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A Direct Coupling between Global and Internal Motions in a Single Domain
Protein? MD Investigation of Extreme Scenarios
Mehdi Bagheri Hamaneh,6 Liqun Zhang,6 and Matthias Buck*
Department of Physiology and Biophysics, Case Western Reserve University, School of Medicine, Cleveland, Ohio
ABSTRACT Proteins are not rigid molecules, but exhibit internal motions on timescales ranging from femto- to milliseconds
and beyond. In solution, proteins also experience global translational and rotational motions, sometimes on timescales compa-
rable to those of the internal fluctuations. The possibility that internal and global motions may be directly coupled has intriguing
implications, given that enzymes and cell signaling proteins typically associate with binding partners and cellular scaffolds. Such
processes alter their global motion and may affect protein function. Here, we present molecular dynamics simulations of extreme
case scenarios to examine whether a possible relationship exists. In our model protein, a ubiquitin-like RhoGTPase binding
domain of plexin-B1, we removed either internal or global motions. Comparisons with unrestrained simulations show that internal
and global motions are not appreciably coupled in this single-domain protein. This lack of coupling is consistent with the obser-
vation that the dynamics of water around the protein, which is thought to permit, if not stimulate, internal dynamics, is also largely
independent of global motion. We discuss implications of these results for the structure and function of proteins.
INTRODUCTION
Over several decades it has become clear that protein
motions play critical roles in aspects of protein structure
and function including folding and stability, catalysis,
protein-ligand binding, and protein-protein association (1).
In addition to motions that involve certain substructures
(and are said to be protein internal), there are also fluctua-
tions that affect the protein as a whole. Specifically, these
are translational and rotational diffusive motions of the
entire molecule in the solvent. It is known that such global
stochastic events are broadly related to the size and shape
of the protein (2). For small globular proteins (~8–
20 kDa), the rotational correlation times are ~4–12 ns and
occur on the same timescale as some of the protein internal
motions. It is therefore possible that the global motion of
a protein can affect its internal dynamics, and vice versa.

The concept of a coupling between global and internal
motions in molecules has been discussed for some time.
Experimental investigations suggest that a direct influence
of one type of motion on the other is negligible in most
proteins (3–5). There has been some controversy, for
example, as to whether the analysis of NMR relaxation
data is accurate if the two motions are coupled or even on
the same timescale (3,6). Computational studies of global
motions have been carried out mostly with simplified
models and it has recently become apparent that a more
detailed treatment is needed, especially for the hydrophobic
surfaces of proteins (see, e.g., Walser and van Gunsteren (7)
and de la Torre (8)). Both internal and global motions are
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governed by solvent motions, providing a common correlate
for the two types of dynamics (9,10). Loops that protrude
into the solvent are thought to provide a frictional drag on
translational and rotational motions. One question is
whether the flexibility of such loops would have an effect
on the global motion. Another is whether there is an effect
of global motions on internal dynamics, e.g., whether global
stochastic motions may enhance conformational transitions
in loops. To our knowledge, no all-atom protein simulation
study has been carried out to specifically address these
issues, i.e., of a coupling between global and internal
motions at a fundamental level. A direct coupling would
suggest that protein size and loop flexibility have significant
effects on protein function, especially if loop fluctuations
can be communicated to other regions of the protein,
including its core. In that case, communication of dynamic
events could occur not only through protein structural
elements, but also by signal propagation through a change
in global motion. This would be an attractive mechanism
for the regulation of enzyme activity and cell signaling
events, which often involve changes in global motion by
protein association or localization to cellular (sub)compart-
ments (11–13).

In experiments, it is difficult to quantitatively investigate
protein internal and global motions for such conditions or to
separate them from other effects, e.g., from those involving
conformational changes upon protein association or changes
in solvent viscosity. Thus, in this report, we used molecular
dynamics (MD) simulations to investigate the possibility of
a coupling between global and internal protein motion. We
do so by studying a number of extreme scenarios that are
possible in silico. Using an ubiquitin-fold model protein,
which has extensive internal motions due to its long, flexible
loops and termini (Fig. 1), we carried out simulations that
doi: 10.1016/j.bpj.2011.05.041
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FIGURE 1 Main-chain fold of ubiquitin (a) compared with that of the

Rho- GTPase binding domain (RBD) of plexin-B1 (b). The longer loops

in the plexin domain are labeled (L1–L4).
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allow global but no internal motions or internal but no
global motions. Statistical analyses of the trajectories
show that a time-averaged coupling between these two types
of motions is negligible for this single-domain globular
protein. Both the internal protein motions and the solvent
dynamics—which are thought to allow, if not to stimulate,
the protein fluctuations—are independent of global motions.
The results suggest that internal protein dynamics and the
underlying structural determinants have evolved to avoid
a direct connection to global fluctuations.
TABLE 1 Global protein translational and rotational diffusion

data

Protein Ubiquitin RBD (UNR) RBD (RIG)

D (� 10�5 cm2/s) 13.6 5 2.0 9.5 5 0.4 8.4 5 0.7

tm (ns) 1.4 5 0.4 3.4 5 0.3 3.7 5 0.8

D, translational diffusion; tm, decay time of the global rotational correlation

function.
METHODS

Simulation details

In each simulation, the protein human ubiquitin (Protein Data Bank code

1UBQ) or the Rho-GTPase binding domain (RBD) of plexin-B1 (Protein

Data Bank code 2JPH) (14) was first immersed in a cubic box of explicitly

represented water, and periodic boundary conditions were applied. The

systemwas then energy-minimized, heated up, and equilibrated. To enhance

sampling, all simulations were carried out in quadruplicate using different

random starting seeds for the initial velocity assignment. The standard

particle-mesh-Ewald method was used to calculate the long-range electro-

static interactions, and counterions were added to neutralize the system.

The CHARMM27 all-atom potential function was used with CMAP correc-

tion throughout this study. For nonbonded calculations, a cut-off of 12 Åwas

used, and the time step was chosen to be 2 fs. All bonds involving hydrogens

were kept rigid using the SHAKE algorithm. The Berendsen thermostat and

the Langevin piston method were employed to run simulations at constant

temperature (T ¼ 300 K) and pressure (P ¼ 1 atm). The unrestrained

(UNR) simulations were carried out using the NAMD (15) program, which

is well parallelized. High-frequency removal of the global or internal

motions is not currently possible in NAMD, so the program CHARMM

(16) was used for simulations involving these restraints. It is important to

note that conformational space is similarly sampled by both simulators since

the same potential function is used (data not shown). In all rigid (RIG) simu-

lations internal degrees of freedomwere removed using the SHAPE facility.

The internal-motions-only (INT) simulationswere run using a slightlymodi-

fied version of the program, which allowed using its NTRF command (every

20 steps) to remove the rotational and translational motions of the protein, as

well as those of the whole system. Global motions are known to be slower

than protein internal motions, and thus, using a lesser frequency for the

removal of these dynamics was deemed adequate and much less computa-

tionally expensive than removal of global motions at every simulation

step. (As a test, it was shown that the latter gave the same result, even for

the fast motions of the water molecules).
To remove global motion, the following approach was employed: The

velocity of the ith atom due to internal motions is given by vint¼ vi� vCM�
ri xu, where vCM is the velocity vector of the center ofmass,u is the angular

velocity vector of the protein, vi is the uncorrected (total) velocity, and x

denotes the cross product. We confirmed that the overall translational and

rotational motion of the protein was essentially removed by this procedure

(diffusion coefficients are reduced by a factor of >100 compared to those

in the UNR simulations). Each of the four ubiquitin simulations were run

for 110 ns, whereas the three kinds of RBD simulations were run for 55 ns

due to the fact that CHARMM requires much more computational time.

Since internal motions in ubiquitin are verymodest on the picosecond–nano-

second timescale, the project focused on the plexin domain and the INTand

RIG simulations were only run for this protein.
Rotational and translational diffusion

To analyze the trajectories, we calculated a number of parameters,

including rotational correlation functions defined as C2 ¼ hP2ðcosqÞi,
where P2(x) is the second rank Legendre polynomial and q is the angular

displacement of a unit vector attached to the protein. One can consider three

unit vectors along the three principal axes of the protein. For simplicity, the

three correlation functions were averaged for this analysis. The second-rank

rotational correlation functions of the RBD and ubiquitin were averaged

over 1100 time origins. The correlation times were then found by an expo-

nential fit. These calculations were carried out using the 5–55 ns time

interval of the RBD and 10–110 ns of the ubiquitin trajectories. The

mean-squared displacement (MSD) plots were calculated by averaging

over 2200 time origins for the ubiquitin and RBD simulations. The last

0.5 ns of these plots were then used to determine the diffusion coefficients

(D ¼ slope/6). The MSD and correlation function plots in this study (see

Fig. 3) are for the average of the four simulations. The standard deviation

(given in Table 1) reflects the difference between the fits of the four simu-

lations and is greater than the uncertainty in the fit of the four-simulation

average. It is worth noting that the TIP3 water model results in faster diffu-

sion (17,18), and that the size of the simulation box has a significant effect

on the calculated translational diffusion coefficients from simulations (19).

Thus, we have not compared our simulation-derived diffusion rates with

experimental results. The goal of this article is to compare the results of

UNR and INT simulations. Although the timescale of the global, and

possibly also of the internal motion may not be entirely accurate, the

scenarios explored by the simulations are the most extreme and should,

therefore, in their comparison reveal a correlation between internal and

global motion, if one exists.
Change in protein shape and distinction between
internal and global motion

The principal moments of the proteins’ inertia tensors were calculated as

a function of simulation time using the standard procedure in CHARMM,

which diagonalizes the moments of inertia tensor to yield eigenvalues

(the principal moments). The program of Prompers and Brüschweiler was

used to carry out isotropic reorientational eigenmode dynamics (iRED) of

rank 2 and calculate g2, a parameter that indicates the separability between

global and internal motions (20). Briefly, an isotropically averaged
Biophysical Journal 101(1) 196–204



TABLE 2 P-value data

Comparison protein segment UNR and INT p value

N-terminus (2–6) 0.330

L1 (16–26) 0.946

L4 (85–92) 0.031

C-terminus (113–122) < 0.001

Numbers in parentheses indicate the residues involved in the protein

segment. The Wilcoxon signed rank test was used to calculate p values

for comparison of S2 in different regions of the plexin RBD between

UNR and INT simulations.
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covariance matrix (M) is constructed with the dot products of normalized

bond vectors (e.g., of all amide groups of the protein). Since only inner

products between vectors are involved, the matrix is rotationally invariant

and no overall rotation needs to be removed, whereas an isotropic overall

directional sampling is added by transforming the matrix. A principal-

component analysis is performed on the covariance matrix, yielding eigen-

vectors and eigenvalues, lm (mode amplitudes). The five eigenvectors with

the largest eigenvalues represent the global motion if they are separated

sufficiently from the next-largest eigenvectors. The extent of this separation

is indicated by g2, the separability index of rank 2 (for details, see Prompers

and Brüschweiler (20)).
TABLE 3 Side-chain entropy

Simulations/

entropy S (J/mol K)

All side-chain atoms

(residues 5–112)

>40% surface-

accessible

RBD/GTPase

interface

UNR 7090 5 84 6497 5 57 1179 5 42
Order parameters and associated correlation
times

The Lipari-Szabo order parameters and also correlation times for main-

chain N-H bonds of the RBD were calculated (using CHARMM) over

the time interval 5–55 ns of the trajectories according to previously estab-

lished protocols (21), We used a cut-off for the correlation function of 5 ns,

close to the TIP3P scaled global correlation times determined experimen-

tally (the results are independent over a 4–10 ns range of cut-off values).

We also employed a recently proposed procedure (22) that does not remove

the global motion from the trajectories and incorporates an estimated corre-

lation time from the MD simulations (in our case, the rotational correlation

function, given in Table 1) in a fitting of the C2 residue correlation func-

tions. This procedure did not, however, produce better comparisons with

the experimentally derived S2. In fact, as expected, the fitting becomes

problematic when the timescale of the global and internal motions are close

for several of the residues. In any case, the procedure could not be used to

analyze the INT trajectories (23).

Z-scores for individual residueswere used to establishwhether differences

in the derived order parameters between the UNR and INT simulations are

statistically significant (24). The Z-score for a residue i is calculated as

Zi ¼ Pia � Pib/((sPia þ sPib)/2) where Pi is a four-simulation average

dynamic parameter (S2 or te) for that residue (comparing data sets a and b)

and sPi a,b is the standard deviation of motions seen in the four simulations,

datasets a and b, respectively. The difference in dynamics is statistically

significant if jZ-scoresj > 1.96, corresponding to the 5% probability cut-

off. The underlying distribution (as well as the uncertainties) is assumed to

be normal. The Wilcoxon signed rank test, which avoids this assumption,

is also used to compare UNR and INT simulations for several regions of

the protein. Four regions of the protein were examined: the N-terminus

(residues 2–6), loop1 (residues 16–26), loop2 (residues 85–92), and the

C-terminus (residues 113–122). For each region, the order parameters

from the four simulations were combined in a single column. In the case

of the five-residue N-terminal region, for example, the order parameters

from the four simulationswere used to form two 20-row columns, comparing

the same residues of simulationUNR1with those of INT1,UNR2with INT2,

etc. The simulation pairs were then cycled so that UNR1 is compared with

INT2, UNR2 with INT3, etc., extending the column to 80 pairs of the

same residues, but different simulation pairs. The Wilcoxon tests were

then carried out by inserting the two columns into a web-based calculator

(25). The calculated p-values are reported in Table 2. Avalue of<0.05 is nor-

mally regarded as statistically significant. One of theUNR trajectories (simu-

lation 3) can be regarded as an outlier as far as the behavior of the C-terminus

is concerned. To compare the four INT and the remaining three UNR simu-

lations, the above protocol was used, but simulations INT1–INT4 were

omitted in turn, yielding the average p-value of the comparison.
INT motion only 6743 5 268 6296 5 112 1148 5 81

Entropy average and spread over the four INT and UNR simulations for

side-chain nonhydrogen atoms (Cb and further out from the main chain)

of the entire protein, the solvent-exposed residues only (>40% surface-

accessible surface area), and residues at the Rho-GTPase binding site (resi-

dues 67–82 and 96–101).
Side-chain dynamics as indicated by
quasiharmonic entropy analysis

The behavior of side chains in proteins is more complex than that of the

main chain, making detailed comparisons difficult. To determine whether
Biophysical Journal 101(1) 196–204
side-chain motions are on average affected by global motions, we estimated

their entropy using the method of Andricioaei and Karplus (26), as imple-

mented in wordom (27). The results are shown in Table 3.
Analysis of water dynamics around the protein

We calculated the orientational and translational diffusion of water mole-

cules using established procedures (28). Briefly, as water motions are rapid,

trajectories were extended at 55 ns for 100 ps, saving coordinates at the

increased sampling interval of 20 fs. Waters were classified as first-shell

(<4 Å distance from oxygen to the nearest protein heavy atom) or

second-shell (between 4 and 7 Å) if they have residence times of >20 ps

and >5 ps, respectively. (See Fig. 5 for diffusion coefficients and second-

order orientational correlation functions.)
RESULTS/DISCUSSION

Molecular dynamics simulations have become powerful
tools in the study of proteins. The calculations make predic-
tions that can be tested experimentally, but—as is the case
here—in silico experiments can also examine conditions
that are difficult, if not impossible, to create experimentally.
To investigate a coupling between overall and internal
motion, a number of extreme scenarios that can be produced
in silico are likely to delimit the extent of a direct relationship
between two parameters (for example, by setting one of them
to zero). Specifically, we carried out restrained simulations in
which either global motions or internal fluctuations are
removed, examining the effect of this manipulation on the re-
maining fluctuations. In this study, theRBDof plexin-B1was
used as a model system, with ubiquitin as a reference for
some of the calculations. Ubiquitin has short, relatively rigid
turns rather than loops. By contrast, the 120-residue RBD
protein, which also has a ubiquitin fold (Fig. 1), has several
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long flexible loops inserted into the structure (14). It has been
shown experimentally that some of these loops and the
termini undergo picosecond–nanosecond motions on a time-
scale that approaches that of the global rotational correlation
time of the protein (23). It is anticipated that a coupling is
strongest between fluctuations that occur on a similar time-
scale, and thus, the system is well suited to test this possible
relationship between internal and global motions. Further-
more, many methods for the analysis of NMR relaxation
data require a separability between internal and global
motions (as both contribute to the measurements) (see, e.g.,
Shapiro and Meirovitch (3) and Wong et al. (6)). Generally,
a timescale separation is seen in most proteins examined
thus far. However, our system provides an interesting test
case in this regard, as noted above. A proximity in timescale
is also evident from the simulations, as calculated by a sepa-
rability index, g2, using the iRED program of Prompers and
Brüschweiler (20). For our four ubiquitin trajectories this
parameter ranges from 5.66 to 6.47, with an average close
to that previously reported for trajectories of the native
protein (g2 ¼ 6.3) (20). For the four unrestrained plexin
trajectories, the g2 range is 2.79–3.17 and is close to the value
of 2.51 obtained for a partially folded state of ubiquitin (20).
Fig. 2, a and b, shows representative examples of both.
Although the gap in the plot is not as obvious as in partially
folded ubiquitin (g2 does not measure the gap per se), the
lowest 5–10 eigenmodes do not show the usual downward
trend, seen for other globular proteins. Thus, the separability
between global and internal motion is in doubt for the fluctu-
ations of the plexin RBD.

As in other studies (21–23,28–30), however, a good corre-
spondence exists between the Lipari-Szabo order parame-
ters for internal motion derived from NMR relaxation data
(which assume separability of internal and global motions)
and those derived from simulations (where global motions
are removed before order-parameter derivation (Fig. S1 in
the Supporting Material)). This suggests that neither the
timescale proximity nor a direct coupling between global
and internal motions is a significant issue. Given these
two contrasting indicators, our in silico work sought to
examine further a possible relationship between the two
types of motion by studying several extreme scenarios.
Specifically, in addition to lengthy UNR simulations, two
types of restrained simulations were carried out for the
plexin RBD. The details of all MD simulations are described
in Methods. Briefly, in one type of restrained calculation
(INT), global motions were removed every 20 steps (40
fs). For the RIG simulations, internal degrees of freedom
were removed, also using CHARMM.
Change in protein shape, nature of global motion,
and effect of internal motions

Rotational and translational motions of the protein are likely
to be affected by changes in the shape of the protein. As an
indication of this, the fluctuations in the moments of the
protein’s inertia tensor (principal components after matrix
diagonalization) are calculated as a function of simulation
time, and their distribution is examined for the unrestrained
RBD simulations. The eigenvalues of the moments of the
inertia tensor are similar among the simulations, ranging
over the duration of the trajectory from 1.69 to 1.86 for
Ixx, 2.00 to 2.11 for Iyy, and 2.47 to 2.63 for Izz (all units
in amu Å2 � 106). A histogram of these values, collected
FIGURE 2 iRED analysis between global and

internal motion. (a and b) The mode collectivities

(k) are plotted versus eigenvalues (l) from an

iRED analysis with rank 2. The separability index

(g2) factor, broadly corresponding to the gap

between the largest five eigenvectors and the

next-largest eigenvalue, is indicated for a represen-

tative simulation of ubiquitin (a) and the RBD (b).

(c and d) Principal moments of the inertia tensors

for the four RBD UNR simulations plotted as

a histogram (c) and as a function of time for a repre-

sentative simulation (d).

Biophysical Journal 101(1) 196–204
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over all four UNR simulations is plotted in Fig. 2 c. Apart
from the slight variation in Ixx and Izz, these differences
are not appreciably different, given the standard deviation
within each calculation. It is interesting that Izz varies
between two populations within the trajectory (Fig. 2 d).
It is clear that the dimensions of the proteins fluctuate by
approximately 57% around each axis. Thus, the fluctua-
tions in shape are very limited. Furthermore, the shape
can be approximated as a spherical top in each case, and
a small anisotropy of 1.3 (Dpara/Dperp), close to the value
derived from NMR relaxation measurements (23), is main-
tained throughout the simulations.

Examining the time-averaged global motional properties,
it was found, as expected, that the lengthy termini and loops
provide a hydrodynamic drag and slow down the global fluc-
tuations. This is evident in the comparison of the timescale
of RBD motions with those of the more compact ubiquitin
(Fig. 3). The correlation time for the global rotational
motion can be estimated from an exponential fit of the
second-order correlation function, C2, that is relevant to
NMR relaxation (31) and is reported in Table 1. Comparing
the different RBD simulations, we find that the averaged
rotational motion of the rigid RBD approximates that of
the unrestrained molecule (Fig. 3 a). This is in agreement
with many hydrodynamics calculations, using either ensem-
bles of rigid structures or snapshots from dynamics trajecto-
ries (2), and it emphasizes the nature of diffusion rates as
a population- and time-averaged property. To estimate the
global translational motion, the MSD of the center of
mass of the two proteins was calculated from the simula-
tions (Fig. 3 b). The results, shown in Table 1, suggest
that the translational diffusion for the RBD, a protein with
flexible loops, is marginally, but not significantly, faster
compared to the same protein with rigid loops. However,
loop flexibility has no discernable effect on the rate of rota-
tional motion. Similar to another recent simulation study
(18), we can show that the global motions are of a diffusive
nature by considering the ratio of orientational autocorrela-
tion functions of different rank and by analysis of the
angular momentum autocorrelation functions (M. Zerbetto,
M. Buck, and A. Polimeno, unpublished).
FIGURE 3 Second-rank rotational correlation functions (a) and MSD (b)

of the centers of mass of ubiquitin, plexin RBD, and rigid plexin RBD (no

internal motion).
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Effect of global motion on internal dynamics

Order parameters, S2, are among the most popular measures
for characterizing local protein dynamics and comparing
simulations with experiments (21,22,29,30). Main-chain
N-H S2 values and their associated correlation times, te,
were calculated for the RBD to investigate possible effects
of removing the global tumbling during the simulation on
these parameters (INT trajectories). Fig. 4, a and b, shows
that derived parameters are very similar to those obtained
from the UNR simulations. The linear correlation coeffi-
cients are 0.74 for te and 0.93 for S2. By contrast to the
agreement for S2, comparisons between experimental and
simulation-derived correlation times are generally poor
(see Buck et al. (21) for possible reasons), but the general
trend as a function of sequence/structure is reproduced.
The point we want to make, however, is that the correlation
times for the internal motions are similar in the presence and
absence of global motion. For S2, a few differences are
FIGURE 4 The main-chain N-H Lipari-Szabo order parameter (S2) and

internal correlation time (te) derived from the unrestrained (UNR) and

internal-dynamics-only (INT) simulations and plotted as a function of

sequence for the RBD. The averages of four simulations are shown, with

error bars indicating the deviation between them.
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apparent between the simulations at the C-terminus (resi-
dues 113–122) and in loop 4 (residues 85–92), but the uncer-
tainties in the derived parameters—here shown as the
average of four trajectories—are large. Beyond the overall
correspondence, we also examined individual residues and
protein regions using statistical analyses. A significant
difference in dynamics (jZ-scorej > 1.96) between the 5–
55 ns segments of the UNR and INT trajectories is seen in
only a few residues: 108, 115, 116, 120, and 121. Although
the results are also significant given that the order parame-
ters for some of the residues are well converged, they may
be misleading. First, residue 108 is in a very rigid part of
the protein, and the Z-score appears to benefit from very
low deviations between the four simulations in the two
sets of trajectories. For the other residues, all belonging to
the unstructured C-terminus, the situation is different.
Here, the averages and wide deviations are due to one of
the four trajectories from the UNR simulation, which shows
less motion in these regions (see Fig. S1 in the Supporting
Material). The UNR trajectory of simulation 3 is regarded
as an outlier, as observed in Fig. S2. When the C-terminal
region of simulation 3 is not considered in the statistical
analysis, the difference between the internal dynamics at
the C-terminus in simulations with and without global
motion is reduced but remains significant as far as the
Z-scores are concerned (in part because the standard devia-
tions between the three remaining UNR simulations are
reduced). Nevertheless, the results are in overall good agree-
ment among the different kinds of simulations and indicate
only small differences between the UNR and INT simula-
tions at the RBD C-terminus. These likely arise due to vari-
ations in the sampling of the conformational space between
some of the trajectories. Such lack of complete convergence
is not unusual, even when lengthy trajectories are run.

Although the Z-score compares individual residues, the
Wilcoxon signed rank test was used to examine whether
the differences between order parameters derived from the
UNR and INT simulations are significant for entire regions
of the plexin RBD. The results (p values) are given in Table
2, where a p value of<0.05 suggests that the differences are
statistically significant for the C-terminus and for loop 4. As
noted above, UNR simulation 3 is considerably different
from the three others for the C-terminus, but rerunning
this test with this simulation excluded does not eliminate
the significance. For the region of loop 4, there is no clear
outlier but a wide spread of order parameters among the
INT simulations (thus, the Z-score statistics are not signifi-
cant). The loop 4 region is of particular interest since it is
adjacent to the Rho-GTPase binding site in the plexin
domain. However, out of four UNR and four INT simula-
tions, only one simulation (INT3) is able to accurately
reproduce experimentally derived S2 for this loop. Given
the strong tendency of the MD to oversample in this case,
the difference between INT3 and the others cannot be attrib-
uted to the presence or absence in global motion. There
appears to be a general offset in average order parameters,
for the C-terminus INT simulations give order parameters
0.07 lower than UNR, whereas for loop 4, the situation is
reversed (on average, INT simulations have S2 values higher
by 0.07 than those derived from UNR). This difference is
small and not systematic in the way one might anticipate
if there were a strong coupling between global and internal
motion. We need to eliminate the variations in sampling and
the deficiencies in the current potential function (e.g., 32,33)
to assess with absolute confidence the differences among the
trajectories for certain regions of the protein. However, this
is at present beyond the resources and computation time
available. Overall, the data strongly suggest, nevertheless,
that the global motion has a negligible, if not merely small,
effect on the order parameters.

The extent of correlation among the internal motions that
affect individual residues can also be measured by calcu-
lating the normalized covariance matrix (defined in the
Methods section in the Supporting Material) for the Ca

atoms of all residues. Fig. S3 shows that these correlations
differ slightly among a few protein regions, but these small
differences are not statistically significant in the context of
the extent of sampling seen in the trajectories. Overall,
then, the patterns of correlations reflecting the extent and
direction of the internal motions are highly similar with
and without global motions.
Comparison of side-chain dynamics estimated
by quasiharmonic entropy analysis

In addition to certain loops, side chains provide themain inter-
face in protein-protein or protein-ligand interactions and are
typically the key contributors to enzyme catalysis (1).
Changes in the dynamics and the associated entropy of side
chains therefore play a critical role in biological mechanisms.
At the same time, side-chain dynamics can behighly complex,
and given the confines of this study, we simply examine
whether global motion has a direct effect on the dynamics
of a group of side chains. The entropies, listed in Table 3,
show that there is no significant difference between side-chain
dynamics in theUNRand INT trajectories, evenwhen subsets
of side chains are considered that are surface-accessible or
located at the GTPase binding region of the RBD.
Effect of global motions on first- and second-shell
water motions

Global stochastic translational and rotational motions are
thought to originate from temporary imbalances in the
dynamics of solvent around the protein according to the
theory of Brownian motion and Debye (10). Water
dynamics around the protein is facilitating internal protein
fluctuations. We therefore wanted to see whether the
removal of global or internal protein motions has an effect
on the dynamics of the solvent around the protein.
Biophysical Journal 101(1) 196–204
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Translational and orientational motions of waters in the first
and second shell were compared between the simulations
with and those without global motions and were also calcu-
lated for the simulation with no protein internal motion
(Fig. 5). The results show that the lack of global motion
has no significant effect on solvent dynamics. An explana-
tion for this behavior is likely to be related to the timescales
of the motions involved. The dynamics of TIP3P waters are
fast in the simulation: except for bound waters, waters move
on average a linear distance of 0.3 Å/ps and 1 Å/ps in the
first and second shells, respectively, and orientational corre-
lation times are on the order of 5–0.5 ps. This compares with
protein internal fluctuations of the main chain on the time-
scale of 40–2000 ps and with the protein global correlation
time in TIP3P solvent of ~3500 ps. Although some of the
local and global fluctuations can be much faster (data not
shown), these events are rare, and on average, the solvent
moves several orders of magnitude more quickly than
the protein, consistent with the view that local and global
protein motions are not in response to the motions of
a few water molecules. The motions of the waters, in turn,
are not directly affected by global protein motions.
However, internal motions have a significant effect on the
first-shell water dynamics (Fig. 5, a and b). In the RIG simu-
lations, water dynamics are slowed, especially for the
protein-bound waters in the first shell, as the interactions
with the protein can persist longer in the absence of protein
internal motion. Both types of protein motions, global and
internal, are dampened by the solvent, which on average
experiences an interaction with the protein surface. For
Biophysical Journal 101(1) 196–204
well folded proteins, such behavior (also known as slaving)
arises from the polar/nonpolar and geometric properties of
the protein surface, but also from the faster protein motions
that frequently break the contacts to the solvent.
CONCLUSIONS/IMPLICATIONS

The molecular dynamics simulations (totaling 660 ns) run
here for a small but flexible protein demonstrate that a direct
coupling between internal and global motions is essentially
absent. This does not mean that there is no relationship
between the two, however, as changes in solvent motion are
known to affect both global and internal motions
(4,6,34,35). It should be noted, for example, that the
solvent-slaving model of protein dynamics (36,37) has two
components: First, global and larger-scale diffusive motions
of the protein are connected to the bulk solvent and are
viscosity-dependent, whereas internal dynamics the second
component are coupled to motions in the hydration shell.
Consistent with our simulation results, experimental studies
have shown that the two types of protein motions can be
largely independent of one another. Thus, a recent solid-state
NMR study suggests that internal motions in a crystalline
protein that is not able to move globally are comparable to
those observed in solution (38). A similar conclusion was
reached by fluorescence measurements of a gel-embedded
protein (39). Related to this behavior, a comparison between
our simulations with and without global motions shows that
the dynamics of water molecules in the first and second solva-
tion shells of the protein remain essentially unchanged.Recent
FIGURE 5 Second-order autocorrelation func-

tions of rotational (left column) and translational

diffusion (right column) of water molecules in

the first (a and b) and second (c and d) shells, for

the UNR (black line), INT (red line), and RIG

(blue line) simulations.



Coupling of Global and Internal Protein Motion 203
work has provided evidence that internal and global motions
are more likely to be coupled to one another when proteins
undergo substantial conformational changes or domain
motions that result in changes in protein shape and in the char-
acter of the exposed surface area (see, e.g., Lavalette et al.
(4).). It is expected, for example, that some of the internal fluc-
tuations will correlate with the direction of the domain
motionsvia protein hinges. This hierarchical picture of protein
dynamics has been supported by recent work of Kern and co-
workers on the ADK system (40), also pointing to the fact that
the timescale ofmotions can be considerably separated in such
a coupling involving a conformational change. Further study
is needed for such systems and for partially folded proteins
to determine whether individually correlated events are suffi-
cient in number to indicate a direct coupling that involves tran-
sitions, or whether the local and global dynamics are separate
and can simply be represented by a population average of the
different states involved (see, e.g., Wong et al. (6)).

The potential advantages of a direct coupling between
global and internal motions for protein function are apparent
given that proteins can be localized to environments in the
cell that allow little global motion.Moreover, many enzymes
and cell-signaling proteins also transition between different
states of oligomerization. It is intriguing to consider, then,
why nature has not utilized global motions in the same way
that internal motions play a role in protein function. One
answer may lie in the stochastic nature of the global motions
themselves. Although individual reorientational events can
be coupled to specific loop motions, the probability that
such events occur at considerable frequency compared to
other motions is likely to be low given the random and often
nearly isotropic nature of the global motion. Coupled events
would thus be swamped out by the many other global and
internal fluctuations. In some systems, however, it is clear
that even stochasticmotions can be converted into directional
dynamics (e.g., in the case of the ATPase pump (41)). This
then raises the second possible answer: perhaps a direct
coupling to stochastic global motions has been deliberately
avoided by structural features of the polypeptide chain and
of the loops (35,42). Investigations in this direction are in
progress in our laboratory.
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