A mutation in the Gsk3-binding domain
of zebratish Masterblind/Axinl leads to a
tate transtormation of telencephalon and
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Zebrafish embryos homozygous for the masterblind (mbl) mutation exhibit a striking phenotype in which the
eyes and telencephalon are reduced or absent and diencephalic fates expand to the front of the brain. Here we

show that mbl/- embryos carry an amino-acid change at a conserved site in the Wnt pathway scaffolding
protein, Axinl. The amino-acid substitution present in the mbl allele abolishes the binding of Axin to Gsk3
and affects Tef-dependent transcription. Therefore, Gsk3 activity may be decreased in mbl~/~ embryos and in
support of this possibility, overexpression of either wild-type Axinl or Gsk3@ can restore eye and
telencephalic fates to mbl-/~ embryos. Our data reveal a crucial role for Axinl-dependent inhibition of the
Wnt pathway in the early regional subdivision of the anterior neural plate into telencephalic, diencephalic,

and eye-forming territories.
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Although considerable progress has been made in eluci-
dating the genetic pathways that regulate dorsoventral
patterning of the vertebrate CNS (Lee and Jessell 1999;
Jessell 2000), it remains uncertain how early anterior-
posterior (AP) pattern is established (Lumsden and
Krumlauf 1996). Studies performed mainly in amphibia
have suggested various models of AP patterning in which
early neural tissue has anterior character upon which
posterior character is imposed by signals originating in
more caudal regions of the embryo (Gamse and Sive
2000). Among the signals that are suggested to influence
regional identity along the AP axis are Fgfs, retinoic acid,
Nodals, and Wnt proteins (Gamse and Sive 2000; Wilson
and Rubenstein 2000).

Misexpression studies have suggested that suppression
of Wnt signaling is required for induction of the verte-
brate head (Nichrs 1999). Direct genetic evidence sup-
porting this conclusion has come from the recent dem-
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onstration that headless (hdl) mutant zebrafish embryos
carry a mutation that abolishes the repressor function of
Tcf3, a transcriptional modulator of Wnt signaling (Kim
et al. 2000). Although the evidence implicating the Wnt
pathway in head development is substantial, it remains
to be determined where, when, and how Wnt signaling
must be suppressed to promote head formation.

Levels of Wnt signaling can be regulated negatively
through the activity of a variety of extracellular proteins
that include members of the Cerberus, Dickkopf, and
Sfrp families (Niehrs 1999). Additionally, several intra-
cellular components of the Wnt signaling pathway can
modulate the degree to which Wnt target genes are acti-
vated or repressed (Brown and Moon 1998; Wodarz and
Nusse 1998). For instance, the protein kinase Gsk3 phos-
phorylates B-catenin, targeting it for degradation (Aberle
etal. 1997; Ikeda et al. 1998; Kishida et al. 1999), thereby
limiting the amount of B-catenin available to activate
Wnt target genes. Gsk3 functions in multicomponent
complexes, one of which appears to include adenoma-
tous polyposis coli, Axin, and additional proteins (Kim et
al. 1999; Barker and Clevers 2000). Within this complex,
Axin is believed to function as a scaffolding protein that
enables Gsk3 to efficiently colocalize with, and thereby
phosphorylate B-catenin (Ikeda et al. 1998; Kishida et al.
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1999). The eventual nuclear readout of Wnt signals
therefore can be modulated in many ways and at several
different positions in the Wnt signal transduction pathway.

In this study, we show that alterations in Wnt signal-
ing underlie one of the most dramatic mutations known
to affect AP patterning of the brain. masterblind (mbl)
mutant embryos exhibit major fate switches within the
prospective forebrain and here we show that the mbl
phenotype is a result of a mutation in Axinl that leads to
overactivation of Wnt signaling.

Results and Discussion

mbl mutant embryos show a fate transformation
of telencephalon and eyes to diencephalon

Zebrafish homozygous for the mbI*™2'% mutation (mbl /")
possess a head but exhibit major alterations in fate allo-
cation within the forebrain such that eyes and telenceph-
alon are reduced or absent while the diencephalic epiph-
ysis is expanded anteriorly (Heisenberg et al. 1996; Masai
et al. 1997) (Fig. 1A-F). The expressivity of the mbl~/~
phenotype is temperature-dependent and small eyes are
present in 20% of mutants reared at 22°C (Fig. 1C,D)
while they are absent when rearing is at 30°C (Fig. 1E,F).
This suggests that the mbl allele may generate a protein
that has temperature-dependent activity.

The fate changes within the forebrain of mbl/~ em-
bryos are reflected in alterations to the expression of
genes within the anterior neural plate from gastrulation
stages onwards. In mbl~/~ embryos, genes expressed in
the prospective telencephalon (anf, emx1; Fig. 1G-J) and
eyes (rx3; Fig. 1K,L) are reduced or absent by bud stage,
whereas genes expressed within the mid/caudal dien-

cephalon (fkd3, deltaB; Fig. IM-P) are expanded anteri-
orly. In contrast, the expression domains of genes within
the prospective midbrain (pax2.1) are only mildly altered
or show no obvious changes in mbl”/~ embryos (Fig.
1Q,R). These results indicate that anterior forebrain ter-
ritory adopts posterior forebrain character by late gastru-
lation in mbl/~ embryos.

mbl /- embryos carry a mutation in the Gks3 binding
domain of Axinl

To understand the role of Mbl in early forebrain pattern-
ing, we identified the mutation likely to be responsible
for the mbI/~ phenotype. Mapping of the mbl mutation
showed it to be adjacent to the centromeric region of
linkage group 3, close to the Wnt scaffolding protein en-
coding gene, axinl (Shimizu et al. 2000) (Fig. 2A). Mice
lacking Axin function have axis duplications (Jacobs-
Cohen et al. 1984), supporting the conclusion that Axin
is a negative regulator of Wnt signaling (Zeng et al. 1997).
As suppression of Wnt signaling can promote anterior
fates (Niehrs 1999), we tested axinl as a candidate for
harboring the mbl mutation. Sequencing of the mbl
axinl allele revealed a leucine to glutamine (L-Q)
amino-acid exchange at position 399 within the Gsk3
binding domain (Tkeda et al. 1998) of Axinl (Fig. 2B) rais-
ing the possibility that altered Axinl function indeed
could be responsible for the mbl~/~ phenotype.

To determine if axin1 is expressed at appropriate times
and places to regulate early forebrain patterning, we ana-
lysed axinl RNA distribution. axinl is maternally pro-
vided and ubiquitously expressed throughout early de-
velopment with slightly higher expression anteriorly at
the end of gastrulation (Fig. 2C-F). The expression of
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Figure 1. mbl/~ embryos exhibit fate transformations within the forebrain. (A,C,E) Lateral views of living wild-type (A) and mbl~/~
embryos raised at 22°C (C) and 30°C (E). (B,D,F) Lateral views of forebrains of wild-type (B) and mbl~/~ embryos raised at 22°C (D) and
30°C (F) stained with an a-acetylated tubulin antibody. Eyes (arrowheads) and telencephalon (asterisks) are reduced in the embryo
raised at 22°C, whereas they are absent in the embryo raised at 30°C indicating that the mbl mutation is temperature-sensitive. (G-R)
Differences in gene expression between neural plates of mbl~/~ (mbl) and wild-type embryos. Genes analyzed are indicated at bottom
right. Axial mesendodermal tissue is labeled additionally with a fIh probe in (G,H) and gsc and fIh probes in (Q,R). For deltaB (M,N),
both diencephalic expression (arrow) and expression in prospective trigeminal neurons (asterisk) is rostrally expanded in the mbI/~
embryo. Gene expression characteristic of telencephalic and eye field fates (G-L) are reduced or absent in mbl~/~ embryos while gene
expression characteristic of more caudal diencephalic fates (M-P) is expanded.
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Figure 2. mbl”/~ embryos harbor a mutation in the axinl gene. [A) Mapping of mbl on linkage group 3 close to axinl on the
corresponding region of a radiation hybrid map. (B) Schematic representation of the Axinl protein showing the amino-acid exchange
(L3%? -, Q) and underlying point mutation (T — A} within the predicted Gsk3 binding site in the mbI Axin1 allele. (C-F) Localization of
axinl transcripts in lateral (D,E) and animal pole (C,F) views of wild-type embryos at the 16 cell stage (C), sphere stage (D), 80% epiboly
(E) and bud stage (F). axinl transcripts are maternally provided and ubiquitously expressed in wild-type embryos. (G-L) Phenotypes of
wild-type (G,]), mbI/~ (H,K), and mbl~/~ embryos injected with axin1 RNA (I,L) stained for the expression of flh in the epiphysial region
of the diencephalon (arrow, G) at bud stage (G-I) or stained with a-acetylated tubulin antibody at pharyngula stage (J-L). Injection of
axinl RNA at the one-cell-stage rescues the mbI/~ mutant phenotype determined by the pattern of fIh expression at bud stage and the
presence of telencephalon (asterisks) and eyes (arrowheads) at pharyngula stage.

axinl is not noticeably changed in mbl~/~ mutant em-
bryos (data not shown). Axinl therefore is likely to be
present throughout the embryo at stages when we be-
lieve Mbl function is required.

To test if altered Axinl function is indeed responsible
for the mbl~/~ phenotype, we provided mbI~/~ embryos
with RNA encoding wild-type Axinl. Widespread ex-
pression of wild-type axinl RNA in mbl/~ embryos ef-
ficiently rescues early neural plate patterning and re-
stores eyes and telencephalic structures at later stages
(Fig. 2G-L; Table 1). In contrast, injection of equivalent
(or higher) levels of mbl axinl RNA into mbl~/~ embryos
did not rescue the mbI~/~ phenotype (Table 1; data not
shown). Therefore, the mutation within Axinl is likely
to be responsible for the fate transformations within the
anterior neural plate of mbl~/~ embryos.

Axin1/Gsk3 interactions are disrupted by the mbl
mutation

The L-Q amino-acid change in Axinl/Mbl occurs
within the Gsk3 binding domain (e.g., Ikeda et al. 1998)
raising the possibility that Axin1/Gsk3 interactions may
be disrupted in mbl/~ embryos. Mutations at the same
or nearby sites in human Axin have been identified in
cells from colon cancers and in vitro assays have shown
that such mutations can reduce binding of Axin to Gsk3
(Webster et al. 2000). We therefore introduced the L - Q

amino-acid change at an equivalent position in a murine
Axin construct (Fig. 3A) and tested if this affects binding
to Gsk3. Gska is efficiently immuno-precipitated by the
wild-type Axin construct but not by the Axin construct
incorporating the mbl mutation (Fig. 3B). Therefore, the
L - Q amino-acid exchange in mbl Axinl is likely to im-
pair Axinl binding to Gsk3 in mbl/~ embryos.
Mutations in the Gsk3 binding site of murine Axin
can lead to mutant forms of Axin functioning in a domi-
nant negative way, most likely by interfering with wild-
type Axin function (Smalley et al. 1999). Therefore, we
examined if Axin constructs incorporating the L-Q
amino-acid exchange show any dominant negative ef-
fects. Tcf-dependent transcription is increased in the
presence of Axinl constructs incorporating the L-Q

Table 1. Wild-type Axinl rescues eye® development

in mbl™~ embryos

Injected RNA  Genotype Normal Absent Small Total
(n) (n) (n) (n)

GFP (control) mbIxmbl 78 27 0 105

axinl(L- Q) mblxmbl 87 29 0 116

axinl mbIxmbl 77 0 20 97

gsk3p mblIxmbl 73 15 8 96

ISize of the eyes was scored at pharyngula stage. 10 pg/embryo
of GFP, axinl and axinl (L-Q) RNA, and 200 pg/embryo of
gsk3B RNA were injected.
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Figure 3. The mbl mutation abolishes binding of Axin to Gsk3. (A) Comparison of the amino-acid sequence around the L-Q
mutation site within the Gsk3 binding domain of Mbl/Axinl between zebrafish, mouse, and human shows a high degree of conser-
vation. (B) Assessment of binding of Gsk3p to a wild-type Axin construct (FIgAN-Axin) and to an Axin construct incorporating the
L - Q amino-acid exchange (FIgAN-Axin L-Q). Wild-type and/or mutant (L-Q) FlgAN-Axin and HA-Gsk3B were immunoprecipitated
and immunoblotted with o-Gsk-38 and «-Flg antibodies. The L-Q mutation prevents both endogenous Gsk-3-8 and HA-Gsk-38
association with the Axin protein. The AN variant of Axin (amino acids 351-965) was used in preference to full length Axin because
of its greater solubility in vitro (Smalley et al. 1999). (C) Assessment of TCF-dependent transcription in the presence of Flg-ANAxin
and Flg-ANAxin L-Q. Expression of Flg-ANAxin L-Q activates TCF-dependent transcription indicating that it can act as a dominant
active protein while wild-type Flg-ANAxin has little or no effect compared to control (pcDNA). The dominant effect of Flg-ANAxin
L-Q is comparable to the previously described L-P mutation at the same position (lane 4; Smalley et al. 1999). Expression of transfected
Axin and endogenous Gsk3p (control) is shown by immunoblot analysis. Lane 5 shows transcription following transfection with a
constitutively active form of B-catenin. Counts are luciferase reporter assay readouts from TOP-FLASH plasmid (TCF-binding motif)
and FOP-FLASH plasmid (mutant motif as control) that have been adjusted for transfection efficiency as described previously (Smalley

et al. 1999).

amino-acid exchange while it shows little or no change
in the presence of wild-type Axinl constructs (Fig. 3C).
This suggests that the Axin construct incorporating the
mbl amino-acid change can interfere with wild-type
Axinl function in vitro. Despite this, embryos heterozy-
gous for the mbl mutation have no obvious phenotype
indicating that a single mbl allele does not lead to sig-
nificant disruption of the function of wild-type Axinl or
related proteins in vivo. To test if high levels of the mbl
allele of Axinl could function in a dominant negative
manner in vivo, we injected high concentrations of both
wild-type and mbl axinl. Unfortunately, this led to the
disruption of several processes (dorsoventral patterning,
cell movements, and AP patterning) during gastrulation
making interpretation of phenotypes problematic. These
experiments did not allow us to unequivocally deter-
mine if the mblI allele of Axinl does indeed have weak
dominant-negative activity in vivo.

Excess Gsk3B can partially rescue the mbl phenotype

Association with Axin is believed to enable Gsk3 to ef-
ficiently phosphorylate B-catenin (Ikeda et al. 1998;
Kishida et al. 1999), and so compromised Gsk3 activity
in mbl/~ embryos may contribute to the mbl~/~ pheno-
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type. Indeed, wild-type zebrafish embryos treated with
lithium, an inhibitor of Gsk3 (Klein and Melton 1996),
have mbl-like phenotypes in which telencephalon and
eyes are reduced or absent and trigeminal neurons are
ectopically expanded (Macdonald et al. 1994). To test if
reduced Gsk3 activity in mbI~/~ mutants can be over-
come by an excess of Gsk3, we over-expressed gsk3p
RNA (Tsai et al. 2000) in mbI~/~ embryos. About 30% of
mbl/~ embryos over-expressing gsk3p had small eyes
and this was also reflected by restoration of neural-plate
patterning at earlier stages (Fig. 4A-F, Table 1). This data
suggests that increasing Gsk3p activity can partially al-
leviate the requirement for Axinl and supports the hy-
pothesis that reduced Gsk3 activity contributes to the
mbl~/~ phenotype. It also indicates that Gsk3p still can
have activity in the absence of wild-type Axinl, possibly
through association with other Axin family proteins.

The mbl mutation has no major consequences
upon organizer/germ-ring formation or fates

Taken together, the experiments described above suggest
that compromised Axinl function in mbl~/~ embryos re-
sults in reduced Gsk3 activity with the consequence that
less B—catenin is targeted for degradation and Wnt path-



Mbl/Axinl and forebrain development

Figure 4. Mbl/Axinl functions both in anterior neural plate patterning
and axis development. (A-F) Dorsal views of neural plates and brains of
wild-type (A,D), mbl”/~ (B,E), and mbIl/~ embryos injected with gsk3p
RNA (C,F) stained for the expression of fIh in the epiphysial region of the
diencephalon (arrow, A) at bud stage (A-C) or stained with an «-acety-
lated tubulin antibody at pharyngula stage (D-F). The embryos injected
with gsk3B RNA show partial rescue of the mbI”/- phenotype as deter-
mined by the pattern of fIh expression at bud stage and the presence of
telencephalon (asterisk) and small eyes (arrowhead) at pharyngula stage.
(G-H) Dorsal views of neural plates of wild-type (G), mbl”/~ (H), and
mbl/~ embryos in which wild-type cells expressing axinl RNA were
transplanted into the anterior neural plate at 70% epiboly stage (I) show-
ing expression of fkd3 (characteristic of mid/caudal diencephalon iden-
tity in wild-type) at bud stage. Ectopic rostral fkd3 expression is absent in
the transplanted cells and in some of the mbI~/~ host cells adjacent to the
transplanted cells. (/~L) Dorsal (J,K) and animal pole (L) views of a wild-
type embryo and embryos injected with a-axinl morpholino antisense
oligonucleotides (K,L) stained for the expression of flh (a marker of orga-
nizer tissue, arrowheads) at shield stage. (/) An uninjected wild-type con-
trol embryo showing a single expression domain of fIh within the dorsal
organizer region. In (K), the injected embryo shows expansion of fIh ex-
pression on the dorsal side of the embryo. In (L), the injected embryo has
multiple sites of fIh expression indicative of widespread dorsalization.
(M-O) Animal pole views of bud-stage control embryo (M) or embryos
injected with increasing (left to right) doses of wnt8 RNA (N,O). In ad-
dition to variably causing dorsalization (data not shown), pax2.1/noi ex-
pression (normally restricted to the presumptive midbrain), spreads into
the anteriormost regions of the neural plate of injected embryos. This
expansion is unlikely to be simply a result of dorsalization of the ecto-
derm, as inhibition of BMP signaling also dorsalizes ectoderm but does
not lead to anterior expansion of pax2.1 expression (e.g., Barth et al.
1999).

way target genes are overactivated. Activation of the
Wnt pathway promotes organizer fates (Larabell et al.
1997) and the zebrafish organizer can indirectly influ-
ence anterior neural fates (Fekany et al. 1999; Saude et al.
2000; Shimizu et al. 2000; Sirotkin et al. 2000). This
raises the possibility that the CNS phenotype of mbl/~
embryos may be due to incorrect organizer function.
However, unlike mutations such as bozozok (Koos and
Ho 1999; Fekany-Lee et al. 1999, 2000) and squint (Feld-
man et al. 1998), which primarily affect organizer tis-
sues, we observed apparently normal expression of gsc,
flh, and other markers of organizer-derived mesendoder-
mal fates in mbl/~ embryos (Fig. 1H; data not shown).
This suggests that there is no major disruption to orga-
nizer function or fates in mbI~/~ embryos.

Wnt8 is a candidate posteriorizing factor that can in-
hibit anterior neural fates and in bozozok and tcf3/hdl
mutant embryos that lack forebrain structures, there is
increased and ectopic expression of wnt8 in germ-ring
cells during gastrulation (Fekany-Lee et al. 2000; Kim et
al. 2000). However, in clutches of embryos from hetero-
zygous mbl~/~ fish, we were unable to detect any obvious
differences in wnt8 expression between mbl~/~ embryos
and their siblings (data not shown). Therefore, mbl~/~
embryos do not show the same early alterations in gene
expression that occur in embryos carrying other muta-

tions that are known to directly or indirectly affect Wnt
signaling activity.

Axinl/Mbl function is required during gastrulation
for forebrain patterning

The apparent absence of major early patterning defects in
mbl/~ embryos suggests that the mbl mutation may af-
fect primarily Wnt-dependent patterning events after the
onset of gastrulation. To address when Mbl/Axinl may
be required, we performed two sets of experiments. First,
we transplanted wild-type ectodermal cells (taken from
random positions in donor embryos) overexpressing
axinl into the anterior neural plate of mbl~/~ mutants at
70% epiboly stage. axinl expressing wild-type cells
within the anterior neural plate partially rescue the
mbl~/~ mutant phenotype as determined by the expres-
sion of fkd3 at bud stage and the presence of eyes at later
stages (n = 9) (Fig. 4G-I; data not shown). Therefore, res-
toration of Axinl function to neural plate cells during
gastrulation is sufficient to restore anterior forebrain
character in mbl~/~ embryos. As a second approach, we
made use of the temperature-dependent expressivity of
the mbl/~ phenotype. To assess when Mbl function is
required to promote eye development, we shifted mbl~/~
embryos from 28°C to 22°C at the onset and at the end of
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gastrulation. Five percent of embryos shifted to the
lower temperature at the onset of gastrulation had small
eyes whereas embryos shifted at bud stage lacked eyes
(Table 2). Together these studies suggest that suppres-
sion of Wnt activity during gastrulation stages influ-
ences the regional subdivision of the neural plate into
telencephalic, diencephalic, and optic territories.

Axinl also functions in early dorsoventral patterning

Mice lacking Axin function have multiple axes (Zeng et
al. 1997) whereas mbl~/~ fish embryos exhibit normal
early dorsoventral patterning of mesodermal structures.
This difference could be from the presence of maternally
provided wild-type Axinl in mbI~/~ embryos. To assess if
this may be the case, we injected antisense morpholino
oligonucleotides (Nasevicius and Ekker 2000) against
axinl into wild-type embryos (n > 200) and assessed ef-
fects upon the development of axial structures, using the
organizer/notochord marker, flh (Fig. 4]). About 20% of
injected embryos exhibited either marked dorsal expan-
sion of the domain of flh expression (Fig. 4K) or ectopic
expression of flh around the germ ring (Fig. 4L). About
50% of surviving injected embryos showed expansion of
axial tissue at bud stage (data not shown). To confirm
that the morpholino injections led to a reduction in
Axinl function, we performed Western blot analysis on
wild-type and axinl-morpholino injected embryos.
Weak anti-Axin immunoreactivity was detected in ex-
tracts of morpholino-injected embryos but levels were
considerably reduced compared to wild-type (data not
shown). We also confirmed phenotypes with two other
axin morpholinos (data not shown). These results indi-
cate that morpholino-based reduction in Axinl function
at early developmental stages can lead to the expansion,
or ectopic induction, of axial structures. Therefore, it is
likely that the function of Axin is conserved between
mouse and fish, but that the mbl allele reveals a novel
requirement for the gene that has not been amenable to
study in mouse because of the severity of the early phe-
notype.

Whnt signaling establishes regional fates along
the anterior-posterior axis of the prospective brain

Our study reveals a novel role for Axinl in the regional
subdivision of prospective forebrain territories. We pro-

Table 2. mbl is a temperature-sensitive mutation affecting
eye! development

Temp Genotype  Normal  Absent  Small  Total
(°C) (n) (n) (n) (n)
28 mblxmbl 126 38 0 164
22 mblxmbl 118 32 13 163
28 .22 mblxmbl 148 42 11 201
28,223 mblxmbl 155 48 0 203

!Size of the eyes was scored at pharyngula stage; > embryos were
shifted from 28°C to 22°C at shield stage; >embryos were shifted
from 28°C to 22°C at bud stage.
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pose that Wnt signaling must be suppressed to allow the
development of telencephalic and optic fates and that if
this fails to occur, prospective forebrain cells adopt a
more caudal, diencephalic identity. It is intriguing that
headless/tcf3 mutant zebrafish embryos, in which the
canonical Wnt pathway is also likely to be overactivated,
show expansion of midbrain (or midbrain/hindbrain
boundary) fates at the expense of forebrain fates (Kim et
al. 2000). Similarly, graded overexpression of Wnt8 can
lead to expansion of midbrain-specific gene expression
into prospective forebrain territories (Fig. 4M-Q). These
observations raise the possibility that thresholds of Wnt
activity may specify different posterior to anterior fates
within the neural plate in a manner analogous to that
proposed for graded Bmp activity in the allocation of
fates along the dorsoventral axis of the neural plate
(Barth et al. 1999; Nguyen et al. 2000).

Materials and methods

In-situ hybridization and antibody labeling

Antibody staining and in-situ hybridization with digoxygenin-
incorporated antisense RNA probes was done as described (Hei-
senberg et al. 1996). Fish embryo raising and staging was done as
described (Westerfield 1995).

Linkage analysis, mapping, and cloning

mbI*™2'3 was mapped in F2 offspring of a TU x WIK reference
cross as described (Rauch et al. 1997), using Simple Sequence
Length Polymorphism markers (Knapik et al. 1996) on pools of
48 mutants and 48 siblings. Linkages from the pools were con-
firmed and refined by genotyping single embryos. To identify
mutations, RNA from Tue wild-type and homozygous mbI*™?13
embryos at bud stage was reverse-transcribed and then ampli-
fied by PCR with pfu polymerase for sequence analysis.

RNA and morpholino oligonucleotide injections

The wild-type axinl injection construct (pCS2SNaxin1) was ob-
tained from Dr. Hibi, Osaka University, and the wild-type wnt8
injection construct from Dr. R. Moon, Washington University.
The mutated mbl axin1 injection construct was assembled from
two PCR fragments for which internal oligonucleotide primers
were designed to introduce the L**° -~ Q amino-acid exchange
using the wild-type pCS2SNaxinl injection construct as tem-
plate and subsequently cloned into the pCS2SN vector. RNA
was injected into one-cell-stage embryos as described previously
(Barth and Wilson 1995). Antisense axinl morpholino oligo-
nucleotides (sequences available on request) were injected at the
one-cell stage or into individual blastomeres at early blastula
stages. Injection of 2.5 ng morpholino antisense oligonucleo-
tides/embryo led to reproducible phenotypes in the injected em-
bryos. Results were comparable for both classes of injection and
results shown in the paper are from injections at the one-cell
stage. Western blot analysis (data not shown) used an affinity
purified anti-Axinl polyclonal antibody that revealed a band of
expected size. Control morpholino oligonucleotides (Gene
Tools) and morpholino antisense oligonucleotides against vari-
ous other genes (Ifng, sqt, cyc) were injected to determine the
specificity of the obtained phenotypes. After phenotypic evalu-
ation, in some cases, single embryos were genotyped taking
advantage of a Bpml restriction polymorphism induced by the



axinl/mbI point mutation. Genomic DNA from single embryos
was amplified around the mutation site and the amplified frag-
ment subsequently digested using Bpml restriction enzyme.

Immunoprecipitation

Full-length murine Axin constructs were subcloned from a
Myec-tagged Axin Form 1 ¢cDNA (supplied by F. Constantini)
into the CMYV expression vector pcDNA3.1+ (Invitrogen). The
N-terminal deletion construct was created using restriction en-
zymes (Smalley et al. 1999). The ANAxin L-Q mutation was
created using the QuickChange Site-directed Mutagenesis Kit
(Stratagene). The HA-tagged GSK-3p was made from pTM3p-tag
(supplied by J. Woodgett) and cloned into pcDNA3.1+. 293 cells
were transfected using FuGENE 6 (Boehringer Mannheim) ac-
cording to the manufacturer’s instructions and lysed 48 h later
with a buffer containing 10mM Tris pH 7.5, ] mM EDTA, NaCl
50 mM, 0.6 mM PMSF (Sigma Cat. No. P-7626), protease inhibi-
tor cocktail (Sigma Cat. No. P8340), and 100 nM Okadaic Acid
(Sigma Cat. No. O-1506). The cell lysates were precleared with
50 pL protein G sepharose beads (Amersham Pharmacia Bio-
tech), previously washed in lysis buffer, for 30 min on a rotating
wheel at 4°C. Aliquots containing 750 pg protein were made up
to a volume of 500 pL and incubated, again on the rotating
wheel at 4°C, with 2 pg antibody and 50 pL protein G sepharose
beads for 4 h. The beads then were pelleted and washed three
times with lysis buffer and used for Western analysis. Antibod-
ies used were mouse a-Flag M2 monoclonal antibody (Sigma),
mouse a-HA monoclonal antibody 12CA5, and mouse a-GSK-
3B (Transducin Labs).

Luciferase essay

293 cells were seeded at 7.5 x 10* cells/well in 6-well dishes
(NUNC), 48 h before an experiment. Each well was transfected
with 0.5 pg of one of the luciferase reporters TOPFLASH or
FOPFLASH (Korinek et al. 1997), 0.15 pg of CMV-hTCF4 (Ko-
rinek et al. 1997), 25 ng of CMV-lacZ as an internal control and
0.3 ng of the test-construct (CMV-driven Flg-tagged ANAxin1).
The CMV promoter-containing plasmid pcDNA3.1+ (Invitro-
gen) was used to equalize the total amount of CMV-driven plas-
mid per well. Carrier DNA (salmon sperm) was added to a total
of 2 ng. Transfection was done in triplicate using FuGENE 6
(Boehringer Mannheim) according to the manufacturers instruc-
tions. Luciferase and B-galactosidase activity were measured 48
h later. For the luciferase assays, cells were harvested into PBS
and pelleted with a low-speed spin. Cell pellets then were lysed
with reporter lysis buffer and processed to generate cell super-
natant and pellet fractions according to manufacturer’s recom-
mendations (Promega Luciferase Assay system). Both fractions
were kept for Western analysis. Luciferase activity in 20 pL
supernatant fraction was measured in an AutoLumat LB953
(Berthold). For the B-galactosidase activity measurements, 20
pL of the supernatant fractions were used in a spectrometric
kinetic assay based on the substrate CPRG (Boehringer Man-
nheim). Luciferase results were calculated after correcting for
B-galactosidase activity. For Western analysis, the triplicate
samples containing TOPFLASH were combined and the super-
natant and pellets run separately on SDS-PAGE gels after nor-
malizing protein loading for B-galactosidase expression. Unless
otherwise stated, only data from supernatant fractions are pre-
sented adjacent to the luciferase TCF-transcription assay data.
Antibodies used were mouse a-GSK-3B8 antibody (Transducin
Labs) and mouse a-Flag M2 monoclonal antibody (Sigma). Sec-
ondary antibodies used were against the appropriate species and
HRP conjugated for visualization with enhanced chemilumi-
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nescence Western Blotting detection reagents (Amersham Phar-
macia Biotech). Immunoblots shown in the figures are of the
supernatant fraction unless otherwise stated.

Cell transplantations

Cell transplantations between wild-type and mbI”/~ mutant em-
bryos at midgastrulation stages were performed as previously
described (Houart et al. 1998).
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