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Most colorectal cancers have muta-
tions in the tumor suppressor APC. 

The best-understood function of APC is 
its participation in a protein complex that 
regulates the availability of β-catenin. 
Solid tumors are characterized by the 
presence of hypoxia as well as inflamma-
tion, which leads to the upregulation of 
Hypoxia Inducible Factors like HIF-1α. 
We recently demonstrated a novel antag-
onistic link between APC and HIF-1α. 
We found that hypoxia results in reduced 
levels of APC mRNA and protein via a 
direct HIF-1α-dependent mechanism. 
Similarly, APC mediates the repression 
of HIF-1α. However, this requires wild-
type APC, low levels of β-catenin and 
NFκB activity. These results reveal the 
downregulation of APC as a novel mech-
anism that contributes to the survival 
advantage induced by hypoxia and cyto-
kines such as TNFα. Our data indicate 
that loss-of-function mutations in APC 
result in the engagement of the hypoxia 
response. Importantly, this suggests that 
other stimuli that induce HIF, such as 
inflammatory cytokines and oncogenes, 
alter APC function.

Adenomatous polyposis coli (APC) is a 
tumor suppressor mutated in most colorec-
tal cancers.1 APC is also mutated in the 
human syndrome Familial Adenomatous 
polyposis (FAP). FAP patients are hetero-
zygous for APC. They develop hundreds 
of polyps in their gut,2,3 and progression 
to malignancy involves the presence of 
inflammation and hypoxia.4,5 The APC 
protein is involved in many of the funda-
mental processes that govern normal gut 
epithelium. It is best known for control-
ling the Wnt/β-catenin pathway, where it 
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regulates β-catenin levels, thus regulating 
the transcriptional activity of TCF/ LEF 
transcription factors.6 APC also con-
tributes to the regulation of cytoskeletal 
proteins.7

Hypoxia is a common feature of solid 
tumors and regulates tumor angiogenesis 
and growth.4,8 Hypoxia leads to the induc-
tion of the transcription factor Hypoxia 
Inducible Factor (HIF),9 a heterodimeric 
transcription factor composed of α and β 
subunits. While HIF-1β is constitutively 
expressed, HIF-α subunits are extremely 
labile at normal oxygen levels. Oxygen 
controls HIF-α levels through post-trans-
lational hydroxylation, catalyzed by a class 
of 2-oxoglutarate dioxygenases called pro-
lyl-hydroxylases (PHDs). Hydroxylation 
of HIF-α signals for the ubiquitin recog-
nition complex containing the von Hippel 
Lindau tumor suppressor and subsequent 
degradation by the proteasome.10,11 When 
oxygen levels are reduced or cofactors 
such as iron ions are not available, PHD 
activity is inhibited resulting in increased 
HIF-α levels. Under these conditions, 
HIF-α translocates to the nucleus and 
transactivates its target genes.

In addition to hypoxia, other stimuli 
also result in the induction of HIF-α.12‑14 
Specifically, the HIF-1α gene is under 
the control of NFκB13,15,16 and the chro-
matin remodelling complex SWI/SNF.17 
Furthermore, NFκB also controls HIF-1β 
directly and HIF-2α indirectly,14 making 
NFκB a key regulator of the HIF system. 
NFκB is the collective name for a family of 
important transcription factors that con-
trol many cellular processes such as apop-
tosis and proliferation (reviewed in ref. 18).

We recently reported functional 
crosstalk between HIF-1α and APC at 
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be different in isolation than in the context 
of the full-length molecule. For instance, 
N-terminal fragments are more active in 
stimulating the GEF activity of ASEF 
than full-length APC.21,22 Furthermore, 
N-terminal domains of APC bind to 
C-terminal regions, which are lacking in 
tumor cells.23 This interaction can regu-
late protein interactions of the N-terminal 
domain.23 Thus in tumor cells, when the 
C-terminal region is missing, such regula-
tion is not available, leaving the isolated 
N-terminal fragments unregulated.23,24 
The exact nature of the functions or activ-
ities carried out by N-terminal fragments 
is not clear at all. However, expression of 
N-terminal APC fragments in diverse cells 
and tissues has strong dominant effects on 
cell migration (unpublished observations). 
At this time, the direct consequences of the 
loss of truncated APC fragments induced 
by elevated HIF-1α are not understood 
and require further studies.

A reciprocal repression of HIF-1α by 
APC was also observed. APC depletion 
results in increased HIF-1α levels and 
activity (Fig. 2). This increase is medi-
ated by NFκB and requires regulation of 
β-catenin by APC. In this case, the level 
of active β-catenin seems to be crucial for 
the ability of APC to regulate HIF. This 
is likely related to the fact that, while too 
much β-catenin activity results in NFκB 
inhibition, low levels of β-catenin can 
promote NFκB activity to induce HIF-1α 
(Fig. 2). This observation is in agreement 
with other studies that have suggested a 
dose-dependent effect of β-catenin in pro-
ducing a malignant phenotype in cancer 
cells.25

Our results suggest that cells lacking 
APC are adapted to hypoxia and hence 
have a survival advantage under hypoxic 
conditions. This could be an important 
factor in the progression of colorectal 
tumors even at the early stages.
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that these stimuli can modulate APC 
levels via HIF-dependent mechanisms 
(Fig. 1). Cytokine- and oncogene-induced 
repression of APC is predicted to increase 
β-catenin and Wnt signaling, allowing 
cells to progress to a more proliferative 
phenotype (Fig. 1).

Our study demonstrated that HIF-1 
represses the APC promoter directly and 
does not discriminate between wild-type 
and mutant APC. Consistently, hypoxia 
results in decreased levels of mutant  
(truncated) APC protein in cancer cells. 
The significance of this observation is not 
clear. Truncated N-terminal fragments of 
APC can interact with a number of pro-
teins.7 The activity of these fragments may 

the transcriptional level;19 depletion of 
HIF-1α results in increased APC mRNA 
and protein, just as depletion of APC 
results in increased HIF-1α. The former is 
the result of direct transcriptional repres-
sion of APC by HIF-1α. We discovered 
a hypoxia-responsive element (HRE) in 
the APC promoter and demonstrated 
that hypoxia induces HIF-1α binding to 
this site. Importantly, hypoxia promotes a 
reduction in APC mRNA and protein in 
a variety of cells, suggesting that suppres-
sion of APC by hypoxia can contribute to 
increased survival in hypoxic conditions 
in tumors with wild-type APC.

Cytokines and oncogenes can induce 
HIF levels and activity12,14,20 suggesting 

Figure 1. HIF-1α represses APC. Schematic diagram depicting how hypoxia, cytokines and on-
cogenes induce HIF to produce transcriptional repression of APC and hence deregulation of APC 
function.
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Figure 2. APC represses HIF-1α. APC control of HIF-1α is indirect and requires wild-type APC, low levels of β-catenin and NFκB activity. Mutations in 
APC result in high levels of β-catenin, which inhibits NFκB, and hence suppresses changes in HIF-1α.


