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Abstract

Albright hereditary osteodystrophy (AHO) is characterized by short stature, brachydactyly, and often heterotopic
ossifications that are typically subcutaneous. Subcutaneous ossifications (SCO) cause considerable morbidity in AHO with no
effective treatment. AHO is caused by heterozygous inactivating mutations in those GNAS exons encoding the a-subunit of
the stimulatory G protein (Gas). When inherited maternally, these mutations are associated with obesity, cognitive
impairment, and resistance to certain hormones that mediate their actions through G protein-coupled receptors, a
condition termed pseudohypoparathyroidism type 1a (PHP1a). When inherited paternally, GNAS mutations cause only AHO
but not hormonal resistance, termed pseudopseudohypoparathyroidism (PPHP). Mice with targeted disruption of exon 1 of
Gnas (GnasE12/+) replicate human PHP1a or PPHP phenotypically and hormonally. However, SCO have not yet been
reported in GnasE1+/2 mice, at least not those that had been analyzed by us up to 3 months of age. Here we now show that
GnasE12/+ animals develop SCO over time. The ossified lesions increase in number and size and are uniformly detected in
adult mice by one year of age. They are located in both the dermis, often in perifollicular areas, and the subcutis. These
lesions are particularly prominent in skin prone to injury or pressure. The SCO comprise mature bone with evidence of
mineral deposition and bone marrow elements. Superficial localization was confirmed by radiographic and computerized
tomographic imaging. In situ hybridization of SCO lesions were positive for both osteonectin and osteopontin. Notably, the
ossifications were much more extensive in males than females. Because GnasE12/+ mice develop SCO features that are
similar to those observed in AHO patients, these animals provide a model system suitable for investigating pathogenic
mechanisms involved in SCO formation and for developing novel therapeutics for heterotopic bone formation. Moreover,
these mice provide a model with which to investigate the regulatory mechanisms of bone formation.
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Introduction

Mutations in GNAS exons that encode the alpha-subunit of the

stimulatory G protein (Gas) lead to Albright Hereditary Osteo-

dystrophy (AHO), which is characterized by brachydactyly,

brachymetacarpia, short stature, and frequently subcutaneous

ossifications (SCO), i.e. heterotopic bone formation [1–4]. In some

cases, ossifications are limited to the dermis and subcutaneous

tissue whereas in others the ossifications are deeply invasive [2,4].

It is the only monogenic condition in which de novo ossifications

form subcutaneously and remain limited to the skin, but both the

etiology of the ossifications and their extent of invasiveness are as

yet a mystery. When GNAS mutations are inherited maternally,

AHO is associated with the development of pseudohypoparathy-

roidism type 1a (PHP1a), i.e. PTH-resistance leading to hypocal-

cemia and hyperphosphatemia, resistance to several other peptide

hormones that mediate their actions through G protein-coupled

receptors, as well as obesity and various degrees of cognitive

impairment. When the same mutations are inherited paternally,

affected individuals develop AHO, including SCO, in the absence

of hormonal resistance and obesity, termed pseudopseudohypo-

parathyroidism (PPHP). Brachydactyly and heterotopic ossifica-

tions occur in AHO regardless of the parent of origin of the GNAS

mutation and most likely reflect the effect of haploinsufficiency in

cells that normally express Gas from both GNAS alleles (For

review, see [3,5–8]). Dependence on the parental origin of the

mutant GNAS allele has been found to be secondary to tissue-

specific imprinting of Gas expression based on research conducted
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in mouse models [9–11] as well as human tissues [12–19]. In some

patients with GNAS mutations, SCO can appear without other

features of AHO and is therefore termed osteoma cutis, but may

later evolve into AHO with or without its associated hormonal

abnormalities [20]. Removal of the skin lesions is often followed by

a recurrence. The reason for SCO developing only in some

patients is not well understood, although SCO tend to form in

areas of persistent pressure and worsen with time [3]. Even though

loss of G protein-signaling from one parental allele seems to be

required for the formation of ossified areas, the underlying

mechanisms are incompletely understood.

Interestingly, an entity termed progressive osseous heteroplasia

(POH), which occurs predominantly secondary to paternal

inheritance of GNAS mutations with absence of other AHO

features [2,21,22], may well represent an extreme variant of AHO

involving heterotopic bone formation. The ossifications that occur

in POH can be very invasive and may extend below the dermis

into the fat and muscle layers [2,4], thereby leading to skeletal

deformities, which can markedly limit a patient’s mobility and can

be the cause of additional morbidity.

It is unknown why the paternal inheritance of a GNAS mutation

leads to PPHP in some cases and to POH in others. In addition, it

is not known why the ossifications in AHO remain confined to the

subcutaneous tissue, yet can be invasive in POH. Studying AHO

and POH may thus provide unique opportunities to gain novel

insights into the mechanism leading to the formation of

ossifications as well as the mechanism that controls the propensity

of the ossifications to become invasive.

Targeted, heterozygous disruption of exon 1 of the Gnas gene

(GnasE12/+) provided a mouse model of AHO, which recapitulated

some of the features of the human disease [10,23,24]. However,

we did not observe heterotopic bone formation in the group of

GnasE12/+ mice that was examined by palpation or radiographic

studies during the first 3 months of life [10]. However, because

AHO patients typically show increasing and worsening ossifica-

tions with time [3], we therefore evaluated older GnasE12/+ mice

for the development of SCO and found extensive ossifications

[24]. This provided further evidence for the conclusion that our

mouse model of AHO replicates the human disease closely, both

phenotypically and hormonally [10]. The objective for this study

was to further characterize in GnasE12/+ mice the ossifications and

the timing of their progression to determine whether these animals

could provide a system in which to examine the mechanisms

leading to heterotopic bone formation. Our ultimate goal would

be to utilize this mouse model to find possible methods for the

prevention and treatment of heterotopic bone formation, a source

of great morbidity in patients with AHO and POH. Additionally,

these mice provide a model system with which to investigate the

fundamental regulatory mechanisms of bone formation.

Materials and Methods

Ethics statement
Tissues were obtained from one human subject with AHO

following a protocol approved by the Institutional Review Board

(IRB) of the Johns Hopkins Medical Institutions with written

informed consent obtained (by E.L.G.-L.). The protocol

(#MO10M188) for all mouse studies was approved by the Johns

Hopkins University School of Medicine Animal Care and Use

Committee and followed federal (NIH) guidelines for the humane

and appropriate care of laboratory animals. The animals were

housed in cages on ventilated racks in centralized mouse facilities

accredited by the American Association for the Accreditation of

Laboratory Animal Care.

Mice
The GnasE12/+ mice were generated by targeted disruption of

exon 1, as described previously [10,23]. All mice that carried a

mutant maternal allele are hereafter referred to as GnasE12m/+

mice and those with a mutant paternal allele as GnasE1+/2p. Wild-

type mice are referred to as WT. The mice examined in these

studies were maintained on a pure 129SvEv background [10] with

ad libitum feeding of Prolab RMH2500 mouse chow, which

contains 0.95% calcium and 0.96% phosphate, and ad libitum

water.

Histology
Tissues were obtained from one human subject with AHO and

fixed in formalin, demineralized in formic acid solution, embedded

in paraffin, sectioned at 5 mm and stained with H&E for

histological examination. For mice, the skin was removed intact

and was flattened by pinning to index card paper during fixation

for 48 hours in cold 4% paraformaldehyde. Skin tissue remained

attached to the card and was transferred to 70% ethanol. Skin

sections approximately 1–2 mm thick and 2 cm long were cut for

embedding, parallel to the direction of the hair from the dorsum,

ventrum, and limbs, cutting through any bony foci that were

noted. The sections were positioned with the cut surface down and

placed into cassettes. In order to section skin on the foot pads, the

extremities were disarticulated at the carpus and tarsus joints with

the skin in place, fixed in cold 4% paraformaldehyde for 48 hours

and decalcified in cold 0.5 M EDTA for 7–10 days. One to two

mm thick longitudinal sections from each of the feet were placed

into cassettes for embedding. The tissues were embedded in

paraffin using routine automatic processing and several 5 mM

serial sections made and stained for H&E, Alizarin Red, or von

Kossa following routine protocols. Unstained sections were used

for non-isotopic in situ hybridization. Images were captured using

an upright Zeiss Axioskope with a Nikon 1200 DMX digital

camera.

In situ hybridization
In situ hybridization was performed on sections as described

[25,26] with modifications. Briefly, all slide racks, buckets, and

containers were treated with DEPC water (1:1000) before starting.

The mouse osteonectin and osteopontin cDNA fragments were

amplified by PCR using specific primers (Osteopontin Forward: 59

GATGATGACGATGGAGAC-39; Osteopontin-Reverse: 59-

TGCAAAGTAAGGAACTGTG-39; Osteonectin Forward: 59-

GGTGCTAACATAGATTTAACTG-39; Osteonectin Reverse:

59-AGCCCAATTGCAGTTGAG-39) and each was cloned into

the pCRHII-TOPOH Vector. The plasmids were linearized, and

antisense and sense single-stranded RNA probes were generated

using T7 and SP6 RNA polymerase with digoxigenin (Roche).

Riboprobes (500–600 bp in length) for osteonectin and osteopon-

tin were tested and selected based on the best signal to noise ratio.

Sections were deparaffinized, treated with Proteinase K, rinsed,

and hybridized with the digoxigenin-labeled riboprobes at 55uC
overnight. The next day, slides were washed, blocked, and

incubated with HRP-anti-DIG antibody (Dako) for 45 minutes,

washed, then incubated with biotinyl-tyramide (Dako) for

8 minutes, washed, and detected with BCIP/Blue (Sigma).

Radiographic analyses
Three, six, nine, and twelve month old mice were given

intraperitoneal injections of 0.2–0.5 mL of 20 mg/mL Avertin

[2,2,2,-tribromoethanol (Sigma-Aldrich, St. Louis, MO)] dissolved

in tert-amyl alcohol (Sigma-Aldrich)]. Mice were placed in

Ossifications in a Mouse Model of AHO
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Figure 1. Analysis of human subcutaneous ossification. A) Surgically removed area of ossification from a 20 year old male AHO (2p/+) patient
with a documented GNAS mutation. The site contained multiple irregular firm masses 0.5–4 cm in length with branching extensions from a central
mass. B) Ossified lesion in Figure 1A stained with hematoxylin and eosin. The lesion is composed of mature bone with frequent central bone marrow
elements. Scale bar = 50 mm.
doi:10.1371/journal.pone.0021755.g001

Figure 2. Analyses of subcutaneous ossifications in mice. A) feet of a Gnas 2m/+ male compared to WT (wild type) male at 12 months of age;
B) ear of a Gnas 2m/+ male at 12 months of age with nodular subcutaneous ossifications; C) X-ray of Gnas 2m/+ male at 3 months of age showing
occasional subcutaneous ossifications; D) X-ray of 12 month 2m/+ obese male with extensive subcutaneous ossifications.
doi:10.1371/journal.pone.0021755.g002

Ossifications in a Mouse Model of AHO
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Faxitron (MX20 Specimen Radiography System, Faxitron Corp.,

Wheeling, IL) and exposed to 20–28 kV for 15 seconds.

Computerized Tomography (CT) scans
Three month and 12 month old mice were anesthetized with

0.5–1.0% IsoFlo (isoflurane, USP; Abbott Laboratories, North

Chicago, IL) delivered via Medical E oxygen at 1 L/min. Mice

were scanned using X-SPECT (Gamma Medica-Ideas, North-

ridge, California) with 512 projections over 10 minutes and with a

slice thickness of 0.19 mm. Images were reconstructed using

COBRA (Exxim Computing Corporation, Pleasanton, CA).

Reconstructed raw images were then analyzed for heterotopic

ossifications using Image J software v.1.4.3.67 (1993–2006, Broken

Symmetry Soft).

Results

Analysis of Human SCO
Subcutaneous ossifications are a common complication of AHO

that can lead to great pain and extensive lesions in patients with this

condition. One such site of ossification was surgically resected from

the subcutis of the lower leg of a 20 year old male AHO (2p/+)

Figure 3. Whole body computerized tomographic (CT) images reveal subcutaneous ossifications. CT scans of 12 month (A–D) and 3
month (E, F) male and female mice with heterozygous targeted disruption of exon 1 in the Gnas gene. Arrows indicate a subset of the subcutaneous
ossifications. A) male 2m/+,. B) female 2m/+. C) male +/2p. D) female +/2p. E) male 2m/+. F) female 2m/+.
doi:10.1371/journal.pone.0021755.g003

Ossifications in a Mouse Model of AHO
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patient with a documented GNAS mutation (intron2:c.212+3de-

lAAGT) (informed consent obtained) [27]. The site contained

multiple irregular firm masses 0.5–4 cm in length often with

branching, tapered extensions from a central mass (Fig. 1A).

Histologically the masses were composed of mature bone frequently

containing central bone marrow elements (Fig. 1B).

GnasE12/+ mice develop SCO over time
Dermal and subcutaneous ossifications were not palpated or

visualized in 104 GnasE12/+ mice at 3 months of age. We therefore

performed physical examinations on 67 older GnasE12/+ animals

to search for subcutaneous ossifications. Examination of these 12

month old GnasE12/+ mice [39 males (21 2m/+, 18 +/2p) and 28

Table 1. Radiographic Imaging of Subcutaneous Ossifications Over Time.

Radiographic Imaging of Subcutaneous Ossifications

3 Mo 6 Mo 9 Mo 12 Mo

Number of mice with ossifications/total mice examined (# of foci*)

Male 2m/+ 1/13 (1+) 6/13 (2+) 12/12 (3+) 12/12 (4+)

Female 2m/+ 0/13 (1+) 1/13 (1+) 3/12 (1+) 3/11 (2+)

Male +/2p 1/16 (1+) 8/16 (2+) 15/15 (3+) 15/15 (4+)

Female +/2p 1/18 (1+) 1/17 (1+) 2/15 (1+) 2/14 (2+)

*1+ = 1–3 foci.
2+ = 4–10 foci.
3+ = 11–20 foci.
4+ = .20 foci.
doi:10.1371/journal.pone.0021755.t001

Figure 4. Radiographic analyses of mice reveal multiple subcutaneous ossifications. X-rays of 12 month +/2p and WT mice. A) 12 month
+/2p female with no ossifications visualized; B) 12 month +/2p male, inset and arrows demonstrate areas consistent with ossifications; C) 12 month
WT without areas of ossifications.
doi:10.1371/journal.pone.0021755.g004

Ossifications in a Mouse Model of AHO
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females (15 2m/+, 13 +/2p)] revealed erythematous and mildly

erosive footpad lesions in 56 of these mice [38 males (20 2m/+, 18

+/2p) and 18 females (7 2m/+, 11 +/2p)] (Fig. 2A). Palpable

subcutaneous nodules were present in 30 mice, all males (15 2m/+

and 15 +/2p). Occasional mice had nodular subcutaneous ear

lesions, which were always near the site of ear tags [6 males (4 2m/+,

2 +/2p) and 1 female (2m/+)] (Fig. 2B). Similar lesions were not

found in 52 WT mice at the age of 12 months (30 males, 22 females).

Figure 5. Histological examination of the skin reveals bone formation. Histological examination of the skin from the trunk (Fig. 5B,5D,5F,5H)
and feet (Fig. 5A,5C,5E,5G) of male and female 2m/+ and 2p/+ mice reveal mineralized bone formation often associated with a dense eosinophilic
osteoid-like matrix in the dermis and perifollicular areas. No abnormalities were observed in WT mice. Occasional osteoid-like material was present
without bone, immediately adjacent to hair follicles, especially in female mice which had milder lesions (Fig. 5F, 5H). Subcutaneous bone frequently
contained central bone marrow elements making it histologically indistinguishable from mature skeletal bone (Fig. 5B, 5D). Scale bars = 50 mm.
doi:10.1371/journal.pone.0021755.g005

Ossifications in a Mouse Model of AHO
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These lesions are all reminiscent of subcutaneous ossifications

that occur in AHO patients based on examination of these lesions

in many patients with this disorder (E.L.G.-L., not shown). As in

the GnasE12/+ mice, the lesions in humans most commonly occur

under the skin, especially of the feet, as well as other areas of

pressure/trauma. These ossifications were also, occasionally,

localized dermally.

Radiographic analyses of 60 mice revealed multiple small

densities in the subcutis consistent with mineralized foci that were

rare in 3 month old mice and when present, were small with

limited radiopacity (Fig. 2C). However, multiple foci were found in

all 12 month old mice with targeted disruption of Gnas (Fig. 2D).

No densities were detected in WT mice. (Details described below.)

Whole body computerized tomographic (CT) images revealed

subcutaneous densities that were easily detectable in all 12 month-old

GnasE12/+ mice examined (male 2m/+; female 2m/+; male +/2p;

female +/2p) (Fig. 3A–D). Consistent with the radiographic studies,

no densities by CT were found in WT mice. The CT images

confirmed localization of the ossifications to the subcutaneous layer.

Only one 3 month old mouse of each gender and genotype (out of

four examined for each) had a few very small subcutaneous densities

(Fig. 3E, 3F). The X-ray and CT findings thus demonstrated that

subcutaneous ossifications occurred with maternally and paternally

inherited alleles of both genders, occasionally at 3 months of age and

in all mice by 12 months of age; at 12 months of age the ossifications

were much more noticeable.

After this observation, the natural history of the evolution of the

ossifications was followed in a large number of mice of both genders

and both genotypes by serial radiographic analyses (2m/+ and

+/2p) at 3, 6, 9, and 12 months (Table 1). With progression of time,

more ossifications appeared in both genders. However, the female

mice had far less ossifications at all times points examined compared

to the males (Fig. 4). In addition, at 12 months the lesions were more

severe in males than in females for both maternally and paternally

inherited alleles upon histologic analyses (described below).

Heterotopic ossifications were not present in any WT mice.

Histologic analyses of murine SCO
Histological examination of the skin from the trunk (Fig. 5B, 5D,

5F, 5H) and feet (Fig. 5A, 5C, 5E, 5G) of male and female 2m/+ and

2p/+ mice revealed mineralized bone formation often associated

with a dense eosinophilic osteoid-like matrix in the dermis and

perifollicular areas. No abnormalities were present in WT mice.

Occasionally a small amount of osteoid-like material was present

without bone, immediately adjacent to hair follicles, especially in

female mice that had milder lesions (Fig. 5F, 5H). The less frequent

and milder lesions in females versus males noted histologically were

consistent with radiographic findings (Fig. 4). Subcutaneous bone

frequently contained central bone marrow elements making it

histologically indistinguishable from mature bone (Fig. 5B, 5D).

The dermis of 3 month old 2m/+ and +/2p male and female

mice had no heterotopic bone formation in the sections of dermis

Figure 6. The dermis and subcutis of 3 month old male mice with heterozygous targeted disruption of exon 1 of the Gnas gene. The
2m/+ and +/2p male and female mice had no heterotopic bone formation. However, there were subtle lesions in the dermis of both 2m/+ and
+/2p male mice that comprised widely scattered plaque-like areas with pale collagen and increased cellularity in periadnexal areas of the reticular
dermis. A) 2m/+ male; B) +/2p male; Scale bar = 50 mm.
doi:10.1371/journal.pone.0021755.g006
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analyzed. However, there were subtle lesions in the dermis of both

2m/+ and +/2p male mice (Fig. 6), which contained occasional

plaque-like areas in the superficial dermis with increased cellularity

and a light amphophilic matrix. The lesions were widely scattered

with pale collagen and increased cellularity most pronounced in

periadnexal areas of the reticular dermis. These may represent

mild or early lesions that precede subcutaneous ossification as

these plaque-like areas were not present in sections examined from

3 month old wild type mice.

Subcutaneous ossifications are mineralized and express
osteoblast markers

Special stains of subcutaneous bone lesions in 12 month old

GnasE12/+ mice using Alizarin Red and von Kossa confirmed that

the subcutaneous bone osteoid was indeed mineralized (Fig. 7A–

C). Sites of subcutaneous ossification (Fig. 7D) also contained cells

along the edges of the areas of ossification that expressed

osteopontin and osteonectin, consistent with osteoblastic differen-

tiation, as demonstrated by in situ hybridization (Fig. 7E, 7F).

Upon examination of histologic sections, the SCO appeared to

originate in the perifollicular areas, emanating near the hair follicle

both with hematoxylin and eosin staining (Fig. 8A) as well as

Alizarin Red staining. The Alizarin Red staining encircled the hair

follicles in some areas (Fig. 8B). Areas of mineralized bone were

often associated with a dense eosinophilic osteoid-like matrix in the

dermis and perifollicular areas (Fig. 5B, 5D, 5F, 5H). Occasionally

a small amount of osteoid-like material was present without bone,

immediately adjacent to hair follicles.

Discussion

Our mouse model of AHO replicates the human disorder

closely, both phenotypically and hormonally [10], and is the first

mouse model to exhibit SCO. Although mice with chondrocyte-

specific ablation of Gnas exhibit ectopic cartilage formation within

the metaphyseal region of the tibia [28] and those with targeted

heterozygous disruption of exon 2 of Gnas (GnasE2 2/+) [9] develop

subcutaneous fibromas or angiofibromas with associated calcifica-

tions [29], there has not been a mouse model that recapitulates the

SCO found in AHO in humans until now. We found that our

GnasE12/+ mice developed extensive and progressive ossifications,

thereby differing from the lesions reported in GnasE2 2/+ mice

which had no evidence of bone formation. In our GnasE12/+ mice,

lesions were very rarely found in the dermis and subcutis of 3

month old mice but were very common in 12 month old mice

[3,10,24]. Because palpable ossifications in AHO patients

frequently increase in number and size with age [3], we

investigated this in our GnasE12/+ mouse knockout model and

found that this was recapitulated. From analyses of mice at 3

months, 6 months, 9 months, and 12 months, it is clear that SCO

increase in number and size based on radiographic imaging,

although it is possible that the number of SCO are instead

constant, with the rapidity of growth differing among the lesions.

Computerized tomography verified that these lesions were

restricted to the subcutaneous layer and confirmed that the lesions

are much less apparent in younger mice. Alizarin Red and von

Kossa stains were positive for mineral deposits in the areas

surrounding hair follicles at 12 months of age, and many of these

areas contained bone marrow elements consistent with true bone

formation. This was further confirmed through in situ hybridiza-

tion with probes encoding osteonectin and osteopontin.

Male mice with inheritance of the mutant Gnas allele had more

severe and widespread heterotopic bone in the subcutaneous

tissue than female mice. The lesions in the female mice often

resembled precursors of bone consistent with osteoid in the

dermis located in the immediate perifollicular areas. The male

Figure 7. In situ hybridization analysis of dermal heterotopic bone using probes to markers of osteogenesis. Nonisotopically labelled
osteonectin-specific and osteopontin-specific probes hybridized with cells located in and directly adjacent to foci of dermal heterotopic bone in the
mice (no counterstain). Scale bars A, B, C = 50 mm; D, E, F = 10 mm.
doi:10.1371/journal.pone.0021755.g007

Ossifications in a Mouse Model of AHO
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preponderance raises the possibility that androgens may acceler-

ate the ossification process or estrogen may impair this process.

Interestingly, this gender difference has been reported by several

human case series in the literature discussing the formation of

heterotopic ossifications after surgery [30–34]. The predomi-

nance in males was reported to be 2–3 times that in females after

surgery [35]. Current analyses are underway to investigate

whether the male predominance of SCO formation holds true in

patients with AHO. Investigation of our mouse model could

provide important insight into possible hormonal impacts on the

development of heterotopic ossifications and whether hormonal

manipulation could aid in prevention, amelioration, and/or

treatment of ossification formation.

Although the SCO can occur spontaneously, we have found

that in AHO there is a subset of ossifications which occur in areas

of pressure and trauma, not only in our patients but also in our

mouse model of AHO. Physical examinations of our mice revealed

that areas of pressure/trauma such as foot pad lesions and ear tag

sites were prone to development of ossifications which occurred

more prevalently in males when examined at 12 months of age.

This is consistent with the post-operative surgical data in patients

as cited previously.

There were no differences in frequency and histological

appearance of murine SCO lesions caused by Gnas exon 1-

disruption of the maternal versus paternal allele. These findings in

patients and our genetically manipulated mice thus make it likely

that haploinsufficiency, rather than imprinted Gas expression in

an as-of-yet undefined osteogenic precursor, leads to the

development of these lesions; these findings are consistent with

non-imprinted expression of Gas in fibroblasts, chondrocytes, and

bone cells [28,36–39].

The ossifications appear to originate near the hair follicle. We

found extensive areas consistent with heterotopic bone formation

located in perifollicular areas in the dermis. There is evidence

demonstrating that hair follicle stem cells can differentiate into

several cell types including osteogenic lineages [40], thereby

raising the possibility that these hair follicle stem cells are

progenitors of osteogenesis in the skin. Hair follicle differentiation

is tightly controlled by complex pathways involving BMP’s and

Wnt signaling [41–43]. In addition, PTH/PTHrP has been

demonstrated to be involved in hair follicle development and the

modulation of pathways in both skin and hair follicle cells, thereby

implicating a potential role of Gas in this process [44–46].

There is also evidence that mesenchymal stem cells may

differentiate into osteogenic lineages. Human mesenchymal stem

cells treated with osteogenic medium revealed that knock-down of

Gas with antisense oligonucleotides induced expression of Cbfa1

and increased osteoblastic determination [47]. Recent data have

implicated vascular endothelial cells as multipotent stem-like cells

with osteogenic potential, thereby raising the possibility of

endothelial cells in the perifollicular areas of the dermis being a

possible osteogenic cell precursor [48]. Further studies to

determine the cell-type of origin of the heterotopic bone will be

crucial in understanding the etiology of the formation of SCO in

AHO.

Conclusion
Our mouse model of AHO replicates the human disorder

closely, both phenotypically and hormonally [10], and is the first

mouse model to exhibit SCO. Importantly, our findings

demonstrate that the Gnas exon 1-disrupted mouse model faithfully

recapitulates the development of subcutaneous ossifications

observed in PHP1a and PPHP patients. In patients with AHO,

the ossifications lead to pain and impairment in activities of daily

living. There is no effective treatment, and removal of the lesions is

often followed by recurrence. Hence, we believe that this mouse

model is an ideal system in which to test therapeutic strategies to

prevent or limit the growth of ossifications and consequently

decrease a source of significant morbidity in patients with AHO

and other disorders involving heterotopic bone formation.

Additionally, the Gnas exon 1-disrupted mouse model represents

a valuable tool to elucidate further the molecular and cellular

mechanisms involved in ectopic bone formation, as well as the

regulatory mechanisms important for bone formation in general.
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Figure 8. The ossifications appear to originate in the perifol-
licular areas. Ossifications are emanating near the hair follicle both
with hematoxylin and eosin staining (A) as well as Alizarin Red staining
(B). Scale bar = 50 mm.
doi:10.1371/journal.pone.0021755.g008
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