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The post-transcriptional export 
of spliced and unspliced HIV-1 

(human immunodeficiency virus type 1) 
RNAs from the nucleus to the cytoplasm 
is a complex process. Part of the complex-
ity arises from the fact that eukaryotic 
cells normally retain unspliced RNAs 
in the nucleus preventing their exit 
into the cytoplasm. HIV-1 has evolved 
a protein, Rev, that participates in the 
export of unspliced/partially spliced 
viral RNAs from the nucleus. It has been 
documented that several cellular factors 
cooperate in trans with Rev, and certain 
cis-RNA motifs/features are important 
for transcripts to be recognized by Rev 
and its co-factors. Here, the post-tran-
scriptional activities of Rev are discussed 
in the context of a recent finding that an 
RNA cap methyltransferase contributes 
to the expression of unspliced/partially 
spliced HIV-1 transcripts.

Introduction

Retroviruses express both unspliced and 
spliced RNAs. HIV-1 employs intricate 
mechanisms to splice its 9 kb RNA to 
various 4 kb and 1.8 kb transcripts.1 Over 
40 different HIV-1 mRNAs are produced 
by alternate splicing2 of the primary 9 kb 
HIV-1 transcript which contains 5 identi-
fied splicing donor sites and 8 to 9 splic-
ing acceptor sites. Several cellular factors 
including arginine/serine rich (SR) pro-
teins [SC35, ASF/SF2 (alternative splic-
ing factor/splicing factor 2), SRp40 (SR 
protein 40) and 9G8] and heterogenous 
ribonucleoproteins (hnRNPs; hnRNP A1, 
hnRNP A2 and hnRNP A3) regulate the 
expression of different HIV-1 mRNA.3-5 
The efficiency of HIV-1 splicing is 
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sub-optimal,6,7 and some of the unspliced 
and partially spliced viral transcripts 
appear to be retained in the nucleus;8 
however, unspliced and partially spliced 
HIV-1 RNAs are needed to produce the 
genomic RNA for progeny viruses as well 
as for Gag (group-specific antigen), Pol 
(polymerase) and Env (envelope) proteins. 
A challenge for the virus is to overcome 
the cellular mechanisms which normally 
prevent the nuclear exit of unspliced or 
incompletely spliced RNAs. A simple 
view of how HIV-1 solves this challenge 
is that it encodes a viral “export” protein 
that recognizes a cis-viral-RNA motif con-
tained in unspliced/partially spliced viral 
transcripts.9-11 Thus, the HIV-1 Rev pro-
tein serves to export from the nucleus into 
the cytoplasm unspliced/partially spliced 
genomic, Gag, Pol, Env RNAs that con-
tain a cis-RRE (Rev-responsive element) 
motif.12

The simple picture of Rev—RRE 
interaction belies a more complex process 
that involves many host cell co-factors. 
Initial efforts to identify the cellular co-
factor(s) that mediate Rev nuclear export 
function revealed cellular factors CRM1 
(chromosome region maintenance 1), 
Ran (Ras-related nuclear protein), FG 
(phenylalanine-glycine)-repeat nucleo-
porins, including RIP (Rev-interacting 
protein)/RAB (Rev/Rex activation 
domain-binding protein).13-18 In particu-
lar, Rev directly interacts with nuclear 
export receptor CRM1, and CRM1 is 
required for Rev-mediated export of HIV 
RNAs.14-16 Additionally, it has been shown 
that RNA helicases like DDX3 [DEAD 
(Asp-Glu-Ala-Asp) box 3],19 DDX1,20 
and RNA helicase A (RHA),21 also con-
tribute to Rev function. More recently, it 
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the initiation of translation.48,49 Of note, 
there are published data that during 
the replication of Togaviruses, Semliki 
Forest virus and Sindbis virus,50,51 late 
viral mRNAs acquire hypermethylated 
guanosine caps and are expressed into 
viral proteins. Moreover, in nematode 
C. elegans and A. lumbricoides where 
mRNAs acquire trimethylguanosine 
caps by trans-splicing (TMG-capped 5' 
leader sequence from snRNA are spliced 
to the 5' ends of mRNAs) virtually all of 
the mRNAs coding for actin and ribo-
somal proteins have trimethylguanosine 
caps, and are apparently efficiently trans-
lated.52-55 These findings together with 
the HIV-1 report23 suggest that TMG-
capping per se may not be a barrier to 
ribosome-translation of RNAs.

PIMT as an Anti-HIV-1 Drug Target

If TMG-capping of HIV-1 RNA is a 
significant biological process in viral 
replication, then it stands to reason that 
the PIMT enzymatic activity could be a 
potential drug target for inhibiting viral 
pathogenesis. Targeting PIMT, a cellu-
lar protein, avoids the inherent problem 
posed by rapid HIV-1 mutation to all 
currently utilized chemotherapeutics tar-
geted to virus-encoded proteins. There is 
some early evidence that treatment of cells 
with RNA methylation inhibitors sup-
presses HIV-1 replication.23 There are also 
reports which indicate that RNA methyla-
tion inhibitors can be used successfully to 
inhibit the replication of Herpes simplex 
virus, Vesicular Stomatitis Virus and other 
viruses.56-59 Future studies on whether 
these inhibitions correlate with a require-
ment for hypermethylated capping of viral 
RNAs will be needed.

Post-transcriptional Role of Rev 
on RNA Packaging?

Full length (unspliced) HIV-1 RNA func-
tions as a template for translation of Gag-
Pol proteins and also serves as the genomic 
RNA that is packaged into virions. 
Recently a new post-transcriptional activ-
ity for Rev in the packaging of genomic 
RNA was reported. It was shown that 
Rev influenced viral RNA encapsidation 
and subsequent HIV-1 infectivity by more 

of PIMT appears to be selective for only 
RRE-containing HIV-1 RNAs; thus, the 
expression of fully spliced viral transcripts 
(which do not contain the RRE-sequence 
and are not TMG-capped) does not 
appear to be regulated by PIMT. Rather 
than using the CRM1-associated route, 
fully spliced HIV-1 RNAs are known 
to exit the nucleus through the NFX1 
(nuclear transcription factor X-box bind-
ing 1)/TAP (tyrosine kinase interacting 
protein associated protein) dependent 
pathway.36,37

So where does the recently published 
report lead us? An important next ques-
tion is which cellular RNAs are targets of 
PIMT for TMG cap hypermethylation. 
Currently, RNA Pol II transcribed snRNA 
(small nuclear RNA) and snoRNA (small 
nucleolar RNA) are two types of RNAs 
subjected to additional methyl modifica-
tions to their m7G cap structures to form 
TMG-caps.38-41 Both types of TMG-
capped RNAs are transported within the 
nucleus or between the nucleus and the 
cytoplasm by the CRM1 protein42-44 (Fig. 
1). Interestingly, PIMT-mediated TMG-
hypermethylation occurs in the nucleus 
for snoRNA45 and in the cytoplasm for 
snRNA38-41 (Fig. 1). It remains unclear 
why one type of RNA requires nuclear 
PIMT TMG-activity while the other 
needs a cytoplasmic PIMT TMG-activity. 
This question warrants further resolu-
tion; however, the finding that PIMT is 
a nuclear-cytoplasmic shuttling protein23 
suggests that it can serve both types of 
activity. A bigger question is whether 
human cellular RNAs, other than snRNA 
and snoRNA, also have TMG-cap modi-
fication. While many human mRNAs are 
CRM1 dependent for expression,14,46,47 
there is yet no evidence that any of these 
mRNAs are TMG-capped. The technol-
ogy is available to address this question 
which seems certain to be answered soon.

Translation of TMG-Capped RNAs

If some mRNAs do have TMG caps how 
might this modification affect their trans-
lation? Normally the recognition of m7G 
cap by eIF-4F is the first step in mRNA-
ribosome association and the translation 
of the mRNA. Thus, the presence of a 
TMG cap might have repercussions for 

has become clear that many other cellular 
factors22 including those involved in RNA 
capping,11,23-25 alternative splicing,5 RNA 
stability,26 and intracellular localization of 
the viral transcripts may also participate in 
the cytoplasmic expression of unspliced/
partially spliced HIV-1 RNAs.27

Consistent with the view of addi-
tional complexities to the expression of 
unspliced/partially spliced viral RNAs, 
it was recently reported that a human 
cellular RNA methyltransferase, PIMT 
(peroxisome proliferator-activated pro-
tein with methyltransferase domain), 
enhances Rev-mediated export of HIV-1 
RNA.23 Indeed, PIMT was demonstrated 
to be a nuclear-cytoplasmic shuttling pro-
tein which binds to Rev, and PIMT over-
expression augmented Rev-dependent, but 
not Rev-independent, expression of viral 
RNAs. When PIMT was knocked down 
in cells or when PIMT activity was inhib-
ited by small chemical inhibitors, HIV-1 
replication in human cells was reduced. 
These collective findings implicate a role 
for the PIMT RNA methyltransferase in 
HIV-1 post-transcriptional regulation.

What does PIMT do 
for HIV-1 RNA?

PIMT is the human homolog of the 
yeast RNA cap hypermethylase TGS1 
(trimethylguanosine synthase 1). TGS1 
hypermethylates the m7G RNA cap to 
a trimethylguanosine (TMG; m2,2,7 
guanosine) cap.28-33 A nuclear isoform of 
human PIMT has been shown to have 
methyl transferase activity.28,34,35 In the 
new finding, PIMT was found to hyper-
methylate selectively the RNA-cap of 
unspliced and partially spliced HIV-1 
transcripts and to increase their cytoplas-
mic distribution23 (Fig. 1). It was shown 
that PIMT, a nucleocytoplasmic shut-
tling protein, is recruited by Rev to RRE 
containing transcripts (i.e., unspliced 
and partially spliced HIV-1 RNA). Rev-
recruited PIMT then hypermethylates the 
m7G-cap on these RNAs to a TMG-cap. 
How the TMG-cap then acts to facilitate 
the cytoplasmic expression of the RNA is 
not clearly understood, but one sugges-
tion is that the TMG-cap may be recog-
nized by CRM1 which then directs the 
transcript for nuclear export. The activity 
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alone is not sufficient for efficient encap-
sidation of HIV-1 RNA that has been 
engineered to be exported via a CRM1 
independent pathway. These collective 
results indicate that direct CRM1/Rev—
RRE RNA interaction is a critical event 
needed for optimal viral RNA encapsida-
tion. Previously it was also reported that 
the major HIV-1 packaging signal (SL3; 
stem loop 3) though important was not 
sufficient for RNA packaging.65 The 

RNA engineered to be Rev and RRE-
independent by codon optimization of the 
Gag or by substituting the CTE (consti-
tutive transport element, which acts inde-
pendently of Rev),64 in place of the RRE. 
It should be noted that viral RNA which 
is codon optimized in Gag and viral RNA 
that substitutes CTE for RRE are exported 
through NXF1/TAP pathway and are not 
CRM1 substrates.36,37 Additionally, evi-
dence suggests that the presence of Rev 

than 1,000 fold.60-63 Interestingly, this lat-
ter activity of Rev was in part linked to 
the nuclear export of RNA suggesting 
that this apparent activity of Rev may lie 
in its ability to modulate nuclear RNP 
(ribonuclear protein) assembly on RRE 
containing RNAs.60-62 It was observed 
that in cells expressing similar amounts 
of different forms of HIV-1 RNA, Rev/
RRE dependent viral RNA encapsida-
tion was 100 fold higher than similar viral 

Figure 1. Schematic representation of some of the CRM1 dependent nuclear and cytoplasmic events that influence the expression and function of 
hypermethylated cellular and viral RNAs. the hypermethylation of RNA caps is a complex process which occurs in different regions of the cells and 
appears to determine RNA trafficking inside the cell. Some proposed CRM1 dependent mechanisms that regulate post-transcriptional expression of 
tMG containing transcripts are indicated as follow. (1) m7G capped snoRNAs are targeted to “Cajal bodies” by CBC (cap binding complex) and PHAX 
(phosphorylated adapter for RNA export) where they are hypermethylated by PiMt and then bound by CRM1 through recognition of the tMG caps 
and transported to the nucleolus; (2) snRNAs are exported to the cytoplasm in a m7G-cap dependent manner. snRNAs bound by CBC, CRM1 and 
PHAX are exported to cytoplasm. the association of Sm core proteins with snRNA in cytoplasm recruits PiMt which hypermethylates the snRNA cap. 
the snRNA with tMG-cap are then re-imported into the nucleus in a complex with Sm core proteins. this snRNP interacts with CRM1 and localizes to 
Cajal bodies from where they travel to the nucleolus and interchromatin granules. (3) Rev binds to the cis-RRe motif in unspliced and partially spliced 
HiV-1 RNA and recruits PiMt which then hypermethylates the m7G-capped RNA. CRM1 binds to Rev and the tMG cap and transports the RNA into the 
cytoplasm. (4) telomerase tLC-1 RNA (telomerase component-1 RNA) also has been reported to acquire a tMG cap in the nucleus before being export 
through a CRM1 route into the cytoplasm.32
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above observations on RNA-packaging 
agree with a SL3-independent role con-
tributed by Rev in viral RNA encapsi-
dation.60-62 It remains to be determined 
if a TMG-PIMT/Rev interaction may 
also influence the encapsidation of viral 
genomic RNA. Preliminary analyses of 
HIV-1 virion RNAs suggest the presence 
of TMG-capped moieties (Yedavalli VS, 
unpublished results).

Concluding Remarks

Several different transcripts synthesized 
by RNA polymerase I [rRNAs (ribosomal 
RNA)], RNA polymerase II [mRNAs 
(messenger RNA) and snRNAs] and 
RNA polymerase III [tRNAs (transfer 
RNA) and 5S rRNA], use distinct and 
independent pathways to exit the nucleus. 
Efforts to identify the critical trans-acting 
protein components that define each of 
these distinct nuclear RNA export path-
ways have produced insights into several 
functional factors and their pathways. To 
date, the study of HIV-1 has contributed 
to the understanding of many important 
RNA transport proteins. Going forward it 
will be important to explore how cis-RNA 
features such as RNA-cap and interstitial 
RNA modifications in viral transcripts 
could determine RNA distribution.
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