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Abstract
While many motion correction techniques for MRI have been proposed, their use is often limited
by increased patient preparation, decreased patient comfort, additional scan time or the use of
specialized sequences not available on many commercial scanners. For this reason we propose a
simple self-navigating technique designed to detect motion in segmented sequences. We
demonstrate that comparing two segments containing adjacent sets of k-space lines results in an
aliased error function. A global shift of the aliased error function indicates the presence of in-plane
rigid-body translation while other types of motion are evident in the dispersion or breadth of the
error function. Since segmented sequences commonly acquire data in sets of adjacent k-space
lines, this method provides these sequences with an inherent method of detecting object motion.
Motion corrupted data can then be reacquired proactively or in some cases corrected or removed
retrospectively.
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INTRODUCTION
Patient motion is one of the dominant sources of artifact in MRI. Techniques developed to
detect and correct motion include those that utilize specialized hardware to detect patient
motion, those that utilize special k-space trajectories with some inherent motion correction
ability, those that acquire additional navigator data for the purpose of motion correction and
those considered to be self-navigating.

Motion detection techniques that rely on specialized hardware include reflecting laser beams
off specialized markers (1), optical tracking with one or more cameras (2–5), tracking using
small receiver coils (6–8), infrared tracking systems (9,10) and using spatial-frequency
tuned markers(11).

Techniques that use specialized trajectories for motion correction include acquiring rotated
sets of overlapping parallel lines (12), interleaving spiral trajectories (13,14), acquiring data
in some sort of hybrid Radial-Cartesian fashion (15–17) or using alternating frequency/
phase encode directions (18–20).

Other techniques acquire additional navigator data as a Cartesian projection in the absence
of either phase or frequency encoding (21) or with a floating navigator (22,23). Orbital
navigators utilize a circular k-space trajectory to detect object motion (24) while spherical
navigators sample spherical k-space shells (25,26). When multiple receive coils are used the
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complimentary data can be used to detect and replace motion corrupted data (27). In
particular, spatial harmonics in SMASH reconstruction (28) can be utilized to compare
newly measured data with predictions calculated from previously sampled data (29).
Alternatively, a SENSE based reconstruction (30) can be used to replace motion detected
from low resolution images (31). While all these techniques have shown success in their
respective applications, their use is often limited by one or more of the following: increased
complexity in patient preparation, decreased patient comfort, additional scan time or the
required use of specialized sequences not available on many commercial scanners. For this
reason there has always been marked interest in the category of motion detection with self-
navigation.

Several proposed self-navigating techniques address a specific type of motion (typically in-
plane and rigid-body) but none seem to address both rigid and non-rigid body motion that
can occur both in and out of plane. For example, motion in the readout direction has been
detected by taking the Fourier Transform of a line of acquired data and trying to determine
the edges of the object's profile (32,33). The edges become increasingly difficult to
determine from lines encoded near the edges of k-space and high contrast markers are often
added to the patient to overcome this problem. Motion in the phase encode direction can be
detected using a symmetric density constraint along the phase encoding axis (33). However,
the algorithm is restrictive on the object type and may not perform well for large motion in
the phase encode direction (34). Another approach is to apply a spatial constraint to the
object and then use an iterative phase retrieval algorithm to calculate the desired phase of the
object (35). The calculated phase is compared to the measured phase to simultaneously find
motion in the readout and phase encode directions. The algorithm performs well for sub-
pixel motions but is unable to correct an artifact caused by large translations (34).
Combinations of these self navigating methods have also been proposed to overcome some
of their pitfalls (34,36). Motion may also be determined by iteratively minimizing the
entropy of motion induced ghosts and blurring in an otherwise dark region of an image
(37,38). Alternatively, data correlations between adjacent data lines can provide information
about in-plane rigid body translation(39,40). Radial sequences can provide a self-navigating
method for rigid-body motion correction using moments of spatial projections (41) or the
phase properties of radial trajectories (42). Motion correction in the slice direction has also
been explored by monitoring amplitude modulations of the acquired data (43,44). A
combination of some of these proposed techniques can be utilized to fully correct in-plane
rigid-body motion but doesn't include the ability to address other types of motion. While it
may not be possible to correct out-of-plane motion or motion that is not rigid-body, it is
necessary and may be sufficient to at least be able to detect which data lines are corrupt.

The focus of this work is the detection of data that is corrupted by out-of-plane or non-rigid
body motion. The proposed technique was designed and implemented in a carotid imaging
application; however, the principles are easily adapted to other imaging applications.

THEORY
Two adjacent (closely spaced) points in k-space will typically show some degree of
correlation. This correlation will occur when the object being imaged does not fill the entire
FOV or when the object's signal intensity is modified by the receive coil's sensitivity profile.
In the latter case, the k-space data is convolved with the Fourier transform of the receive
coil's sensitivity profile which introduces correlations between data points.

These data correlations can be exploited with a proposed self-navigating technique to detect
various types of object motion. Consider an image acquisition that is divided into NSeg
segments that each sample a set of equally spaced k-space lines with a sampling function:

Mendes and Parker Page 2

Magn Reson Med. Author manuscript; available in PMC 2012 April 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



[1]

where L is the current segment, NLine is the number of lines sampled per segment and Δky is
the distance between adjacent phase encode lines in the fully sampled k-space. The number
of lines per segment is kept small enough that the object can be assumed to be
approximately stationary during the acquisition of a single segment. Now consider the
correlation of two adjacent data segments. Since each segment samples a different set of k-
space lines, to compare the Lth and the (L+1)th segments, the k-space data of the (L+1)th

segment is shifted by Δky. A weighted cross correlation is then taken as:

[2]

where FL(kx,ky,t) is the Fourier transform of the object's image weighted by the sampling
function SL(kx,ky) given in Eqn. [1]. The phase of the weighted cross correlation function is
separated into a linear term, representing rigid-body translation (40), and a non-linear term
for motion not classified as rigid-body translation. The cross correlation function with the
new phase separation is:

[3]

where φ(kx,ky,t) is the non-linear portion of the phase and dx(t) and dy(t) quantify the rigid-
body translation between the acquisition at time t and the acquisition at t+Δt. If an error
function is defined as:

[4]

then the weighted cross correlation in image space is similar to the previously published
result (40), except it is modified by the error function as:

[5]

where Δy is the image space voxel size in the phase encoding direction. The basic result is
an aliased set of error functions defined by Eqn. [4] that are collectively shifted
proportionally to the object's rigid-body translation. The error function ε(x,y,t) is a measure
of data correlation between the Lth and L+1th data segments. If there are enough echoes in
the echo train, the aliased copies of ε(x,y,t) will be spaced far enough apart for one to
characterize the general shape of the error function (40). Our main postulate is that object
motion can be correlated with the error function dispersion (a measure of how peaked or
spread out the error function is).

METHOD
All data sets were obtained on a Siemens Trio 3T MRI scanner. All human studies were
approved by the institutional review board and informed consent was obtained from the
volunteers.
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TSE 2D axial neck images were obtained from two volunteers using a 2 element surface coil
(one anterior and one posterior coil) and a third volunteer using a 4 element surface coil
(45). Data from the first volunteer (Fig. 2a) was acquired with 252×256 pixels, a resolution
of 0.8mm × 0.8mm × 5mm, TR=1.5s, TE=6.8ms and 7 echoes per echo train. Data from the
second volunteer (Fig. 1, 2b and 3) was acquired with 512×512 pixels, a resolution of
0.35mm × 0.35mm × 5mm, TR=1.5s, TE=8.6ms and 16 echoes per echo train.

For the third volunteer (Fig. 4), reacquiring data prospectively was simulated by acquiring
two complete data averages; the first data average is acquired with volunteer motion while
the second data average is acquired with no motion. Once the corrupt data segments are
identified in the first average, they are replaced with data from the second average. This
replaced data is similar to what we would have achieved if the data was reacquired. The data
from the third volunteer was acquired with 264×256 pixels, a resolution of 0.6mm × 0.6mm
× 2mm, 12 echoes per segment, 2 averages and a TR/TE of 2.5s/61ms.

To measure the dispersion of the error function, we first determine any rigid-body
translation (dx(t) and dy(t) in Eqn. [5]) by measuring the offset of the correlation function
from the origin (40). The dispersion of the error function is then measured with a weighted
summation such that pixels far from the error function's origin (expected to increase with
error function broadening) contribute more significantly to the total summation. While
several weighting schemes were tested, a simple linear weighting was found to give the most
robust results. Additionally, since the maximum value of cL(x,y,t) varies depending on
which two data segments are compared, cL(x,y,t) is normalized to unity prior to measuring
dispersion. The error function is estimated as:

[6]

where n=ceil(0.5*NLine*Δy) selects the central copy of the aliased error function which
repeats every NLineΔy pixels. When data is analyzed from multiple receive channels,
dispersion is calculated for each channel independently and the results are averaged. If there
are just a few corrupt data segments then the standard deviation of the dispersion will be low
and any segments with a dispersion more than one or two standard deviations from the mean
are identified as corrupt.

RESULTS
Since the error function in Eqn. [5] is aliased and two dimensional, we only display the
central portion of a profile through the origin of the error function (in the phase encode
direction). While showing just a profile of a two dimensional error function does not yield a
complete picture, it is sufficient for display purposes to show a trend or general concept. The
actual motion detection is based on the dispersion of the error function (Eqn. [6]) and
considers the two dimensional error function rather than the profiles shown in the figures.

The average error function profile for a volunteer who swallowed during an axial 2D TSE
neck scan is shown in Fig. 1. The data set contains 32 segments with one segment corrupted
when the volunteer swallowed. The solid line shows the average error function profile found
from comparing all adjacent data segments except the ones including the corrupt data
segment. The deviation of the error function profiles are shown by the error bars on the solid
line. For comparison, the dashed line in Fig. 1 shows how much the error function changes
when motion corruption, swallowing in this case, is present.
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The results of two volunteer studies are summarized in Fig. 2. First a volunteer was asked to
lie still during the first part of the scan and then to nod their head down, hold it for a few
seconds and then return their head to the original position as best they could. The dispersion
of the error function, as measured with Eqn. [6], is shown in Fig. 2a. In the second study the
volunteer was asked to slightly rotate their head for a second (about one degree), return to
the original position and then swallow several times near the end of the scan (Fig. 2b). All
instances of the motion are clearly discernable when considering the dispersion of the error
function.

The ability to detect object motion is also dependent on the sensitivity profile of the coil
element being considered. The sensitivities of a two element coil are shown in Fig. 3. While
both elements were almost equally sensitive to the volunteer rotating their neck (Fig. 3c), the
anterior element (dashed line in Fig. 3b) was more sensitive to volunteer swallowing than
the posterior element (solid line in Fig. 3b).

Finally, the proposed self-navigating correction technique is applied to a volunteer neck
study as shown in Fig. 4. The motion corrupted image is shown in Fig. 4a with the corrected
image shown in Fig. 4b. Several corrupt data segments appear in the original error function
dispersion (dashed line in Fig. 4c). Once these corrupt data segments are replaced with
reacquired data, the error function dispersion no longer shows the presence of the corrupted
data segments (solid line in Fig. 4c).

DISCUSSION
In our prior work we demonstrated that rigid-body translation can be detected and
compensated using the correlation of adjacent data segments (40). This work deals primarily
with the detection of data measurements corrupted by other types of motion. It does not
solve the problem of correcting the corrupt data, but instead requires motion corrupted
measurements to be reacquired or eliminated during reconstruction. This error function-
based motion detection method is based on two enabling observations: First, in the absence
of motion, the error function obtained from the correlation of any two adjacent data
segments remains strongly peaked near the origin. Second, when motion not classified as
non-rigid-body translation occurs, the error function becomes spread or dispersed with a
greatly diminished or missing peak.

We note that a combination of rigid-body translation with other types of object motion (such
as out-of-plane motion or swallowing) may distort the error function appreciably so that it is
not possible to quantify the rigid-body translation. However, even if the rigid-body
translation could be quantified in this case, the data would still be corrupted with the other
types of motion and a correction of just rigid-body translation would result in limited
improvements.

Another limitation comes when the data is analyzed in a retrospective manner. In this case,
even when the object's motion occurs over a single segment of data, two segment
comparisons with correspondingly high measures of dispersion are observed. For example,
in the second study in Fig. 2, where the volunteer swallowed during the acquisition of the
22nd data segment (Fig. 2b), both the error functions at L=21 (comparing the 21st and 22nd

data segments) and at L=22 (comparing the 22nd and 23rd data segments) show a large
dispersion. Hence object motion will typically result in two or more closely spaced peaks in
the measure of error function dispersion. In this case, the motion corrupted segmented is
detected as the only segment with high dispersion on both adjacent comparisons. Segments
that have a high dispersion in only one adjacent comparison are likely not corrupted by
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motion. Motions over longer periods of time can involve more segments and require a more
complicated analysis to determine which lines are corrupted.

The proposed technique detects in which segments motion is likely to have occurred, but
does not quantify the motion or discern the type. Additional information about the motion
type can be discerned by analyzing individual coils. With the two channel coil utilized in
this study, the posterior receive coil is less sensitive to swallowing than the anterior receive
coil (Fig. 3b) because motion in the neck due to swallowing is mostly limited to the anterior
portion of the neck. Conversely, both receive coils appear to be equally sensitive to the
rotation (Fig. 3c) since the entire image is affected by that type of motion. One point of
interest is that the anterior element appears to detect the rotation one segment earlier than the
posterior element (Fig. 3c). We note that while lying on a table, a rotation of the neck tends
not to be rigid-body and the rotation is about a point in the posterior of the neck rather than
the middle. As a result, the anterior part of the neck moves more than the posterior during
the rotation and may therefore be detected as moving first.

In most cases, the number of corrupted data segments is small and the corrupted lines can be
reacquired, or can be recreated using parallel imaging techniques (46), a constrained
reconstruction (47), or a variety of other methods being studied by our group and others to
deal with motion corrupted data.

CONCLUSION
When segmented data is acquired in sets of adjacent lines in k-space (as it is often done in
TSE and segmented GRE techniques), this work has demonstrated that correlations between
data sets can be exploited to detect various types of motion. While in most cases the motion
can not be fully quantified, the method provides a valuable and simple way to detect
corrupted data so that it can be reacquired prospectively or removed from the data set
retrospectively.
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Figure 1.
Error function dispersion for a volunteer who swallowed during an axial 2D TSE neck scan.
The solid line shows a plot through the average error function obtained from comparing all
sets of adjacent data segments excluding the segment where swallowing occurred. The error
bars on the solid line indicate the standard deviation of all these error functions. The dashed
line is a plot through the error function when the volunteer swallowed.
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Figure 2.
Detection of volunteer motion using the error function dispersion. Both plots are the error
function dispersion for two different volunteers. The first volunteer (a) nodded their head
down, held it for a few seconds and then returned to the original position near the end of the
scan (TR/TE=1.5s/6.8ms, 7 echoes per echo train with 36 echo trains required to fill k-
space). The second volunteer (b) slightly rotated their head and quickly returned to the
original position near the start of the scan and then swallowed during later acquisitions (TR/
TE=1.5s/8.6ms, 16 echoes per echo train with 32 echo trains required to fill k-space).
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Figure 3.
Receive coil dependence of error function dispersion. The images in (a) are the anterior coil
only (left), both coils combined with a sum of squares (center) and the posterior coil only
(right). The solid lines in the graphs are from the posterior receive coil while the dashed
lines are from the anterior receive coil. The volunteer swallowed during the acquisition in
(b) while the head was rotated during the acquisition in (c).
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Figure 4.
Motion artifact reduction using the proposed intrinsic detection technique. The motion
corrupted image is shown in (a) with the corrected image shown in (b). The dashed line in
(c) is the original error function dispersion. After corrupted data segments were identified
and replaced, the resulting error function dispersion is shown in (c) by the solid line. Data
was acquired with a 4 element receive coil, a resolution of 0.6mm × 0.6mm × 2mm, 12
echoes per segment, 22 segments to fill k-space and a TR/TE of 2.5s/61ms.
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