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Abstract

Purpose: Aberrant microRNA (miRNA) expression is associated with cancer and has potential diagnostic and prognostic
value in various malignancies. In this study, we investigated miRNA profiling as a complementary tool to improve our
understanding of breast cancer (BC) biology and to assess whether miRNA expression could predict clinical outcome of BC
patients.

Experimental Design: Global miRNA expression profiling using microarray technology was conducted in 56 systemically
untreated BC patients who had corresponding mRNA expression profiles available. Results were further confirmed using
qRT-PCR in an independent dataset of 89 ER-positive BC patients homogeneously treated with tamoxifen only. MiR-210
functional analyses were performed in MCF7 and MDA-MB-231 BC cell lines using lentiviral transduction.

Results: Estrogen receptor (ER) status, tumor grade and our previously developed gene expression grade index (GGI) were
associated with distinct miRNA profiles. Several miRNAs were found to be clinically relevant, including miR-210, its
expression being associated with tumor proliferation and differentiation. Furthermore, miR-210 was associated with poor
clinical outcome in ER-positive, tamoxifen-treated BC patients. Interestingly, the prognostic performance of miR-210 was
similar to several reported multi-gene signatures, highlighting its important role in BC differentiation and tumor
progression. Functional analyses in BC cell lines revealed that miR-210 is involved in cell proliferation, migration and
invasion.

Conclusions: This integrated analysis combining miRNA and mRNA expression demonstrates that miRNA expression
provides additional biological information beyond mRNA expression. Expression of miR-210 is linked to tumor proliferation
and appears to be a strong potential biomarker of clinical outcome in BC.
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Introduction

MicroRNAs (miRNAs) are evolutionary conserved, small non-

coding RNA molecules that negatively regulate gene expression.

The single-stranded mature miRNA is 19–25 nucleotides long

and derives from the cleavage of a longer precursor containing a

hairpin structure. Post-transcriptional gene silencing by miRNAs

occurs through the translational inhibition of the targeted

mRNAs or their specific cleavage [1]. Computational analyses

indicate that a unique miRNA can regulate hundreds of genes,

underscoring the potential influence of miRNAs on almost every

cellular pathway. MiRNAs have been shown to regulate various

biological processes such as development, differentiation and

proliferation [2].

Recent studies have demonstrated that mutations in miRNAs or

their aberrant expression are associated with diverse human

diseases, including cancers, suggesting that miRNAs may act as

oncogenes or tumor suppressor genes. MiRNA genes are

frequently located at fragile sites and cancer-associated genomic

regions. Recently, miRNA expression signatures have emerged

from several studies. Iorio et al. identified a signature that could

discriminate normal and breast tumor tissues [3]. Recent findings

have also linked deregulated miRNA expression to tumor

metastasis in breast cancer (BC) cells [4,5]. These results suggest
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that aberrant miRNA expression may be important for the

pathogenesis of this malignancy. In addition to being potential

diagnostic markers, the role of miRNAs in cancer prognosis has

also been highlighted. Indeed, several miRNAs were reported to

be associated with the clinical outcome of patients with chronic

lymphocytic leukaemia [6], lung [7,8] and ovarian cancers [9].

Technologies such as microarray have improved our under-

standing of BC biology, but also disease classification and

prognostication [10–12]. Indeed, gene expression profiling studies

have demonstrated that breast tumors can be divided into at least

four clinically relevant molecular subtypes, each with distinct

disease outcomes: the predominantly estrogen-receptor (ER)-

negative, progesterone-negative, HER-2-negative, basal-like sub-

type, the HER2/neu-positive subtype and at least the two ER-

positive, luminal-like A and B subtypes characterized by their

differences in proliferation rate [11–12]. These results suggest a

biological basis for the clinical heterogeneity of BC.

Our group recently identified a gene expression grade index

(GGI), which mainly reflects tumor proliferation and differentia-

tion [13]. This 97-gene index reclassifies patients with histologic

grade 2 tumors, a clinically problematic tumor type, into two

subgroups with distinct clinical outcomes similar to histological

grade 1 and 3 tumors respectively, improving the accuracy of

tumor grading and therefore its prognostic value [13]. The GGI

can also identify two clinically distinct ER-positive molecular

subtypes, demonstrating the importance of proliferation-related

genes in predicting prognosis in ER-positive BC patients [14].

Finally, proliferation appears to be one of the most prominent

prognostic factor in BC, recapitulating the prognostic power of

several first generation gene prognostic signatures, and highlight-

ing the clinical importance of proliferation-related genes for BC

prognosis [15].

Considering the importance of miRNAs in carcinogenesis, we

sought to investigate miRNA profiling as a complementary tool to

improve our understanding of BC biology and its prognostication.

To this end, we analyzed miRNA and gene expression profiles

from the same BC cohort in order to integrate the information

gained from miRNA profiling with that obtained from the

microarray gene expression profiling of protein-coding genes.

We also thought to identify miRNAs associated with established

clinical/pathologic variables as well as with the previously

reported GGI. Finally, we investigated whether the expression of

miRNAs could predict the clinical outcome of BC patients and

therefore lead to the identification of new prognostic markers.

Results

MiRNA expression profiles from human breast tumors
MiRNA expression profiles were generated from 73 BC fresh-

frozen samples with available mRNA profiling expression data

using an optimized microarray platform for miRNA profiling.

After the application of our quality control criteria, we were able

to analyze 56 of the 73 samples. Patient and tumor characteristics

are summarized in Table 1. In the 56 samples, on average, we

detected the expression of 108 out of the 328 human miRNAs

present on our arrays. The miRNAs detected in at least 90% of the

samples are listed in Table S1.

Breast cancer molecular classification according to
miRNA and mRNA profiling

It has repeatedly been shown that based on mRNA profiling

breast tumors can be classified into four stable molecular subtypes,

with the most prominent discriminators being estrogen receptor

(ER), HER2 and tumor differentiation.

To assess whether miRNAs could recapitulate or even improve

the previously reported molecular classification, we performed a

hierarchical cluster analysis of breast tumors using both miRNAs

and their corresponding protein-coding gene expression profiles.

This analysis was performed in 39 out of the 56 tumor samples for

which both gene expression data of protein-coding genes and

miRNAs were available.

As previously described, protein-coding gene expression profiles

could segregate tumors according to the reported molecular

subtypes [16,17]. Indeed, Figure 1A shows that tumor samples

could be clustered into four main subgroups, predominantly

associated with ER and HER2 status. In contrast, we observed

only a poor concordance with the clustering of the same tumors

based on miRNAs expressions (Figure 1B). Despite the small

sample size, these results suggest that miRNAs may potentially add

information that is complementary to what is generated by mRNA

profiling.

Identification of miRNAs associated with clinical and
pathological characteristics

We then assessed whether relevant clinico-pathological param-

eters such as ER status, tumor size, age and tumor grade, known

Table 1. Summary of patient and tumor characteristics.

Dataset

Variable* OXFU (untreated) OXFT (treated)

Sample size, No. 73 89

Median follow-up time, y 9.23 7.12

No. of relapses 32 30

ER status, No. (%)

Negative 25 (34)

Positive 40 (55) 89 (100)

N/A 8 (11)

Histologic grade, No. (%)

1 8 (11) 18 (20)

2 27 (37) 46 (52)

3 22 (30) 17 (19)

N/A 16 (22) 8 (9)

Lymph node status, No. (%)

Negative 68 (93) 50 (56)

Positive 4 (5) 34 (38)

N/A 1 (1) 5 (6)

Tumor size, No. (%)

#2 cm 43 (59) 34 (38)

.2 cm 29 (40) 55 (62)

N/A 1 (1)

Age, No. (%)

#50 y 29 (40) 12 (13)

.50 y 44 (60) 77 (87)

GG, No. (%)

Low (GG1) 25 (51) 61 (69)

High (GG3) 24 (49) 28 (31)

N/A 24 (49)

*ER = estrogen receptor; N/A = not available; GG = genomic grade.
doi:10.1371/journal.pone.0020980.t001

MiR210 a Prognostic and Tumor Proliferation Marker
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to affect the clinical behavior of BC, were associated with

differential miRNA expression profiles. It should be noted that

the association between miRNA expression profiles and nodal

status could not be analyzed since our dataset included 93% node-

negative patients.

Student t tests at the nominal p value of 0.05 identified 19 and 20

miRNAs that could segregate breast tumors according to ER status

and tumor grade respectively. These differentially expressed miRNAs

are listed in Table 2. Interestingly, we found only few significant

miRNAs discriminating breast tumors based on tumor size and age at

diagnosis. These results suggest that in addition of being associated

with distinct mRNA expression profiles [11], ER status and tumor

grade are also associated with very distinct miRNA profiles,

highlighting the importance of ER and tumor grade in BC biology.

Identification of miRNAs associated with tumor
proliferation and differentiation according to GGI

Given that gene expression grade index (GGI), reflecting tumor

proliferation and differentiation, provides better biological and

clinical information than histological grade [13], we investigated

whether there are miRNAs differentially expressed between high and

low GGI tumors, and whether these miRNAs are potential regulators

of the genes composing the gene expression grade signature.

For this purpose, we contrasted miRNA expression profiles of low

and high GGI tumors. This analysis identified 25 miRNAs, which

were differentially expressed between the two subgroups (Table 3).

As expected, 10 of the 25 identified miRNAs were also associated

with histological grade. One of the differentially expressed miRNAs

was the miR-210 (fold change: 3.43, p = 0.009), a miRNA that was

recently reported to be associated with hypoxia [18] and with poor

clinical outcome in breast cancer [19].

MiRNAs associated with clinical outcome
MiRNAs potential prognostic value was investigated by

contrasting the expression levels of 328 human miRNAs with

clinical outcome using our systemically untreated BC series with a

median follow-up of 9,2 years. This analysis identified 2 human

miRNAs (miR-210 and miR-148a) that were significantly associated

with relapse-free survival (RFS) at a p value,0.05. Given its

association with the GGI on one hand and its association with RFS

on the other hand, we decided to concentrate on miR-210.

We first aimed to confirm the differential expression level of miR-

210 between high and low GGI tumors using quantitative real-time

PCR (qRT-PCR). All tumor samples showed detectable expression

levels of miR-210 using qRT-PCR. This contrasted with only 61%

when assessed by microarrays, demonstrating the higher detection

sensitivity of the qRT-PCR technique. Despite this difference in the

detection level between the two techniques, we found a statistically

significant correlation in miR-210 expression between the two

assays (Spearman r= 0.7, p = 1026). Furthermore, qRT-PCR

analysis confirmed the statistically significantly differential expres-

sion levels of miR-210 between low and high GGI tumors. High

GGI tumors were associated with 2.73 times higher expression

levels compared to low GGI tumors (p = 6.1024).

Next, in order to further investigate the association between the

GGI and miR-210 targets, we performed a gene set enrichment

analysis using the microarray data used in the original publication

[13]. The resulting p-value computed on 1000 random permuta-

tions was highly significant (0.002), confirming the association

between GGI-low/high subgroups and mir-210 targets. Although

we did not find any gene in common between the miR-210 target

genes and the GGI genes, we observed, when investigating the

networks of these target genes together with the GGI genes with

Ingenuity Pathway Analysis, that the 3 networks representing cell

cycle genes involved a mixture of miR-210 target genes and GGI

genes (Figures S1, S2 and S3).

The fact that high expression levels of miR-210 were associated

with a higher risk of recurrence (p = 0.035) concur with recent

findings reported by Camps et al. [19]. We then aimed to confirm

the prognostic value of miR-210 by qRT-PCR. When considered

as a continuous variable in a univariate analysis, miR-210

expression was statistically significantly associated with RFS

(p = 2.1024). Interestingly, when performing subgroup analyses

based on ER status, miR-210 was statistically associated with RFS,

Figure 1. Unsupervised hierarchical clustering analysis using protein-coding genes expression profiles (A) and miRNA expression
(B). Molecular subtypes were defined as described in Desmedt et al. and Wirapati et al. [16,17] according to ER, HER2 and proliferation status. ER2/
HER22 tumors are highlighted in yellow, HER2+ in red, ER+/HER22/low proliferation (luminal A) in green and ER+/HER22/high proliferation (luminal
B) in blue.
doi:10.1371/journal.pone.0020980.g001

MiR210 a Prognostic and Tumor Proliferation Marker

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e20980



Table 2. Differentially expressed miRNAs associated with breast cancer estrogen receptor (ER) (A) and histological grade (HG) (B)
parameters.

A Median expression

No. samples 20 32

Feature ER2 ER+ p value FDR

hsa_miR_224 3.1 1.1 0.001 0.047

hsa_miR_342 76.8 143.1 0.001 0.047

hsa_miR_186 2.1 1.2 0.003 0.128

hsa_let_7c 737.4 1073.4 0.006 0.164

hsa_miR_362 1.4 1 0.006 0.164

hsa_miR_146a 23.3 6.8 0.009 0.215

hsa_miR_345 1.5 1.1 0.011 0.218

hsa_miR_491 5.1 2.3 0.016 0.266

hsa_let_7b 641.5 934.4 0.017 0.266

hsa_let_7a 678.8 948.9 0.024 0.34

hsa_miR_20b 8.1 3.1 0.029 0.34

hsa_miR_181b 12.2 5.2 0.031 0.34

hsa_miR_130b 4.4 2.2 0.033 0.34

hsa_miR_452 1.7 1.1 0.035 0.34

hsa_miR_429 2.1 1.3 0.038 0.34

hsa_miR_181d 3.5 1.8 0.041 0.34

hsa_miR_155 7.9 3.3 0.042 0.34

hsa_miR_148a 22.5 10.5 0.043 0.34

hsa_miR_92 10.4 4.8 0.047 0.351

B Median expression

No. samples 7 17

Feature HG1 HG3 p value FDR

hsa_miR_181b 3.5 19.9 0.001 0.064

hsa_miR_130b 1.4 6.3 0.001 0.064

hsa_miR_146a 4.8 32.4 0.002 0.083

hsa_miR_146b 11.4 40.3 0.002 0.083

hsa_miR_93 27.3 59.3 0.006 0.124

hsa_miR_181a 4.3 19 0.006 0.124

hsa_miR_20b 1.5 10.9 0.006 0.124

hsa_miR_423 1.4 4.4 0.008 0.144

hsa_miR_25 11.1 34.9 0.01 0.152

hsa_miR_106b 3.1 16 0.013 0.173

hsa_miR_186 1 2.4 0.013 0.173

hsa_miR_148a 7.4 25.1 0.017 0.206

hsa_miR_181d 1.5 4.7 0.02 0.215

hsa_miR_128a 1 2 0.032 0.32

hsa_miR_34a 11.5 25.1 0.035 0.32

hsa_miR_363 1 2.4 0.037 0.32

hsa_miR_130a 1.9 5.6 0.039 0.32

hsa_miR_345 1 1.8 0.041 0.32

hsa_miR_362 1 1.7 0.045 0.337

hsa_miR_22 83.3 154.9 0.048 0.338

FDR: False Discovery Rate.
doi:10.1371/journal.pone.0020980.t002
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both in the ER-positive (n = 32, p = 0.004) and the ER-negative

populations (n = 20, p = 0.008).

Similar results were found in a Kaplan-Meier analysis, for

which patients (N = 73) were categorized on the basis of miR-210

median expression value. A statistically significant association was

observed between a high miR-210 expression level (above the

median) and a higher risk of recurrence [HR = 4.43 (95% CI:

1.93–10.16), p = 5.1024] (Figure 2A). The Kaplan-Meier curves

for the ER-positive [HR = 3.52 (95% CI: 0.99–12.54); p = 0.052]

and ER-negative [HR = 9.95 (95% CI: 2.77–35.74), p = 4.1024]

populations are illustrated in Figures 2B and 2C, with 55% (22/

40) and 40% (10/25) of the patients assigned to the low-risk group

respectively. MiR-210 thus appears to be associated with worse

clinical outcome both in ER-positive and ER-negative BC.

MiR-210 expression separates histological grade 2 breast
tumors into two groups with distinct clinical outcomes

One of the most interesting findings of the GGI was its ability to

identify two clinically relevant subgroups within the histological

grade 2 tumors. In the current study, we investigated whether

miR-210 expression levels could recapitulate the prognostic ability

of GGI, particularly within the histological grade 2 subgroup. The

normalized expression levels of miR-210 between histological

grades (HG) 1, 2 and 3 and between low and high GGI (GG Low

and GG High) assessed by qRT-PCR are shown in Figure 3A and

3B respectively. As expected, grade 2 tumors spanned the

expression levels of miR-210 of grade 1 and grade 3 tumors. Like

GGI, the expression levels of miR-210 divided grade 2 tumors into

two subgroups with distinct clinical outcomes. Grade 2 tumors

with higher expression levels of miR-210 (above the median) were

associated with worse RFS [HR = 7.15 (95% CI: 1.88–27.2),

p = 0.004] (Figure 3C), demonstrating that miR-210 recapitulates

the prognostic information of GGI in a similar manner.

As the size of the dataset is small, we aimed to confirm these

results on an independent dataset of 89 ER-positive breast cancer

patients homogeneously treated in the adjuvant setting with

tamoxifen for 5 years and with long follow-up. As in the first

dataset, grade 2 tumors could be separated in two groups of

distinct clinical outcome according to miR-210 expression levels, a

high level of miR-210 being associated with worse RFS

[HR = 2.84 (95% CI: 1.09–7.40), p = 0.03] (figure 3D), confirming

that the prognostic information of GGI is recapitulated by miR-

210 in a similar manner.

MiR-210 as a prognostic marker in ER-positive tamoxifen
only treated breast cancer patients

Since from our previous work [14] high GGI was associated

with high risk of recurrence after adjuvant tamoxifen therapy in

ER-positive patients, we sought to investigate whether the

expression of miR-210 could also identify two ER-positive

subgroups with distinct clinical outcomes. For this purpose the

expression of miR-210 was evaluated in the second cohort of 89

ER-positive tamoxifen only treated breast cancer patients

(Table 1). We applied similar cut-off to the one defined on the

untreated population in order to separate the population into two

groups, assigning 51% (45/89) of the patients to the low risk

group. As observed in the initial dataset, a statistically significant

survival difference was observed between the two groups

[HR = 2.96 (95% CI: 1.42–6.16), p = 0.004], a high level of

miR-210 expression being associated with a higher risk of

recurrence than a lower level of miR-210 (Figure 4). MiR-210

remained significant in a multivariate analysis [HR = 4.4 (95% CI:

1.65–11.76, p = 0.003], together with patient age [HR = 4.74

(95% CI: 1.83–12.35, p = 0.001] and tumor size [HR = 3.53 (95%

CI: 1.28–9.78, p = 0.015]. The histological grade, the GGI and the

nodal status were included in the multivariate analysis and have

been substituted by miR-210. Therefore, miR-210 is associated

with poor clinical outcome under tamoxifen treatment.

Comparison of the prognostic accuracy of miR-210 and
recently published prognostic gene expression
signatures

Since proliferation and differentiation, captured by the genomic

grade, seem to be the common denominator for the prognostic

performance of several multi-gene signatures, we assessed whether

miR-210 alone could provide similar information [17].

To address this, we computed time-dependent receiver

operating characteristic curves (ROC) for miR-210 expression

level and several prognostic signatures – the gene expression grade

index (GGI) [13], the 70-gene signature (GENE70) [20], the 76-

gene signature (GENE76) [12] and the estimated 21-gene

recurrence score (RS) [21] - for RFS within 10 years in the ER-

positive patients in both the training dataset and the tamoxifen-

treated breast cancer dataset (Figures 5A and 5B). Gene signature

computation is detailed in material and methods section.

Table 3. Differentially expressed miRNAs associated with the
genomic grade index (GGI).

Median expression

No. samples 17 22

Feature GG Low GG High p value FDR

hsa_miR_185 2 13.4 1.10E-06 0.0001

hsa_miR_221 6.7 33 8.60E-06 0.001

hsa_miR_491 1.6 7.7 3.40E-05 0.002

hsa_miR_422b 1.7 9.4 5.09E-05 0.002

hsa_miR_146a 4.3 30.2 8.66E-05 0.002

hsa_miR_222 1.7 6.4 0.0004 0.01

hsa_miR_181b 3.3 14.6 0.001 0.015

hsa_miR_130b 1.6 5.7 0.001 0.015

hsa_miR_146b 10.4 37.1 0.001 0.019

hsa_let_7i 83 143.5 0.001 0.02

hsa_miR_22 61.7 173.2 0.002 0.023

hsa_miR_155 2.4 9.2 0.004 0.043

hsa_miR_223 2.2 8 0.004 0.043

hsa_miR_379 2.3 6.9 0.004 0.043

hsa_miR_224 1 3.2 0.006 0.059

hsa_miR_210 2.3 7.9 0.009 0.077

hsa_miR_423 1.5 3.6 0.011 0.089

hsa_miR_181a 4.9 13.6 0.011 0.089

hsa_miR_362 1 1.6 0.025 0.184

hsa_miR_346 1.1 1.8 0.027 0.191

hsa_miR_432 1.6 3.4 0.032 0.218

hsa_miR_151 2 4.3 0.034 0.218

hsa_miR_186 1.2 2 0.044 0.264

hsa_miR_191 52.4 109.3 0.046 0.264

hsa_miR_422a 1.4 2.9 0.046 0.264

FDR: False Discovery Rate.
doi:10.1371/journal.pone.0020980.t003
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The areas under the ROC curves demonstrate that miR-210

shows similar prognostic performance to the multiple genes signatures

evaluated in this study. Of interest, similar results were found in an

exploratory analysis in the ER-negative subpopulation of the initial

dataset (Figure 5C). However, these results need further validation.

Involvement of miR-210 in different biological processes
As miR-210 expression is correlated to poor prognosis both in

ER-positive and in ER-negative BC patients, we aimed to

investigate the biological processes regulated by miR-210 and

which may elucidate its function in the aggressive phenotype of high

grade BC. We performed in silico functional analyses of the genes

deregulated upon miR-210 overexpression and repression in two

different BC cell lines. MCF7 cells were used as a model for low

grade ER-positive BC as they are low-proliferating ER-positive cells

which express miR-210 at a level comparable to low grade tumours

according to qRT-PCR (Figure S4). We overexpressed miR-210 (or

a control sequence) in MCF7 cells (MCF7-miR-210 and MCF7-

control respectively) using lentiviral transduction and miR-210

overexpression was confirmed by qRT-PCR. Gene expression

profiling analysis of these cells revealed the upregulation of 897

genes and downregulation of 922 genes upon miR-210 overexpres-

sion (fold change .2, Table S2). As a model to investigate the role of

miR-210 in ER-negative BC, we used the ER-negative highly-

proliferating MDA-MB-231 cell line which expresses miR-210 at a

high level as high grade tumours (Figure S4). We repressed miR-210

in MDA-MB-231 cells by overexpressing a sequence complemen-

tary to miR-210 (or a control sequence) using lentiviral transduction

and miR-210 repression was confirmed by qRT-PCR. Gene

expression profiling analysis of these cells revealed that repression

of miR-210 in MDA-MB-231 cells led to the upregulation of 28

genes and downregulation of 58 genes (fold change .2, Table S3).

Interestingly, gene set enrichment analyses investigating Gene

Ontology (GO) categories of the differentially expressed genes

showed that GO categories/pathways such as cell adhesion,

extracellular structure organization, epithelial cell proliferation, cell

division, cell cycle and immune response were significantly over-

represented (p,0.05) (Tables 4A and B).

MiR210 is involved in cell proliferation both in ER-positive
and ER-negative breast cancer cell lines

As gene set expression comparisons revealed that genes involved

in cell cycle and proliferation were deregulated upon miR-

210 overexpression in MCF7 cells and miR-210 repression in

Figure 2. Kaplan-Meier analyses for relapse-free survival according to miR-210 expression levels. (A) Systemically untreated population
(N = 73 OXFU); (B) untreated ER-positive population (N = 40); (C) untreated ER-negative population (N = 25). HR: hazard ratio, CI: confidence intervals.
doi:10.1371/journal.pone.0020980.g002

MiR210 a Prognostic and Tumor Proliferation Marker
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MDA-MB-231 cells, we aimed to investigate miR-210 role in the

proliferative phenotype of high grade tumours. Cell proliferation

assays revealed that miR-210 overexpression led to a statistically

significant increase in MCF7 cell proliferation (MCF7-miR-210)

compared to the control cells (MCF7-control) both in untreated

and in Tamoxifen treated cells according to a two-way Anova

analysis (Figures 6A and 6B). Similarly, MDA-MB-231 prolifer-

ation rate decreased upon miR-210 downregulation (MDA-MB-

231-anti-miR-210) compared to the control cells (MDA-MB-231-

anti-miR-control) (Figure 6C). In conclusion, the association

between miR-210 expression and clinical outcome could rely on

its role as a tumor proliferation regulator both in ER-positive and

ER-negative breast cancer patients.

Role of miR210 in cell migration and invasion
To further define miR-210 role in the aggressive phenotype of

high grade tumors and as genes involved in processes such as cell

adhesion, extracellular matrix structure, extracellular organization

are deregulated upon miR-210 overexpression in MCF7 cells and

miR-210 repression in MDA-MB-231 cells, we aimed to

investigate miR-210 role in cell migration and invasion in the

lentiviral transduced cell lines previously used. As shown in

Figure 7A, miR-210 overexpression in non-invading MCF7 cells

led to cell invasion in a chamber invasion assay. MiR-210

repression in migrating and invading MDA-MB-231 cells led to a

decrease in cell migration compared to the control cells (Figure 7B).

Figure S5 illustrates representative fields of cells which have

acquired migration and invasion capabilities after miR treatment

compared to the control cells. These results suggest that miR-210

prognostic potential could rely on its role as a cell invasion

regulator in ER-positive BC patients and as a regulator of cell

migration in ER-negative breast cancer patients.

Discussion

We optimized a microarray platform which allowed us to

analyze the profiles of the miRNAs expressed in primary human

BC samples from systemically untreated patients. MiRNA

expression profile has been investigated in human BC in two

previous studies comparing tumor samples to normal tissue [3,22].

Here we focused on miRNA profiling on tumor samples only. On

average, we detected 108 out of the 328 human miRNAs present

on our arrays. This falls in the same range as the Blenkiron et al.

study which detected 133 miRNAs in BC samples while analyzing

Figure 3. MiR-210 relative expression according to histological grades and genomic grades. The normalized expression levels of miR-210
between histological grades (HG) 1, 2 and 3 (A) and between low and high GGI (GG Low and GG High) (B) assessed by qRT-PCR. Boxes represent
interquartile range, black bars indicate the median, points represent outliers. p value is based on one-way Anova test. Kaplan-Meier analyses for
relapse-free survival according to miR-210 expression levels in histological grade 2 population. (C) Systemically untreated population (N = 27); (D)
Validation ER-positive tamoxifen treated population (N = 46) HR: hazard ratio, CI: confidence intervals.
doi:10.1371/journal.pone.0020980.g003
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the miRNAs associated with the BC molecular subtypes using a

bead-based method [23].

Through our integrated analysis of combined miRNA and

protein-coding gene profiling, and regarding the sample size, our

results suggest that the molecular subclasses identified by mRNA

profiling (basal/luminal and HER2/Neu) could not be accurately

reproduced by clustering the miRNA profiles. This suggests that

miRNAs might provide additional and complementary informa-

tion regarding BC molecular classification. Interestingly, Blower et

al. came to the same conclusion when comparing the NCI-60

cancer cell line groupings based on miRNAs and mRNAs

expression profiles [24].

In this study, several miRNAs associated with different clinico-

pathologic characteristics were identified. In particular, 19

miRNAs that could segregate ER+ and ER2 breast tumors were

identified. Specifically, within this list, we identified 6 and 5

miRNAs which were also recently shown to be associated with ER

status in the studies published by Blenkirion et al. [23] (miR-342,

let-7a, let-7b, let-7c overexpressed in ER+ tumors, and miR-148a

and miR-155) and Janssen et al. (miR146a, miR-155, miR-224,

miR-362, and miR-155) [25]. We further identified 20 miRNAs

that can distinguish high and low histological grade breast tumors.

Three of them (miR-106b, miR25 and miR-93) were also found to

be associated with the histological grade, as identified by Blenkiron

et al. [23]. These 3 miRNAs were also shown by Janssen et al. to

be associated with the mitotic index and they showed that miR-

106b was the miRNA, which correlated the strongest with

proliferation [25]. Interestingly, Van der Auwera et al. also

reported significant associations between ER status and tumor

grade, but not for tumor size, nodal status, tumor stage or HER2

status [26]. Altogether, our findings reinforce the repeated

observation that, at diagnosis, ER status and tumor grade are

associated with specific miRNA expression profiles, whereas this is

not the case for tumor size and age.

Since our group recently reported that proliferation and

differentiation, captured by GGI, seem to be the main

biological processes associated with BC prognosis and form

the common denominator of different prognostic signatures, we

investigated whether the genes composing the GGI were

Figure 5. MiR-210 shows similar prognostic performance to multiple genes signatures. Time-dependent receiver operating characteristic
curves for miR-210 expression, the gene expression grade index (GGI), the 70-genes signature (GENE70), the 76-genes signature (GENE76) and the
estimated 21-gene recurrence score (ONCOTYPE) for relapse-free survival. (A) Systemically untreated ER-positive population (N = 25); (B) ER-positive
tamoxifen-treated population (N = 89) and (C) ER-negative untreated population (N = 18). Areas under the curves are shown beneath the curves.
doi:10.1371/journal.pone.0020980.g005

Figure 4. Kaplan-Meier analyses for relapse-free survival
according to miR-210 expression levels. Validation ER-positive
tamoxifen treated population (N = 89) HR: hazard ratio, CI: confidence
intervals.
doi:10.1371/journal.pone.0020980.g004
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regulated at the miRNA level. We identified 25 miRNAs that

were differentially expressed between low and high gene

expression grade tumors.

Although, several miRNAs would have been potentially

interesting for further investigation, we decided to concentrate

on miR-210 because it was the only miRNA which in addition to

being associated with the GGI, was also associated with prognosis

in our dataset, which is consistent with the recently reported results

by Camps et al. [19].

Interestingly, this miRNA was also shown to be upregulated in

BC cell lines in hypoxic conditions, a key feature of the tumor

microenvironment. Overexpression of miR-210 has also been

reported in various tumors, including breast cancer [3,22].

Furthermore, it has been shown to decrease pro-apoptotic

signaling in a hypoxic environment, suggesting an impact of this

miRNA on tumor formation [27].

The fact that some inconsistencies exist between different

miRNA profiling analyses studies is most likely due to technical

and analytical variations, highlighting the need for standardiza-

tion. Regardless of the technology used, confirmation with another

analytical approach is critical for the validation of findings. We

therefore decided to first validate our findings on the miR-210

using qRT-PCR and found a strong correlation between the

microarray and qRT-PCR results.

Second, we confirmed the association of the GGI and miR-210

target genes using a gene set enrichment analysis. Also, an analysis

of the literature of the miR-210 target genes revealed that repression

of those genes in high grade tumors could potentially be responsible

for the proliferative phenotype of these tumors. For example,

ACVR1B (activin receptor 1B), which is a member of the

transforming growth factor beta superfamily that regulates

mammary cell function during development, lactation, and in

cancer has been shown to slow down the growth of breast cancer

cells by inducing G(0)/G(1) cell cycle arrest [28]. Also, CBFA2T1,

also referred to as MTG16, has been shown to have a growth

inhibiting role in breast cancer cell lines [29]. Additionally, recent

evidence indicates that the expression of DICER1, which is the key

enzyme required for the biogenesis of microRNAs and small

interfering RNAs and is essential for both mammalian development

and cell differentiation is associated with hormone receptor status

and cancer subtype in breast tumours and that its downregulation

may be related to the metastatic spread of tumours [30].

Third, we further investigated the prognostic value of miR-210,

for which high expression levels of miR-210 were associated with a

higher risk of recurrence. The prognostic power of miR-210 on the

initial dataset was confirmed using qRT-PCR. We found that this

miRNA was associated with shorter RFS on 40 ER-positive BC

patients. We further demonstrated that this miRNA predicted

Table 4. Examples of significantly impacted biological pathways in MCF7 cells upon miR-210 overexpression (A) and in MDA-MB-
231 cells upon miR-210 repression (B).

A

GO category Description LS permutation p value

GO:0007067 mitosis 0.00001

GO:0051301 cell division 0.00015

GO:0043281 regulation of caspase activity 0.0002

GO:0006916 anti-apoptosis 0.00279

GO:0002418 immune response to tumor cell 0.00501

GO:0016337 cell-cell adhesion 0.00592

GO:0030054 cell junction 0.01132

GO:0051726 regulation of cell cycle 0.01235

GO:0045596 negative regulation of cell differentiation 0.03377

GO:0007346 regulation of mitotic cell cycle 0.04383

GO:0007160 cell-matrix adhesion 0.04499

GO:0007093 mitotic cell cycle checkpoint 0.04942

B

GO category Description LS permutation

p value

GO:0002684 regulation of immune system 0.00001

GO:0016337 cell-cell adhesion 0.00001

GO:0005911 cell-cell junction 0.00001

GO:0050776 regulation of immune response 0.00002

GO:0043062 extracellular structure organization 0.0006

GO:0005201 extracellular matrix structural constituent 0.00067

GO:0000904 cell morphogenesis involved in differentiation 0.00452

GO:0007626 locomotion 0.01268

GO:0007015 actin filament organization 0.01885

GO:0050673 epithelial cell proliferation 0.04524

doi:10.1371/journal.pone.0020980.t004
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poor clinical outcome in an independent dataset of 89 tamoxifen-

only treated patients with ER-positive early BC. Intriguingly, we

showed that this single miRNA had similar prognostic perfor-

mance with the previously published BC multi-gene signatures.

The above multi-gene signatures are mainly informative in ER-

positive rather than ER-negative tumors [17]. The only two multi-

gene signatures reported to carry prognostic information in the

ER-negative subgroup were composed of genes related to immune

response [16,31]. Interestingly, miR-210, apart from being

informative in ER-positive disease, also identified two subgroups

with distinct clinical outcome in patients with ER-negative BC.

However, given the small number of patients, further validation of

this finding on an independent dataset is needed.

We next performed functional analyses to investigate the

association of miR-210 expression and disease outcome. MiR-

210 overexpression in MCF7 cells and repression in MDA-MB-

231 cells induced the deregulation of genes involved in different

biological processes such as cell cycle, cell adhesion and immune

response. Cell proliferation assays revealed that miR-210 overex-

pression enhances MCF7 cell proliferation suggesting that the

prognostic potential of miR-210 may rely on its role in tumor

proliferation both in untreated and tamoxifen-only treated ER-

positive BC. Similarly, MDA-MB-231 cell growth decreased upon

miR-210 repression suggesting that the association between miR-

210 and clinical outcome in ER-negative BC may also rely on its

role as a cell proliferation regulator. Migration and invasion assays

Figure 6. Involvement of miR-210 in cell proliferation. Cell growth curves for MCF7-miR-210 and MCF7-control in untreated (A) and
Tamoxifen-treated (1027 M) conditions (B). Cell growth curves for MDA-MB-231-anti-miR-210 and MDA-MB-231-control (C).
doi:10.1371/journal.pone.0020980.g006

Figure 7. MiR-210 involvement in cell invasion and migration. MiR-210 overexpression enhances MCF7 cell invasion. Illustration of the
number of invading cells upon miR-210 overexpression compared to the control cells (A). MiR-210 repression enhances MDA-MB-231 cell migration.
Illustration of the number of migrating cells upon miR-210 repression compared to the control cells (B).
doi:10.1371/journal.pone.0020980.g007
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suggested that miR-210 prognostic potential could also rely on its

role as a cell invasion regulator in ER-positive BC patients and as

a regulator of cell migration in ER-negative breast cancer patients.

Recent findings demonstrated that e2f transcription factor 3, a

key cell cycle protein, was regulated by miR-210 and that high

frequency of miR-210 gene copy deletions were found in ovarian

cancer patients [18]. Using the same cell lines model, we showed

that miR-210 is involved in the regulation of cell migration and

invasion potentially explaining partially the aggressive phenotype

of high grade tumors. The association of miR-210 expression and

disease outcome could also be due to its anti-apoptotic action that

has been recently identified in cell lines or to its implication in

hypoxia response.

In conclusion, miRNA and mRNA profiling seem to be

complementary tools that can improve our understanding of BC

biology. A single miRNA (miR-210), quantified using a simple and

accurate qRT-PCR assay, showed prognostic performance that

was similar to that of various multi-gene signatures. These results

need further prospective validation.

Materials and Methods

Patient samples
Tissue samples used in this study were provided from the John

Radcliffe Hospital, Oxford, UK. The first population included

fresh-frozen primary tumor samples from 73 BC patients who had

not received any adjuvant systemic treatment. This population is

referred to as OXFU. Protein-coding gene expression profiles,

using the Affymetrix U133A Genechips (Affymetrix, Santa Clara,

CA), were available for 49 of the 73 patients (raw data are

available at the Gene Expression Omnibus (GEO) repository

database [http://www.ncbi.nlm.nih.gov/geo/], accession number

GSE2990) [13].

The second dataset, referred as OXFT, consisted of fresh-frozen

primary tumor samples from 89 ER-positive BC patients

homogeneously treated with tamoxifen only. Protein-coding gene

expression profiles were also available for all patients (GSE6532)

[14].

Table 1 summarizes patient and tumor characteristics from

both populations. Relapse-free survival (RFS) was defined as the

interval between the dates of breast surgery and diagnosis of any

type of relapse (local, regional or distant).

MiRNA microarray hybridization and data normalization
Total RNA from breast tumor samples was isolated using Trizol

method (Invitrogen, Carlsbad, CA). MiRNA labeling and

hybridization on mirVana miRNA Bioarrays V2 were performed

according to the manufacturer’s recommendations using 7.5 mg of

total RNA and the mirVana miRNA labeling kit (Ambion, Austin,

TX). The Bioarrays used for miRNAs expression profiling

comprise a total of 640 probes targeting 328 human miRNAs

(hsa-miRs), as well as mouse and rat miRNAs, from the miRBase

Sequence Database version 8.0. (http://microrna.sanger.ac.uk/)

[32,33]. Samples with artifacts such as non specific hybridization

or high background intensities have been excluded from analysis

(quality control criteria). Hybridization signals were detected at

532 nm using a GenePix 4000B scanner and quantified by

GenePix Pro 4.0 software (Axon Instruments, Downingtown, PA).

The signal intensity of each spot was calculated by subtracting the

local background from the mean signal. After averaging replicate

spots, a global scaling normalization was applied, as suggested by

Ambion. This normalization consisted of the following steps: 1)

thresholding, for which intensities below the background (set to 2

times the signal of empty spots) were set to 1; 2) scaling, which

involved ranking the intensities of each sample separately and

dividing them by the 30th intensity value; and 3) log 2

transformation. The normalized intensities were used for further

analyses. Data are available at the Gene Expression Omnibus

(GEO) repository database [http://www.ncbi.nlm.nih.gov/geo/],

accession number GSE28321).

Quantitative real-time PCR (qRT-PCR)
The analysis of miR-210 expression by quantitative real-time

PCR was performed according to the TaqMan MicroRNA Assay

protocol (Applied Biosystems, Foster City, CA). Briefly, 10 ng of

total RNA were reverse-transcribed using the MicroRNA Reverse

Transcription kit and a specific stem-loop primer according to the

manufacturer’s instructions (Applied Biosystems, Foster City, CA).

Real-time PCR was performed on a 7900HT Sequence Detection

System (Applied Biosystems, Foster City, CA). All reactions were

run in triplicate. MiR-210 expression relative to small nucleolar

RNAs RNU44 and RNU48 was calculated using the 22DCt

method. This normalized expression level allowed us to determine

the fold changes in miR-210 expression between tumor subgroups.

Cell culture
MCF7 and MDA-MB-231 cells were obtained from the ATCC

and cultured under standard conditions. MiR-210-overexpressing

MCF7 cells (MCF7-miR-210) and MCF7 control cells (MCF7-

control) were cultured under the same conditions as the parental

MCF7 cells. MDA-MB-231 cells in which miR-210 was

downregulated (MDA-MB-231-anti-miR-210) and the corre-

sponding control (MDA-MB-231-control) were cultured under

the same conditions as the parental MDA-MB-231 cells.

Lentiviral production and transduction
Lentiviral vector production was performed as previously

described [34]. Briefly, vesicular stomatitis virus glycoprotein G

(VSV-G) pseudo-typed lentiviral particles were generated by

polyethylene imine (Sigma, St. Louis, MO) co-transfection of

293T cells with three plasmids pMIRNA, pCMVDR8.91 and

pMD.G. pCMVDR8.91 is HIV-derived packaging construct that

encodes the HIV-1 Gag and Pol precursors as well as the

regulatory proteins Tat and Rev. Vesicular stomatitis virus

glycoprotein G (VSV-G) was expressed from pMD.G. pMIRNA

(System Biosciences) is a lentiviral-based vector in which miR-210

precursor sequence (for miR-210 overexpression), a sequence

complementary to miR-210 (for miR-210 repression) or a

scramble sequence (negative control) have been cloned down-

stream of the CMV promoter. This vector contains copepod GFP

as a reporter gene allowing GFP-positive cells sorting by flow

cytometry. Twenty-four 24 h after transient transfection of 293 T

cells, viral supernatants were collected, filtered and concentrated.

For viral transduction, MCF7 and MDA-MB-231 cells were plated

at a density of 105 cells/well in 12-wells culture plates and exposed

to lentiviral preparations with MOI 5 in a volume of 500 ml in the

presence of 8 mg/ml polybrene. GFP-positive cells were sorted by

flow cytometry at day 7 after transduction.

Cell proliferation assay
Cell proliferation was determined by 3-(4,5-dimethylthiazole-2-

yl)-2.5 diphenyltetrazolium bromide assay (MTT, Sigma). MCF7-

miR-210 and MCF7-control cells were seeded at a density of 1500

cells per well. MDA-MB-231-anti-miR-210 and MDA-MB-231-

control cells were seeded at a density of 2000 cells per well. At each

time point, 100 ml of 5 mg/ml MTT was added and incubated at

37uC for 3 h and 100 ml DMSO was added to the wells. Every
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24 hours, the rate of cellular proliferation was determined by

measuring the absorbance at 590 nm. Cell growth curves were

calculated as mean values of six replicates after normalization to

the absorbance at day 1. Difference in cell growth was considered

as significant when p,0.05 according to a two-way Anova test.

Cell migration and invasion
Twenty-four well migration and invasion chambers (Cell

Biolabs, San Diego, CA) were used to study cell migration and

invasiveness respectively according to manufacturer’s instructions.

Migratory and invading cells were counted under a light

microscope with five individual fields per insert. Results are

presented as the average of triplicate experiments. Differences in

cell migration and invasion rates were assessed using a Mann

Whitney test and were considered significant when p,0.05.

Protein-coding gene expression profiling
Microarray analysis was performed using the Affymetrix U133A

Genechips following manufacturer’s instructions (Affymetrix, Santa

Clara, CA). Probe quantification and data normalization were

performed as previously [13]. Protein-coding gene expression

profiles (raw data) are available at the Gene Expression Omnibus

(GEO) repository database [http://www.ncbi.nlm.nih.gov/geo/],

accession number GSE25162). Genes were considered as differen-

tially expressed when the fold change between the 2 classes was .2.

Gene Signature Computation
Because we used different gene expression profiling technology

than some of the gene signatures investigated in this study (i.e.

GGI [13], GENE70 [20], GENE76 [12] and Recurrence Score

(RS) [21], we defined gene signature as:

gene signature~
X

i

wixi

,X
i

wij j

where xi is the expression of a gene in the gene signature that is

present in the dataset’s platform. wi is either +1 or 21 depending

on the sign of the gene-specific weights (coefficients, correlations,

or other measures) from the original. Robust scaling was

performed on each gene signature in order to have the

interquartile range equal to 1 and the median equal to 0 within

each dataset, allowing for comparison between gene signatures. It

is worth mentioning that we computed the low and the high gene

expression grade indices as we did in our original publication [13],

i.e. by defining the cutoff as the middle point between the means of

gene expression grade indices for patients with histological grades

1 and 3.

Statistical analysis
Cluster analyses were conducted to look for natural groupings in

the mRNA and miRNA expression profiles. Unsupervised

hierarchical clustering was performed with uncentered correlation

and average linkage using BRB-ArrayTools software. Molecular

subtypes were defined as described in Desmedt et al. [16] and

Wirapati et al. [17]. In supervised analyses, we assessed whether

clinical parameters were associated with differential miRNA

expression profiles using Student t tests. We also compared low

versus high gene expression grade tumor samples (see Section

Gene Signature Computation). For these comparison analyses, we

only considered miRNAs expressed in at least 20% of the samples.

All p-values were two-tailed and the difference in miRNA

expression was reported as significant when p,0.05. Correlation

of miR-210 expression by microarray and qRT-PCR analysis was

assessed using Spearman’s rank test. For survival analysis, we used

two accuracy measures in order to estimate the relevance of a

variable for survival prediction. First, we used the traditional Cox’s

proportional hazards model [35] to estimate the hazard ratio of

such a variable. Second, we used the time-dependent ROC curve

as defined by Heagerty et al. [36] and its related area under the

curve (AUC). To compare the relevance of two variables for

survival predictions, we compared the hazard ratios by a paired

Student t test. The Kaplan-Meier method was used to estimate the

survival curves. Patients were separated into two groups according

to miR-210 relative expression level, the median value of the initial

dataset being used as the cut-off. The same threshold was used for

the validation dataset in order to avoid overfitting. The survival

data were censored to 10 years. The statistical significance of

global gene expression changes in Gene Ontology (GO) categories

was assessed by LS permutation tests. Statistical analyses were

performed using BRB-ArrayTools software (available at http://

linus.nci.nih.gov/BRB-ArrayTools.html), SPSS 15.0 and Graph-

Pad Prism 5.

Prediction of miRNA target genes
We used the miRanda algorithm for miRNA target genes

prediction. (www.microRNA.org) [37,38].

Association of miRNA target genes
To test the association between miRNA targets and existing gene

signatures, we performed a gene set enrichment analysis [39]. The

class comparison performed to define the gene signature of interest

was done using the gene expression data used in the original

publication. The resulting full ranked list of genes was then used in

combination with the list of targets genes predicted by the miRanda

algorithm (gene set) to compute the enrichment Score (ES). In order

to estimate the null distribution of the ES, the class labels used to

define the signature from the gene expression data were randomly

permutated 1000 times. If the observed ES is significantly higher

that the random ES (permutated p-value,0.05) it meant that the

miRNA targets are significantly associated with the gene signature,

or more precisely with the biological phenomenon quantified by this

signature.

We performed a gene set enrichment analysis to assess the

association between the Gene expression Grade Index (GGI) and

the target genes of miR-210, following the approach described

above. The ES, defined as the maximum Kolmogorov-Smirnov

ranking sum [39], was significantly higher than ES computed after

random permutations of the labels used to define the GGI from

the original gene expression data, therefore confirming the

association between GGI and mir-210 targets.

Network analyses involving miR-210 target genes and GGI

genes were performed using Ingenuity Pathways Analysis (IPA)

tools (www.ingenuity.com), a web-delivered application that

enables researchers to discover, visualize, and explore molecular

interaction networks in gene expression data.

Supporting Information

Figure S1 Gene network nu1 involving cell cycle genes from the

analysis from IPA including the miR-210 target genes and GGI

genes.

(TIF)

Figure S2 Gene network nu2 involving cell cycle genes from the

analysis from IPA including the miR-210 target genes and GGI

genes.

(TIF)
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Figure S3 Gene network nu3 involving cell cycle genes from the

analysis from IPA including the miR-210 target genes and GGI genes.

(TIF)

Figure S4 MiR-210 relative expression in MCF7 and MDA-

MB-231 BC cell lines compared to BC samples according to

histological grades (HG) and genomic grades (GG).

(TIF)

Figure S5 MiR-210 involvement in cell invasion and migration.

MiR-210 overexpression enhances MCF7 cell invasion. Illustra-

tion of invading cells upon miR-210 overexpression compared to

the control cells (A). MiR-210 repression enhances MDA-MB-231

cell migration. Illustration of migrating cells upon miR-210

repression compared to the control cells (B).

(TIF)

Table S1 List of the miRNAs detected in at least 90% of the

breast cancer samples.

(XLSX)

Table S2 List of the genes deregulated (fold change FC.2) upon

miR-210 overexpression in MCF7 cells.

(XLSX)

Table S3 List of the genes deregulated (fold change FC.2) upon

miR-210 repression in MDA-MB-231 cells.

(XLSX)
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natural Treg microRNA signature: role of microRNA-31 and microRNA-21 in

FOXP3 expression. Eur J Immunol 39: 1608–1618.

35. Cox DR (1972) Regression models and life tables. journal of royal statistical

society series B 34: 187–220.

36. Heagerty PJ, Lumley T, Pepe MS (2000) Time-dependent ROC curves for

censored survival data and a diagnostic marker. Biometrics 56: 337–344.

37. John B, Enright AJ, Aravin A, Tuschl T, Sander C, et al. (2004) Human

MicroRNA targets. PLoS Biol 2: e363.

38. Betel D, Wilson M, Gabow A, Marks DS, Sander C (2008) The microRNA.org

resource: targets and expression. Nucleic Acids Res 36: D149–D153.

39. Subramanian A, Tamayo P, Mootha VK, Mukherjee S, Ebert B, et al. (2005)

Gene set enrichment analysis: a knowledge-based approach for interpreting

genome-wide expression profiles. Proc Natl Acad Sci U S A 102(43): 15545–50.

MiR210 a Prognostic and Tumor Proliferation Marker

PLoS ONE | www.plosone.org 13 June 2011 | Volume 6 | Issue 6 | e20980


