estimator has the property that if we write the efficient influence
function as a function f of the parameter of interest ψ(p), nuisance param-
eters η(p), and an observation O = (W,A, Y ), then for p̂ the final den-
sity output by the targeted maximum likelihood algorithm, we have that∑n

i=1 f(ψ(p̂), η(p̂), (Wi, Ai, Yi)) ≈ 0. Important extensions of targeted max-
imum likelihood estimation to more general loss functions are developed in
Appendix B of (van der Laan et al., 2009), and extensions to “collaborative”
estimation of nuisance parameters are developed in (van der Laan and Gruber,
2009).
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6 Appendix

Here we prove the claim made at the end of Section 4, that if the iteratively
reweighted least squares algorithm described at the end of Section 4.1 con-
verges to a value ψ, it is the unique solution to (24). Here, as above, we
assume that V is univariate.

It is straightforward to show that if the iteratively reweighted least squares
algorithm described at the end of Section 4 converges to a value ψ, then it
solves (24). The task here is to show that if a solution to (24) exists, then it
is unique.

Let p̂1 denote the final density output by the targeted maximum likelihood
algorithm. The following expression has at most one point where its derivative
is the vector 0, since its Hessian matrix is negative definite at all ψ′:∑
a∈A

Ep̂1h(a, V ) log
[
m(a, V, ψ′)p̂1(Y=1|A=a,V,W )(1−m(a, V, ψ′))1−p̂1(Y=1|A=a,V,W )

]
.

(31)
The derivative with respect to ψ′ of the previous display equals∑

a∈A
Ep̂1h(a, V )(p̂1(Y = 1|A = a, V,W )−m(a, V, ψ′))(1, a1, a2, a3, V )′. (32)

Thus, there can be at most one value of ψ′ for which the expression (32)
equals 0. The expression (32) equals 1/n times the expression on the left hand
side of (24), since the marginal distribution of V,W under p̂1 is the empirical
distribution of V,W . Thus, equation (24) can have at most one solution,
completing the proof.
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We give a correction to our paper, where we describe important related
work that we should have included in the original article. We sincerely apolo-
gize to the authors of this related work for our oversight in not presenting this
work in the original article.

We stated in the third paragraph of Section 1 of our article, “We do not
give an overview of past work related to targeted maximum likelihood in this
paper, but instead refer the reader to (van der Laan et al., 2009).” On page
208 of (van der Laan et al., 2009), there is a discussion of important related
estimators from pages 1140-1141 of Scharfstein et al. (1999). We realize we
should have discussed this related work directly in our article; we do so below.

Scharfstein et al. (1999) on page 1141 present a class of doubly robust,
locally efficient, regression-based estimators for the treatment specific mean,
which is the same parameter estimated in Section 3 of our paper. To our
knowledge, their class of estimators is the first to include the inverse of the
propensity score as a term in the regression model used. Scharfstein et al.
(1999) state on page 1141, regarding this class of regression-based estimators:

A straightforward generalization of this estimator solves the long-
standing problem in the analysis of treatment effects of how to add
the propensity score to a regression model to guarantee consistency,
without needing to smooth.

In addition, Scharfstein et al. (1999) point out a useful property of generalized
linear models with canonical link functions, when estimating the treatment
specific mean; they show that the score under such a model, when the inverse
of the propensity score is included as a term in the linear part, includes a
component of the efficient influence function for this parameter. They use this
property to show double robustness and local efficiency of the corresponding
regression-based estimator. This property is leveraged in Step 2 of the targeted
maximum likelihood algorithm in both Sections 3 and 4 of our paper, as well
as in our paper (Rosenblum and van der Laan, 2010). We note that using
generalized linear models with canonical link functions is a convenient way
to implement targeted maximum likelihood with standard statistical software,
but that in general targeted maximum likelihood estimation does not require
the use of such working models. We point out that we did not make any claims
in our paper that we were the first to present doubly robust, locally efficient,
regression-based estimators for treatment effects; to the best of our knowledge,
credit for this brilliant result goes to Scharfstein et al. (1999).

The above class of estimators of Scharfstein et al. (1999) is identical to an
important special case of applying the targeted maximum likelihood algorithm

Appendix 2: Addendum
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as described in Section 3 of our paper. In particular, this class of estimators
of Scharfstein et al. (1999) results if

1. The initial estimator used in Step 1 (page 5) of the targeted maximum
likelihood algorithm is the fit1 of a logistic regression model that already
contains as one of its terms

C1(A,W ) := A/p̂0A(A = 1|W ),

which we referred to as a “clever covariate”; and,

2. Step 2 of the targeted maximum likelihood algorithm (page 6) uses the
parametric fluctuation as in (7).

In this case, Step 2 of the targeted maximum likelihood algorithm would result
in no update to the initial density, since the initial density estimate already
contains the covariate C1(A,W ).

We also point out that in (Robins, 2002), the same class of estimators as
above is given (before they give an important generalization to time-dependent
treatments), and the covariate 1/p̂0A(A = 1|W ) is referred to there as a “robus-
tifying covariate,” on page 1665. The general targeted maximum likelihood
algorithm described in Section 2 of our paper does not necessarily involve
the use of such covariates, though in many cases (such as those presented in
Sections 3 and 4 of our paper), the use of such covariates allows for simple
implementation using standard statistical software.

After publication of our article, James M. Robins informed us of another
class of highly relevant estimators, presented later in (Scharfstein et al., 1999),
that we had not known about. We apologize for missing this, as we would have
seen it had we more carefully read the Rejoinder to Comments in (Scharfstein
et al., 1999).

Scharfstein et al. (1999), on page 1142, present a class of regression-based,
doubly robust, locally efficient estimators for the parameter of a marginal
structural model, which coincides with the parameter ψ defined in (14) of
Section 4.1 of our paper. Again, to our knowledge, their class of estimators
is the first to include the covariate C1(A, V,W ) defined on page 12 of our
paper, which incorporates a weight function and the inverse of the propensity
score into a term in the regression working-model used; as Scharfstein et al.
(1999) describe, this results in doubly robust, locally efficient estimators for
the parameter of a marginal structural model.

1When we say the “fit of a regression model,” we mean the conditional distribution
obtained by estimating the model coefficients with maximum likelihood estimation.
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The above class of estimators of Scharfstein et al. (1999) is identical to an
important special case of applying the targeted maximum likelihood algorithm
as described in Section 4 of our paper. In particular, this class of estimators
of Scharfstein et al. (1999) results if

1. The initial estimator used in Step 1 (pages 11-12 of our paper) of the
targeted maximum likelihood algorithm is the fit of a logistic regression
model that already contains as one of its terms C1(A, V,W ) defined on
page 12; and,

2. Step 2 of the targeted maximum likelihood algorithm (pages 12-13) uses
the parametric fluctuation as in (21), (22), (23) of our paper.

In this case, Step 2 of the targeted maximum likelihood algorithm would result
in no update to the initial density, since the initial density estimate already
contains the covariate C1(A, V,W ). We note that the targeted maximum like-
lihood algorithm is not restricted to using parametric regression estimators
as initial estimators, and, in other work, Mark van der Laan has focused on
more data-adaptive estimators (e.g. in Section 8 of van der Laan and Rubin
(2006)).

Targeted maximum likelihood estimation is a general algorithm for con-
structing estimators in semiparametric and nonparametric models. As stated
in Section 2 of our paper, it involves the following three steps:

(i) constructing an initial estimate p̂0 of (a relevant part of) the
density of the data generating distribution, (ii) using the efficient
influence function of the parameter to find a better fit p̂1 targeted
at minimizing mean squared error for estimation of the parame-
ter ψ, and (iii) computing the substitution estimator ψ(p̂1) at this
estimated (relevant part of) density. In general, step (ii) is iter-
ated until convergence (defined below), though in many examples
a single iteration suffices.

In Section 2 of our article, we elaborate on the second step above, which
involves (as stated on page 3 of our article)

constructing a parametric model {p(ε) : ε ∈ (−δ, δ)} in the overall
model M that (i) equals the initial density estimate p̂0 at ε = 0
and (ii) has score at ε = 0 whose linear span contains the efficient
influence function of the parameter ψ at p̂0. We then use maximum
likelihood estimation in the parametric model {p(ε) : ε ∈ (−δ, δ)}
to get an estimate ε̂ for ε. Our updated density estimate is then
set to be p̂1 := p(ε̂).

24

The International Journal of Biostatistics, Vol. 6 [2010], Iss. 2, Art. 19

http://www.bepress.com/ijb/vol6/iss2/19
DOI: 10.2202/1557-4679.1238



Under weak regularity conditions, targeted maximum likelihood estimation
can be applied to arbitrary data structures, semiparametric models, and path-
wise differentiable parameters (van der Laan and Rubin, 2006; van der Laan
et al., 2009). Generalizations to parameters that are not pathwise differentiable
are given in Sections 10-12 of (van der Laan and Rubin, 2006). Advantages
of targeted maximum likelihood estimators are described in Section 2 of our
paper, and in (van der Laan et al., 2009).

We also point out that the class of estimators of the effects of multiple time
point interventions defined in the papers (Robins, 2000; Bang and Robins,
2005) is not a class of targeted maximum likelihood estimators (since, for
example, they are not in general substitution estimators, as all targeted max-
imum likelihood estimators are).2 Neither are the time-dependent estimators
in Section 3.2 of Robins (2002), for the same reason. However, Robins (2000,
2002) and Bang and Robins (2005) made fundamental contributions, two of
which we describe below.

1. Robins (2000, 2002) and Bang and Robins (2005) present important ex-
tensions of the regression-based estimators described above from (Scharf-
stein et al., 1999), to time-dependent censoring and/or treatments. In
particular, the regression-based estimators in (Robins, 2000, 2002; Bang
and Robins, 2005) are doubly robust, locally efficient, and include time-
dependent generalizations of the inverse of the propensity score as terms
in the regression models used.

2. In Section 2 of (Robins, 2000), the estimation algorithm involves an
initial fit for a regression model for an estimating equation, followed
by adding the inverse of the propensity score as a covariate, and then
refitting the model while holding constant the previously fit coefficients.
This procedure is used in Step 2 of both Sections 3 and 4 of our paper,
but with different covariates than in (Robins, 2000); as we explained
above, the class of estimators defined in (Robins, 2000) is not a class of
targeted maximum likelihood estimators.

We also briefly describe newly published work relevant to our article. Gru-
ber and van der Laan (2010) give a class of targeted maximum likelihood
estimators that extend the class given in our article in Section 3 to handle
continuous, bounded outcomes, in a way that avoids the poor finite sample

2However, it is possible that there may be subclasses of these estimators of effects of mul-
tiple time point interventions that are examples of targeted maximum likelihood estimators.
This is an open question and topic of further research.
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performance described in (Robins et al., 2007) of some possible targeted max-
imum likelihood estimators.
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