
 review

Cell Cycle 10:10, 1582-1589; May 15, 2011; © 2011 Landes Bioscience

1582	 Cell Cycle	 Volume 10 Issue 10

Introduction

Hematopoietic stem cells (HSCs) are a rare multipotent cell type 
that are required to initiate blood cell production throughout life. 
As well as having the ability to produce all the mature hemato-
poietic cell types, HSCs can self renew, which allows HSCs to 
be maintained at constant levels in the adult bone marrow, and 
to expand during fetal development and post transplantation. 
During steady-state hematopoiesis, HSCs are predominately qui-
escent and only cycle very rarely. It is likely that the maintenance 
of HSC quiescence is vital to sustaining the HSC pool through-
out life. HSCs are regulated by intrinsic and extrinsic factors that 
control their ability to self-renew, proliferate and replenish the 
hematopoietic system. The cytokine thrombopoietin (TPO), as 
well as having a lineage specific role in the regulation of mega-
karyopoiesis, is vital for HSC regulation. In this review, we will 
examine recent work exploring how TPO is involved in mainte-
nance of HSC quiescence.

Thrombopoietin

Thrombopoietin is the chief cytokine that regulates megakaryo-
cyte production, signaling through its receptor Mpl. The expres-
sion pattern of Mpl provides clues to the dual functions of TPO, 
with Mpl expressed predominantly on megakaryocytes, platelets, 
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Thrombopoietin (TPO) is the cytokine that is chiefly responsible 
for megakaryocyte production but increasingly attention has 
turned to its role in maintaining hematopoietic stem cells 
(HSCs). HSCs are required to initiate the production of all 
mature hematopoietic cells, but this differentiation needs to 
be balanced against self-renewal and quiescence to maintain 
the stem cell pool throughout life. TPO has been shown to 
support HSC quiescence during adult hematopoiesis, with 
the loss of TPO signaling associated with bone marrow 
failure and thrombocytopenia. Recent studies have shown 
that constitutive activation mutations in Mpl contribute to 
myeloproliferative disease. In this review, we will discuss TPO 
signaling pathways, regulation of TPO levels and the role of 
TPO in normal hematopoiesis and during myeloproliferative 
disease.
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hemangioblasts and hematopoietic stem cells.1-3 TPO’s important 
role in platelet production was shown when it was found that 
TPO-/- and Mpl-/- mice have an ~85% reduction in platelets and 
megakaryocytes, while the mature cells of other lineages remain 
unaffected.4-6 TPO acts early in megakaryocyte lineage commit-
ment to promote the proliferation of megakaryocyte progenitors,7 
and also increases the ploidy of megakaryocytes.6 However, TPO 
has little or no effect on platelet shedding from megakaryocytes 
as TPO does not promote proplatelet formation by megakaryo-
cytes in vitro8 or alter platelet morphology and their ability to 
become activated,9 and after TPO injection, it takes mice three 
or more days to increase their platelet count.7

Stem Cell Role for TPO

While megakaryocytes are the only hematopoietic cell lineage 
that are affected by loss of TPO signaling, less than half the 
wild-type levels of erythroid and myeloid progenitors are found 
in TPO-/- and Mpl-/- mice.5,10 The reduction in multipotent pro-
genitor and HSC function is even more severe, with competitive 
transplant assays revealing that Mpl-/- bone marrow, even when 
ten-fold in excess, was unable to effectively reconstitute hema-
topoietic organs.11 This suggested that TPO signaling could be 
involved in maintaining HSC number or in enabling expansion 
of stem cells after transplantation. To investigate HSC number in 
Mpl-/- mice, competitive transplant assays into TPO-/- hosts were 
used. This demonstrated that the Mpl-/- bone marrow was more 
able to compete with wild-type bone in a TPO-free environment 
but was still required in excess to effectively compete against 
wild-type bone marrow in a primary transplant.12 To investigate 
HSC expansion after transplantation, wild-type bone marrow 
was transplanted into irradiated wild-type and TPO-/- mice. It 
was found that at least four times more bone marrow cells were 
required to protect the TPO-/- mice.13 Both these results suggest 
that TPO facilitates the expansion and self renewal of HSCs after 
transplantation.

During adult hematopoiesis, TPO has a role in maintaining 
the quiescence of HSCs as is demonstrated by the age-progressive 
loss of HSCs in TPO-/- mice, the increased cycling observed in 
HSCs in TPO-/- mice and mice treated with an anti-Mpl anti-
body and the increased proportion of quiescent HSCs found 
after TPO stimulation.15,16 Investigation of the expression of 
cell cycle genes found that loss of TPO signaling was associated 
with downregulation of cell cycle inhibitors Cdkn1c (p57Kip2) 
and Cdkn2d (p19Ink4d) in HSCs.15,16 Cyclophosphamide/granu-
locyte colony stimulating factor (G-CSF) treatment, which is 
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for angiopoietin-1 (Ang-1), and helps keep HSCs adhered to the 
osteoblastic niche.33 This suggests that TPO is actively involved 
in maintaining the association of HSCs with the niche.

It was thought that TPO’s role in the regulation of HSCs 
only began postnatally, because Mpl-/- and TPO-/- fetal livers 
were found to have the same number of E12.5 progenitor cells as 
found in wild-type mice, with an equivalent ability to repopulate 
the bone marrow with E14.5 fetal liver cells after transplant.5,15 
However, Mpl mRNA expression can be detected in the AGM, 
fetal liver and yolk sac as early as E10.5,34 and E14.5 AA4+ Sca-1+ 
Mpl+ fetal liver cells have superior repopulating ability compared 
to AA4+ Sca-1+ Mpl- fetal liver cells.35 Loss of TPO signaling 
may cause a developmental delay in hematopoiesis, as Mpl-/- 
E11.5 fetal livers were unable to reconstitute mice, even in larger 
numbers than wild-type cells.34 Transplants using limited num-
bers of Lin- Sca-1+ AA4+ fetal liver cells identified defects in the 
repopulation of ability of Mpl-/- cells at both E12.5 and E14.5, 
but transplants using unfractionated E12.5 and E14.5 fetal livers 
showed similar ability of wild-type and Mpl-/- cells to reconstitute 
irradiated animals.34 Secondary transplants of these cells resulted 
in lower reconstitution by the Mpl-/- cells, but it was unclear if 
this was due to an intrinsic defect of the cells, or if this was due 
to continued lack of TPO signaling compared to the wild-type 
cells. Transplants using TPO-/- mice as recipients might be useful 
to investigate this in an equivalent TPO-null environment for 
both genotypes.

Use of TPO in Ex Vivo HSC Culture

HSC transplantation is an important therapeutic procedure, 
but its application is often restricted by difficulties in ex vivo 
expansion and maintenance of HSCs.36,37 Similar to its ability to 
expand HSCs after transplantation, TPO can augment ex vivo 
expansion of HSCs to increase the pool available for transplanta-
tion, but it is far more effective when used in combination with 
other cytokines.38 Most cytokine combinations proposed include 
stem cell factor (SCF), fms-like tyrosine kinase 3 ligand (FL) and 
TPO.39,40 A nonpeptidyl small molecle agonist of MPL, NR-101, 
was found to be more efficient than TPO in expanding HSCs.41 
Interestingly, this effect seemed to be specific to HSCs, as it was 
not more efficient than TPO in inducing megakaryocyte expan-
sion. Further investigation into its downstream signaling could 
help elucidate the pathways that TPO regulates in HSCs as 
opposed to megakaryocytes.

Regulation of TPO Levels

In order to produce platelets when required, TPO concentra-
tion is linked to platelet levels. This was first noted when ele-
vated TPO levels were observed in thrombocytopenic animals.42 
Similar high levels of TPO were also observed in response to che-
motherapy-induced thrombocytopenia.43 Further studies showed 
that TPO levels are inversely proportional to platelet mass, which 
suggested that there was a feedback mechanism that detected 
decreased platelet mass and caused a subsequent increase in cir-
culating TPO levels.44

commonly used in human clinical transplantation to drive HSC 
self-renewing proliferation and to induce HSC migration into 
the blood stream,17-20 resulted in the downregulation of both of 
these genes as HSCs proliferate.21 Additionally, mouse embry-
onic day 12 (E12) aorta-gonads-mesonephros (AGM) cells that 
had lost Cdkn1c were less able to repopulate the bone marrow of 
irradiated adult mice than wild-type AGM cells.22 Genes from 
the Hox family have also been found to be important for the 
expansion and self-renewal of HSCs.23,24 Several genes in this 
family, Hoxb4, Hoxa5, Hoxa9, Hoxa10 and Meis1, a Hox family 
cofactor, were downregulated in the HSCs of Tpo-/- mice or are 
induced by TPO.15,25,26 Together, these modulations of genes that 
are involved in the cell cycle or are important hematopoietic tran-
scription factors may explain some of the phenotypes observed in 
HSCs when TPO signaling is impaired.

In humans, TPO signaling has also been linked to HSC regu-
lation, because patients with congenital amegakaryocytic throm-
bocytopenia (CAMT), caused by loss-of-function mutations in 
Mpl,27,28 progressively develop bone marrow failure.29 As in Mpl‑/- 
mice, these patients are born with normal numbers of hemato-
poietic cells except for a megakaryocyte and platelet deficiency. 
CAMT patients can develop bone marrow failure as early as two 
months of age and by a median age of two years.29 Mpl-/- mice do 
not develop bone marrow failure, but, by one year of age, their 
myeloid cells are reduced compared to wild-type mice,15 suggest-
ing the onset of exhaustion of the stem cell pool, analogous to 
that seen in CAMT patients.

It was thought that some of the HSC defects found in CAMT 
patients might be rescued with restoration of Mpl expression, if 
they are due to continued lack of TPO signaling. A study using 
tissue-appropriate promoters, such as Mpl and Gp1ba promoter, 
was able to restore Mpl expression in Mpl-/- cells to near physi-
ological levels in megakaryocytes and platelets using lentivi-
ral vectors.14 This resulted in an amelioration of the stem cell 
defects, with mice transplanted with the Mpl-transduced cells 
having an increase of Lin- Sca-1+ c-Kit+ (LSK) cells compared to 
mice transplanted with Mpl-/- GFP transduced cells and the Mpl 
transduced cells having increased long-term repopulating poten-
tial after secondary transplant and showing correction of tran-
scriptional changes in cell cycle genes observed in LSK cells.14 
Encouragingly, this study indicates that the HSC loss observed in 
CAMT patients is not irreversible and points towards the devel-
opment of gene therapies for this disease.

Studies of TPO signaling in HSCs have uncovered two con-
trasting roles for TPO in adult hematopoiesis: (1) maintaining 
stem cells in a quiescent state to preserve them with age and 
(2)  expanding HSCs in times of crisis, such as post transplant. 
While these two roles are in opposition, in both states TPO 
regulates cell cycle transition. The microenvironment of HSCs 
is also important for regulating the balance between quiescence 
and proliferation, with stem cells residing in a specialized niche 
in the bone marrow.30-32 Interactions between TPO and signals 
from the niche could be responsible for balancing TPO’s dual 
stem cell roles. Long-term HSCs, which are Mpl+, are closely 
associated with TPO-producing osteoblasts in the niche.16 TPO 
stimulates the expression of Tie2 on HSCs, which is the receptor 
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restoration of ability of Mpl-/- HSCs to repopulate the bone mar-
row after transplantation. This may be because TPO signaling in 
HSCs requires a high level of Mpl receptor expression, making 
these cells relatively less responsive to high levels of circulating 
TPO.

Further details of this pathway have recently been described. 
Upon Mpl stimulation with TPO, the receptor complex rapidly 
undergoes clearance from the circulation by clatharin-dependent 
endocytosis.55 Mpl is then ubiquinated and degraded by Cbl 
through its E3 ubiquitin ligase activity.56 Cbl’s important role 
as a negative regulator of TPO signaling is shown, because it is 
one of the few negative regulators that has a significant effect on 
steady state megakaryopoiesis; Cbl-/- mice have a thrombocytosis 
and excessive numbers of splenic megakaryocytes.57 Not all Mpl 
significantly contributes to clearance of TPO. Transplantation of 
wild-type bone marrow into Mpl-/- mice created a mouse with 
Mpl expressed on its hematopoietic system but not on endothe-
lial cells, showing that endothelial cell Mpl does not measurably 
affect TPO levels, despite such cells having relatively high num-
bers of receptors.53 Thus, the presence of Mpl does not ensure 
adequate thrombopoietin regulation, and further work is needed 
to see if endothelial cells might lack crucial components of the 
TPO degradation pathway.

Changes in TPO produced by stromal cells in the marrow 
appear to be an additional variable in the overall production of 

TPO is predominately produced by the liver45 but is also pro-
duced by the kidney, spleen and stromal cells in the bone mar-
row.45-47 Because levels of erythropoietin (EPO), the cytokine 
most closely related to TPO, had been found to be regulated at 
a transcriptional level in response to anemia,48-50 it was expected 
that levels of TPO transcription would be regulated by a similar 
mechanism. Surprisingly, it was found that the kidney and liver 
produce thrombopoietin constitutively, with their TPO mRNA 
levels unresponsive to thrombocytopenia,51 and that platelets 
were able to absorb TPO from TPO-conditioned medium in a 
dose-dependent manner.51

This led to the discovery that TPO is removed from circula-
tion primarily by binding to Mpl. Platelets and megakaryocytes 
account for the bulk of Mpl receptors.1,35,52,53 In situations such 
as thrombocytopenia, there are insufficient platelets to remove 
excess TPO from the circulation (Fig. 1). The high levels of TPO 
remaining result in the stimulation of megakaryocyte and plate-
let production. This mechanism of control allows TPO levels to 
be directly regulated by available platelet mass. Supporting this 
observation is the high level of TPO found in Mpl-/- mice where 
TPO is unable to be receptor-internalized and the thrombocyto-
sis observed in Mpl-/- mice with partial transgene rescue of Mpl 
expression, where the low levels of Mpl allow for increased circu-
lating TPO.54 In contrast, despite the high levels of circulating 
TPO seen in these mice, the procedure only resulted in partial 

Figure 1. TPO levels are regulated by platelet mass. The liver constitutively produces TPO. Upon binding to Mpl receptors on platelets, TPO is internal-
ized and removed from circulation. A smaller proportion of total TPO is produced by stromal cells in the bone marrow and their TPO mRNA produc-
tion is sensitive to factors produced by platelets such as PF4 and thus also linked to platelet number. TPO then stimulates thrombopoiesis and HSC 
quiescence in the bone marrow. In the case of thrombocytosis, much TPO is removed from circulation, resulting in low levels of TPO signaling, while 
during thrombocytopenia, little TPO is cleared from circulation, resulting in high levels of TPO signaling. This feedback system allows thrombopoiesis 
to be regulated by the available platelet mass but also links HSC quiescence to platelet numbers.
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containing genes downregulated in the absence of TPO, suggest-
ing that genes such as Ndn,61 Cdkn1c62 and Maged163 could be 
involved in maintaining the balance between HSC quiescence 
and activity regulated by TPO. In support of this regulatory 
pathway, changes in HSC Cdkn1c expression have independently 
been associated with administration of TPO in mice.16

This suggests that there is a feedback loop in which platelet 
numbers, through regulation of available TPO levels, regulate 
the entry of HSCs into cycle. Such a feedback mechanism may 
provide protection in times of hematopoietic stress associated 
with bleeding. After the loss of platelets both via both bleeding 
and wound healing, the resulting increase in TPO levels will 
drive production of megakaryocytes and platelets. However, as 
this stress on the hematopoietic system runs the risk of exhaust-
ing the HSC compartment and compromising future hemato-
poietic production, the action of TPO to promote the quiescence 
of the most primitive stem cells may represent the mechanism 
by which acute demand for new blood cells can be met without 
compromising long term production.

Signaling Targets

Mpl, the receptor for TPO, is a member of the hematopoietic 
cytokine receptor superfamily.64 The binding of TPO to Mpl, 
induces the dimerization of Mpl.65 This allows the associated 
Janus Kinase 2 (Jak2) molecules to transphosphorylate, lead-
ing to their activation65-67 (Fig. 2). Demonstrating that Jak2 is 
vital for TPO signaling, Jak2-/- fetal liver cells are unable to pro-
duce megakaryocytes in response to TPO.68 Phosphorylation of 
another Janus family protein kinase, Tyk2, also occurs upon TPO 

TPO. TPO mRNA in the bone marrow can increase in response 
to thrombocytopenia and experimental manipulation.46,58 
Several platelet specific granule proteins, including platelet fac-
tor 4 (Pf4), transforming growth factor (TGF)β and thrombo-
spondin (Tsp), can suppress the production of TPO mRNA in 
stromal cells.46 Paracrine hormone production can have a stron-
ger effect on local cells than endocrine production by the liver, so 
potentially this mechanism may have significant effects on those 
HSCs and megakaryocytes that interact directly with the stroma. 
Transplantation of Tpo-/- liver cells into wildtype mice resulted in 
fewer than half the platelet numbers seen after wildtype liver cell 
transplants into wildtype mice.45 While no data on HSCs were 
reported, this would be a useful model to measure how the rela-
tive importance of TPO produced by the liver compared to TPO 
produced locally by endothelial cells for the regulation of HSCs.

The regulation of circulating TPO levels appears to be pri-
marily driven by platelets and megakaryocytes, as these cells have 
the majority of expressed Mpl in the body. However, TPO is also 
important for maintenance of the function of HSCs. Non physi-
ological numbers of platelets may result in HSC perturbation. 
Our group has investigated this in MybPlt4/Plt4 mice, which have a 
mutation in the transcription factor Myb, which results in several 
hematopoietic perturbations, including severe thrombocytosis.59 
This thrombocytosis is independent of TPO signaling, and the 
high numbers of platelets remove much of the TPO from the 
system. This means the HSCs are exposed to sub physiologi-
cal levels of TPO.60 There are several phenotypes characteristic 
of TPO starvation of HSCs in these mice,15,16 such as increased 
cycling of HSCs and loss of LT-HSCs with age.60 There is a TPO 
response signature common between Mpl-/- and MybPlt4/Plt4 mice 

Figure 2. TPO signaling pathway. In unstimulated cells (A), Mpl (in yellow) exists as a monomer, and signaling molecules, such as JAK2 and STATs, are 
inactive. Upon TPO binding (B), Mpl dimerizes. This conformational change results in phosphorylation of its associated JAK2 molecules, which leads 
to phosphorylation of Mpl and activation of downstream signaling pathways, including STATs, the MAPK pathway and the PI3K pathway. JAK2 can 
phosphorylate STAT3 and STAT5 in response to TPO signaling, which results in their dimerization and translocation to the nucleus. There transcription 
is initiated, and the integration of these pathways leads to the downstream effect of TPO. STATs also induce transcription of SOCS proteins, which are 
generally not expressed, resulting in negative feedback and downregulation of JAK2 and Mpl activation.
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60 amino acids, Δ60, removes this region but retains the domains 
required for Jak2 activation.90 Bone marrow from the Δ60 mouse 
line was found to produce normal numbers of megakaryocytes, 
albeit with a reduced ploidy, and these mice had compromised 
long-term stem cell activity, as observed after serial transplan-
tation.90,91 This was a far milder reduction in stem cell activity 
than was observed in Mpl-/- mice, suggesting that the retained 
Box1 and Box2 motifs, required to activate Jak2, are the most 
vital parts of Mpl for its HSC activity. The distal region acts to 
activate Stat, Akt and Mapk, but perhaps the residual levels of 
activation that occur without it are sufficient to maintain HSC 
function, except in stress situations.

Signaling in Myeloproliferative Disorders

Regulation of signaling pathways is vital for the healthy function 
of hematopoietic progenitors. It was recently found that constitu-
tive activation mutations in both Mpl and Jak2 result in myelo-
proliferative disorder (MPD). MPLW515L and MPLW515K 
mutations are found in 1% of essential thrombocythaemia 
(ET) cases and 5% of primary myelofibrosis (PMF).92-95 These 
mutations result in constitutive cytokine-independent activa-
tion of the JAK-STAT pathway.93 Activating Jak2 mutations are 
even more prevalent in MPD with 95% of polycythaemia vera 
(PV) cases and 50% of ET and PMF cases having the mutation 
JAK2V617F.96-98

When mice were transplanted with bone marrow transduced 
with MPLW515L mutation, they quickly developed a lethal PMF-
like disease with thrombocytosis and leucocytosis.93 Expression 
of MPLW515L in cell lines resulted in cytokine-independent 
growth and the constitutive activation of JAK, STAT3, STAT5, 
AKT and ERK.93,99 These cells were also hyperresponsive to 
TPO, with increased phosphorylation of signaling molecules and 
increased proliferation in response to TPO.93 MPLW515 muta-
tions affect cell cycle transition, promoting G

1
-S-phase transition 

in the absence of TPO.99

Investigation of the clonal consequences of the MPLW515 
mutations in patients with MPD has found that these muta-
tions involve early stem cell-derived events that can be detected 
in hematopoietic lineages from myeloid to B and T cells, and 
thus involve both myeloid and lymphoid progenitors.100,101 They 
have been found to be associated with higher platelet counts 
and lower hemoglobin levels than in MPB patients with the 
JAK2V617F mutation.94,95 Despite the pathogenic activity of the 
mutation, when tested in cell lines and in transplant studies, the 
presence of MPLW515 mutations in MPD patients provides no 
prognostic information for survival, thrombosis or myelofibrotic 
transformation.94

Before these mutations had been identified, it was observed 
that Mpl was downregulated on platelets from MPD patients.102 
Recent investigation has found that Mpl expression on platelets is 
negatively correlated with JAK2V617F allele burden.103 MiR‑28, 
a microRNA that targets Mpl, appears to play a role in this 
downregulation, with overexpression of JAK2V617F leading to 
induction of MiR-28 expression.104 It is unclear if this contributes 
to the pathology of the disease, or if it is a negative feedback 

binding, but unlike Jak2, has not been shown to be essential for 
TPO signaling.66,69 Activated Jak2 then phosphorylates the distal 
portion of Mpl and leads to the recruitment of signaling proteins 
to the receptor via their SH2 domains.70,71 This includes the Stat 
(Signal Tranducers and Activators of Transcription) family of 
latent transcription factors (reviewed in ref. 71). Under basal con-
ditions, Stats are found in the cytoplasm and are unable to bind 
DNA.72 Tyrosine phosphorylation of the Stats by Janus kinases 
causes dimerization, allowing translocation to the nucleus and 
binding to specific promoter regions.73 Stat3 and Stat5 are phos-
phorylated in response to TPO.74,75 Among the targets that Stats 
induce in response to TPO signaling are genes involved in prolif-
eration and survival, such as cyclin D1, p27, p21 and Bcl-x

L
.76-78 

STAT proteins also contribute to the negative regulation of TPO 
signaling by upregulating expression of members of the SOCS 
(suppressors of cytokine signaling) family.79 SOCS proteins can 
then directly bind with their SH2 domains to phosphotyrosine 
residues in cytokine receptors and JAKs to inhibit their tyrosine 
kinase activity. While functional redundancy between the eight 
members of the SOCS family makes it difficult to ascribe precise 
roles to them all, TPO has been shown to induce the expression of 
CIS80 and be inhibited by SOCS179,81 and SOCS3.82 Potentially, 
other SOCS proteins also act in the TPO signaling pathway.

Another negative regulator of TPO signaling is Lnk. The 
Lnk-/- HSC pool has been shown to continue to expand post-
natally, and this expansion is dependent on TPO signaling, as 
Lnk-/- TPO-/- mice have a similar reduction in HSCs as TPO-/- 
mice.52 Lnk-/- HSCs also have decelerated cell cycle kinetics and 
an increased quiescent fraction,83 perhaps because the larger HSC 
pool means that a smaller proportion of the HSCs are required 
to undergo proliferation in order to maintain hematopoiesis. Lnk 
mediates its affect through Jak2, binding directly to phosphor-
ylated tyrosine residues in Jak2 following TPO stimulation to 
attenuate Jak2 signaling.83

In addition to the JAK/STAT pathway, TPO signaling acti-
vates the phosphatidylinositol-3-kinase (PI3K) pathway and 
the mitogen activated protein kinase (MAPK) pathways. In the 
PI3K pathway, TPO activates PI3K, which leads to the phos-
phorylation and activation of its downstream effector, AKT.84 
This activates the transcription factor FOXO3a, which then 
induces p27Kip1 expression.85 TPO stimulation of the PI3K/
AKT pathway is required for cell cycle progression in mega-
karyocyte progenitors.84,85 It is unclear whether TPO stimula-
tion of this pathway plays a similar role in HSC functions. The 
MAPK pathway involves a protein kinase cascade, with two of 
the MAPKs, extracellular signal-related protein kinase 1 (ERK1) 
and ERK2, having been shown to be involved in TPO signal-
ing.86-88 Thrombopoietin has been shown to activate this path-
way in human CD34+ cells, a population that includes HSCs, 
as well as in megakaryocytes and platelets.89 MAPK signaling is 
required for TPO induced Hox activation.26

While few studies have attempted to distinguish TPO’s sig-
naling pathway in HSCs from that in megakaryocytes, one study 
has provided insight into the function of the Mpl receptor in 
HSCs. The distal region of Mpl receptor contains three major 
signaling tyrosines. A truncated Mpl receptor lacking the last 
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been successfully used for the treatment of immune thrombo-
cytopenic purpura (ITP) and are now approved by the US Food 
and Drug Administration.112-114 The use of TPO and its mimetics 
to regulate HSCs is less advanced, but TPO signaling in HSCs 
may be as clinically relevant as in megakaryocytes, with a role 
in HSC expansion both before and after transplantation. Future 
work will help clarify which effects of TPO are shared by both 
HSCs and megakaryocytes and which are specific to each cell 
type.
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mechanism resulting from the constitutive activation of the JAK-
STAT pathway.

Summary and Future Prospects

Since its isolation, thrombopoietin has been of tremendous clini-
cal interest due to its role as a potent stimulator of thrombopoi-
esis. First generation recombinant forms of TPO were developed 
over a decade ago and increased platelet counts in patients with a 
range of thrombocytopenias and in healthy platelet donors.105-108 
After this promising beginning, its use was discontinued because 
some subjects developed autoantibody formation with cross 
reactivity to endogenous TPO.109,110 The second generation of 
thrombopoietic agents has been developed using techniques such 
as TPO peptides mimetics, TPO non-peptide mimetics and 
Mpl antibodies.111 Two of these, Romiplostin, a TPO peptide 
mimetic, and Eltombopag, a non-peptide TPO mimentic, have 
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