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Trafficking Motifs as the Basis for Two-Compartment Signaling Systems
to Form Multiple Stable States
Upinder Singh Bhalla*
National Centre for Biological Sciences, Tata Institute of Fundamental Research, Bangalore, India
ABSTRACT Transport of molecules in cells is a central part of cell biology. Frequently such trafficking is not just for material
transport, but also for information propagation, and serves to couple signaling circuits across cellular compartments. Here,
I show that trafficking transforms simple local signaling pathways into self-organizing systems that span compartments and
confer distinct states and identities to these compartments. I find that three motifs encapsulate the responses of most single-
compartment signaling pathways in the context of trafficking. These motifs combine with different trafficking reactions to
generate a diverse set of cellular functions. For example, trafficked bistable switches can oscillate or become quad- or tristable,
depending on trafficking mechanisms and rates. Furthermore, the analysis shows how compartments participating in traffic can
settle to distinct molecular compositions characteristic of distinct organelle identities. This general framework shows how the
interplay between molecular movement and local reactions can generate many system functions, and give distinct identities
to different parts of the cell.
INTRODUCTION
The movement of molecules in cells is a highly regulated
and extremely diverse process. It underlies many key
cellular phenomena, ranging from formation of molecularly
distinct cellular compartments to maintenance of distinct
connection properties in thousands of synapses on a neuron.
Several studies have analyzed the implications of trafficking
for molecular segregation and compartmentalization (1–5).
Steep molecular gradients and local domains may also
emerge from localized phosphorylation and second mes-
senger production (6–8). The process of trafficking control
may be separated into two components: the mechanisms
of molecular movement, and the chemical modification of
molecules that confer directionality to this movement. For
example, the insertion and removal of glutamate receptors
into the synaptic membrane is regulated by their phosphor-
ylation state (9), and the direction of vesicle cycling is
specified by the GTP-bound status of Rab molecules (1,2).
Many trafficking events occur in cycles, and directionality
arises because one chemical form of a molecule M is
trafficked to a cellular compartment A, where it is converted
through signaling chemistry into a different form M*. M*
is then shipped back to compartment B through a separate
trafficking step.

The signaling mechanisms that govern function and traffic
can be extremely complex, and several attempts have been
made to organize signaling networks in terms of their func-
tional or topological motifs. These include oscillators,
timers, differentiators, various logical and analog operations,
and memory switches (10,11). Trafficking motifs appear to
further complicate this diversity into an unpromising land-
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scape of special cases. In this study, I develop a general theory
to encompass and abstract out this diversity. This framework
predicts a diverse set of cellular and functional properties.
RESULTS

I first analyze mass action models of signaling networks
from a database to show that many single-compartment
cellular trafficking and signaling processes fall into just
three categories. I then develop a framework to analyze
stable states in systems exchanging molecules between
two compartments. I illustrate this framework for a wide
range of trafficking situations, and then carry out mass
action simulations and steady-state analysis for example
situations. Finally, I compare the outcomes of this analysis
with several previously studied and quantitatively modeled
cellular trafficking phenomena and show that it offers
a concise and predictive framework.
Nomenclature

M: Amount of trafficked molecules in first state.
M*: Amount of trafficked molecules in second state.
Mtot: Total amount of traffickedmolecules, inM,M*, and

all intermediate states, in a specified compartment.
Tot: Total amount of M in all states in all compartments

in reaction system.
M-versus-Mtot curve: steady-state dependence of M on

Mtot.
P: Amount of anchor protein in unbound state. Unless

stated otherwise, P is assumed to bind to all states
of molecule M, in compartment A only.

Ptot: Total amount of anchor protein in all states in entire
system.
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The terms M, M*, and Mtot are general. When referring
specifically to compartment A and B the following terms are
used:

MA: Amount of M in compartment A.
MA*: Amount of M* in compartment A.
Atot: Total amount of MA, MA*, and any intermediate

states of M in compartment A.

Similarly, MB, MB*, and Btot apply to compartment B.
If there is any ambiguity, I refer to the molecule species as

molecule M, molecule M*, and so on, otherwise I use these
terms both as molecule identifiers and as amounts of the
specified molecules.
Many signaling systems fall into one of three
categories

Trafficked molecules are controlled through a wide variety
of signaling processes that may be very complex. I scanned
through signaling models from the Database of Quantitative
Chemical Signaling (12) and research publications to find
common features that might be important in the context of
trafficking. Specifically, I looked for systems where a mole-
cule M was converted to a second chemical state M* by the
signaling network, and where M and M* might undergo
trafficking. I selected 32 published models that met these
criteria, and computed the dependence of steady-state levels
of M on Mtot, the total amount of M in the compartment.
I did so by solving the systems of ordinary differential equa-
tions (ODEs) in the models and running out to steady state,
using the simulator MOOSE (13).

Despite the diversity of models, I found that they fell into
only three major categories: bistable (or breaking wave)
(16%), negative slope (28%), and positive slope (56%)
systems (Fig. 1, Table S1 in the Supporting Material). Bista-
ble systems have a region in which the system exhibits
hysteresis, and thus persists in either of two stable states
(Fig. 1 C). Negative slope systems have a region in which
the concentration of M decreases with increasing Mtot
(Fig. 1 D). Positive slope systems have monotonically
increasing levels of M with increasing Mtot (Fig. 1 E).
One of the complex signaling cases (mitogen-activated
protein kinase (MAPK) feedback) model with 81 molecules,
Fig. 1 C vi (14), combined two of these forms. Two charac-
teristic bistable motifs in the dataset were positive feedback
loops and multisite phosphorylation (Table S1 (15–18)), .
The negative slope models also frequently had feedback
and multiple phosphorylation motifs. These cases included
several kinase activation models (Table S1), and one of
the Rab models (2). The remaining signaling motifs were
positive slope systems. These curves included zero-order
ultrasensitivity (19) and high Hill-coefficient activation
systems. Five of the small-GTPase family models in this
selection, including Ras, Ran, and Rheb, had positive slopes
(Table S1).
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Although this selection of models was biased by database
availability, it was notable that these classifications covered
all the models tested. What biochemical features lead to
these classifications? I explored this using simple example
models that replicated the observed categories of curves
(Fig. 2 A: bistable models (15–18); Fig. 2 B: singly stable
models, rates in Dataset S1 in the Supporting Material).
The bistable models in the database, by definition, had
a hysteretic region in their M-versus-Mtot curves, where
the system could take two stable values. Outside this region,
there were two behaviors. In some cases M approached zero
at large Mtot (Fig. 1 C i and iii). This is the characteristic
breaking wave shape that identifies this motif. In the other
cases the large-Mtot limit of M was nearly linear with Mtot
(Fig. 1 C iv and v). I constructed dose-response curves for
M-versus-Mtot for the example bistable models including
the unstable fixed points (Fig. 2, C and D). These examples
showed that the two forms of the M-versus-Mtot curve
were complementary. In these models, the moleculeM exists
in two primary forms M and M*. In the bistable examples in
Fig. 2, C and D, M approached zero at large Mtot, and M*
converged toward Mtot itself. Thus, the two forms of the
responses of the models from the database could be ascribed
to which of two major forms of M was being monitored.

By changing the model parameters for the cases in Fig. 2
A, the bistable models became singly stable but with a nega-
tive slope region. A similar set of curves were constructed
using these models (A ii), and models with positive slope
(B i and ii). As with the bistables, the example models
generated reference curves that matched all the forms
from the database models, either in terms of M versus
Mtot, or M* versus Mtot.
Categories are largely robust to additional
flux terms

These canonical M-versus-Mtot curves express steady-state
relationships. How do these curves change in the presence of
flux of molecules due to traffic? To address this I introduced
an additional flux term that transferred molecules between
M and M*, so that Mtot was not altered. I then recomputed
the M-versus-Mtot curves. Forward flux was defined as flux
from M to M*, and vice versa. These rates were normalized
by the fastest internal rates of the reaction system to esti-
mate flux rates as a fraction of internal compartment rates.
From Fig. 2 E (bis) we see that this bistable system retained
bistability in a range of 2% forward fluxes to 20% reverse
flux, and outside this range it behaved like a negative slope
system. The negative slope and positive slope systems did
not change their classification for any value of flux tested
(up to 100% of internal rates), but there were quantitative
changes in responses.

A similar conclusion may be obtained by the following
argument. Let M be the nominal concentration in the
steady-state M-versus-Mtot curve. If the fastest rate in this
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FIGURE 1 Signaling responses fall into three

categories. Steady-state M versus Mtot curves for

18 example cases out of 32 cases studied. (A) Sche-

matic of generation of M-versus-Mtot curve. In

a compartment, the molecule M can be converted

into several chemical forms. The total amount of

M in all these forms is Mtot. In the subsequent

plots, M is plotted against Mtot. (B) Summary of

frequencies of occurrence of each category. (C)

Bistable cases. These are (i) bistable feedback

model. (ii) Multisite phosphorylation bistability

model (16), which has irreversible enzyme reac-

tions, giving an infinitely large hysteresis range.

(iii) Same model with added reversibility, giving

a finite hysteresis. (iv, v), Oscillatory MAPK

models from (10) for the kinase and phosphatase,

respectively, and have a form consistent with M*

versus Mtot. (vi) Large MAPK feedback model

with 81 molecular species, from (14). It has an

initial bistable domain similar to (C i) in the phys-

iological range of Mtot, but at high Mtot it seems to

adopt a negative slope behavior similar to those in

D. (D) Negative slope cases. (E) Positive slope

cases. Details of models and calculations are in

Table S1.
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system is k, then an additional flux term with the same rate k
will approximately halve (or double) the value of M depend-
ing onwhether it removes or addsM. If the state classification
is sensitive to ~20% changes, such as in some bistable
systems (16,20,21), then allowable values for flux rates are
also in this range. If the state classification is insensitive to
changes up to 100% (true for the negative and positive slope
cases), then the trafficking rates can be as large as the fastest
rates in the compartmental reaction system.
System states can be predicted from flux balance
between compartments

The next stage of the analysis investigated how the steady
states of the system as a whole could be determined from
the motifs obtained above. The MA-versus-Atot curve
forms a steady-state curve or nullcline, where MA does
not change if Atot is steady. However, if Atot is steady,
then so is Btot, and we can obtain another curve for MB.
The key step was to evaluate the flux balance requirement
so as to convert the equation for MB into another relation-
ship between MA and Atot. This gave a second nullcline
of MA as a function of Atot. The intersection points of these
two nullclines specify the fixed points of the combined
signaling/trafficking system.

At steady state, the number of molecules M entering each
compartment should be identical to the number leaving it.
I made two further assumptions: that intracompartment
reactions settle faster than the trafficking timescales, and
that almost all trafficked molecules in each compartment
are either in state M or M*. Note that this assumption
does not restrict levels of any other molecular species in
the compartment.

From the trafficking motif analysis above, we know how
the level of M depends on the total contents of the compart-
ment. This can be expressed as

Ma ¼ f aðAtotÞ; (1a)
Biophysical Journal 101(1) 21–32
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FIGURE 2 Reference models for three signaling

categories. (A i) Feedback model with bistability.

(A ii) Multisite phosphorylation model that can

be bistable or negative slope depending on param-

eters. (B i) Simple reaction scheme with positive

slope. (ii) Zero-order ultrasensitive reaction (19)

also has positive slope. For the bistable, negative

slope, and positive slope categories, I used models

A i, A ii, and B i, respectively. (C) Typical responses

of intracompartmental reactions for bistable, nega-

tive slope, and positive slope systems. (D) Same

responses as in C, showing dependence of M* on

Mtot. M* is the modified form of the trafficked

molecule. (E) Effects of flux on M versus Mtot

curves for bistable, negative slope, and positive

slope systems, respectively. Solid curve is refer-

ence, curves above it have reverse flux terms

added, and curves below it have forward flux terms

added. The categorization of the model does not

change with flux except for the bistable model in

Ei, which converts into a negative slope system

for forward flux > 0.02 or backward flux > 0.5.
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Mb ¼ f bðBtotÞ; (1b)
for molecule M in compartments A and B, respectively.
Here,

AtotzMaþMa�; (2a)

BtotzMbþMb�: (2b)
It is useful to express Btot as

Btot ¼ Tot� Atot; (3)

where Tot is the total amount of all states of M in the entire
system. Tot is conserved.

Applying the flux-balance requirement, we get

d

dt
ðAtotÞ ¼ 0; (4a)

d �
0
dt
ðMaþMa Þ ¼ 0: (4b)
Biophysical Journal 101(1) 21–32
Expressing as rate equations using rate terms from Fig. 3 A:

�kb:Maþ kf :Mb� kb�:Ma� þ kf �:Mb� ¼ 0: (4c)

Substituting for MA* and MB* from Eqs. 2a and 2b:

�kb:Ma� kb�:ðAtot�MaÞ þ kf :Mb

þ kf �:ðBtot�MbÞ ¼ 0:
(5)

Rearranging:

Ma ¼ Mb:ðkf � kf �Þ � kb�:Atotþ kf �:Btot
kb� kb�

: (5a)

Substituting in Eqs. 1b and 3 we get MA in terms of Atot:

Ma ¼
ðkf� kf �Þ:f bðTot� AtotÞþ kf �:ðTot� AtotÞ� kb�:Atot

kb� kb�
:

(6)
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This is the second nullcline of the system. Parameter varia-
tions on this equation are explored in Fig. 3. The analysis
from this point forward consists of finding intersection
points of the nullclines for different system parameters.

This procedure is easy to extend to other trafficking situ-
ations. For example, we obtain a similar equation if there is
a requirement for an anchor protein P for molecule MB to
A

C D

E F

G H

B

FIGURE 3 Reaction control parameters. (A) Reaction scheme for traf-

ficking. (B) Reaction scheme for traffickingwith an anchor protein molecule

P required for molecules to go into compartment A. (C–H): Transformations

of nullcline curve as a function of different trafficking control parameters. In

all these curves a reference M-versus-Mtot curve is shown in blue to help

visualize intersection points. (C) Varying kf. (D) Varying kf*. (E)

Varying kb. (F) Varying kb*. (G) Varying Tot. (H) Varying Ptot in reaction

scheme shown in panel B. For visualization purposes, the bistable model

from Fig. 2 A i has been taken. The reference trafficking parameters for

C–G are: kf ¼ kf*¼ kb¼ 2/s; kb*¼ 1/s; Tot¼ 2 mM. For panel H, the traf-

ficking parameters are kf ¼ 4/s, kf* ¼ kb ¼ 2/s, kb* ¼ 1/s, Tot ¼ 2 mM.

Ma ¼ ððkf � kf �Þ:f bðTot� AtotÞ þ kf �:ðT
kb
move into compartment A (Fig. 3 B). In such situations an
additional conservation equation applies

P ¼ Ptot� Atot; (7)

where the constant Ptot is the total amount of molecule P in
the entire system. The equation with the addition of the term
for P is
ot� AtotÞÞ:ðPtot� AtotÞ � kb�:Atot
� kb�

: (8)
It is useful to note that Eqs. 6 and 8 also apply to systems
with different volumes. If we use the volume of compart-
ment A (VA) as reference, the volume scaling factor.
Vr ¼ Vb=Va folds into the rate terms kf and kf* as

a constant scaling factor, and the argument in fB 23 must
also be scaled by Vr.

Equations 6 and 8 define how trafficking
parameters affect stable states of the system

In Fig. 3, I consider the nullclines in compartment A
arising from a bistable reaction in compartment B. In
Fig. 3, C and D, flux into compartment A is varied. Both
curves have an underlying negative slope line arising
from the negative dependence on Atot in Eqs. 6 and 8.
Thus, the system is likely to have at least two stable states
(intersections with the MA-versus-Atot curve) when the
reaction in compartment A is bistable or negative slope,
for a wide range of the kf and kf* parameters. The flip in
vertical orientation in Fig. 3, C and D, comes when the
kf (or kf*) term exceeds the flux due to the reverse kb (or
kb*) term.

In Fig. 3, E and F, flux out of compartment A is varied.
Here, the kb and kb* terms determine the underlying slope
of the nullcline, and the shape of the MB versus Btot curve
is overlaid on this. When kb is greater than kf, the line slope
is negative, so again bistability is likely. However, for
smaller values of kb, the underlying slope is positive and
furthermore the y intercept is below zero. Thus, systems
with a small kb are likely to have only a single stable state.
The converse is the case in Fig. 3 F, for kb*, therefore
systems with a large kb* will usually have only a single
stable state.

The dependence on total concentration of trafficked
molecule in the entire system (Tot) is straightforward:
large values of Tot shift the nullcline to the right (Fig. 3
G). Thus, multiple intersections (multistable states) are
likely only for intermediate values of Tot. Specifically,
multistability is likely when Tot is in the same range as the
start of the negative slope portion of the MA-versus-Atot
curve.

Large amounts of anchormolecule P encouragemovement
into compartment A. Thus, high values of Ptot increase the
Biophysical Journal 101(1) 21–32
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amount of MA, while retaining the overall shape of the
negative slope nullcline (Fig. 3 H). This means that multi-
stability is likely only in an intermediate range of values
for Ptot. This range is determined by the product of kb and
kb* with Tot.

Together with the original M-versus-Mtot curves, these
nullclines provide a graphical basis to understand the kinds
of stable states that might emerge from various combina-
tions of signaling and trafficking between two compart-
ments. I next investigate specific examples of trafficking
and signaling, and use numerical simulations of the result-
ing cases to show that the nullcline analysis does predict
stable states of the system.
Diffusive and transport processes can be
described in this framework

A wide range of trafficking processes are special cases of
Eqs.6 and 8: diffusive, unidirectional mass action, and
unidirectional zero-order reactions. Diffusive traffic is
bidirectional and concentration driven, and is effective at
small length scales. Signal flow in bacteria is frequently
diffusive (22). To obtain diffusive equations from Eq. 6,
we simply set

kf ¼ kb; (9a)

and

kf � ¼ kb�; (9b)

and assign a ratio of these rates

Kr ¼ kf �

kf
¼ kb�

kb
: (9c)

Substituting these terms into Eq. 6, we get

Ma ¼ f bðTot� AtotÞ þ Tot:Kr � 2Kr:Atot

1� Kr
: (10)

Mass action traffic is typically directed, and occurs when the
rate of traffic is proportional to the amount of trafficked
molecules. For example, Rab-mediated traffic is substan-
tially determined by the amount of GTP-bound Rab (1).
To analyze this, we set

kf ¼ 0; kb� ¼ 0; Kccw ¼ kf �=kb; (11a)

for counterclockwise traffic around the reaction loop in
Fig. 3, and

kb ¼ 0; kf � ¼ 0; Kcw ¼ kf =kb�; (11b)

for clockwise traffic. Putting these terms into Eq. 6 we get

Ma ¼ Kccw:ðTot� Atot� f bðTot� AtotÞÞ; (12a)

Ma ¼ Atot� Kcw:f bðTot� AtotÞ: (12b)
Biophysical Journal 101(1) 21–32
SNARE trafficking can be approximated in this
framework
N-ethylmaleimide sensitive factor attachment protein
receptor (SNARE)-dependent trafficking is a special case
of unidirectional mass action traffic, where the rate is
proportional to molecular levels both in the originating
vesicle and target compartments (4). I treat compartment
A as the composite of organelle A and the vesicles budding
off it and the reaction within the compartment represents the
fast processes involved in this budding and insertion of the
SNARE M into the vesicle. Thus, MA represents SNAREs
in the organelle, and MA* the SNARES in the vesicles
budded from organelle A. I assume traffic goes directionally
with the vesicles MA* fusing to compartment B, and the
vesicles MB* fusing to compartment A. These biological
assumptions are discussed more fully below. The flux
balance equation in this case is

kba:Mb�:Ma� kab:Ma�:Mb ¼ 0: (13)

Let

Kr ¼ kba=kab; (14a)

and then using Eqs. 2 and 3, we get

Ma:Kr:ðTot� Atot� f bðTot� AtotÞÞ
¼ ðAtot�MaÞ:f bðTot� AtotÞ; (14b)

which rearranges to

Ma ¼ Atot

1þ Kr:

�
Tot� Atot

f bðTot� AtotÞ � 1

�: (15)

Motor transport and protein synthesis
can be represented as zero-order variants
of the framework

Finally, zero-order kinetics occurs when a directed molec-
ular transport mechanism is itself limiting. For example,
motor-mediated traffic may be saturating, therefore it
depends only on the amount of the motor, and not on cargo.
The same equations also apply to protein turnover, which
can be approximated as a combination of a zero-order
process of protein synthesis, and a mass action process of
degradation (10) To obtain this relationship, we put in the
zero-order term Z into Eq. 4c, and set the reverse reaction
to zero. This can be done for various permutations of two
directions (cw and ccw) and the zero-order term on the
left or right, but given the symmetry of the reaction system
it reduces to just two unique cases:

Z � kcw:Ma� ¼ 0 0 Ma ¼ Atot� Z=kcw; (16a)

Z � kccw:Ma ¼ 0 0 Ma ¼ Z=kccw: (16b)
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Here, kcw and kccw are rates in the clockwise and anticlock-
wise directions, respectively.
Multiple systems properties emerge from
trafficked signaling systems

Put together, the functional motifs and the flux-balance
permutations provide a rich substrate for diverse system
properties. I considered a representative list of 32 permuta-
tions of trafficking in both directions from compartments A
and B (Fig. 4). For analytical simplicity I considered cases
where either the reaction in compartments A or B was iden-
tical, or where the reaction in compartment B was a simple
conversion reaction: M <¼¼> M*. Although this offered
analytic convenience, it did not limit the generality of the
findings, as the number and relative slopes of intersection
points from the graphical analysis depend on the forms of
fA() and fB() and the trafficking parameters (Fig. 3), rather
than the exact equations underlying fA() and fB().

I carried out a graphical analysis and then generated over
50 example ODE models to confirm the properties of the
interesting cases predicted graphically (Dataset S1 in the
Supporting Material). I then systematically varied traf-
ficking rates andmolecular concentrations to generate a state
map of resultant systems properties for selected trafficking
permutations (Fig. 4).

This exploration of signaling and trafficking gave two
broad findings: First, complex systems properties emerged
when simpler signaling systems underwent trafficking, and
second, trafficking parameters regulated the kinds of proper-
ties that could be generated. The first point is emphasized in
the graphs in the middle columns in Fig. 4, which are color-
coded for systemproperties. At least six distinct systemprop-
erties were observed: 1 to 4 stable states, simple relaxation
oscillators, and a combination state with a relaxation oscil-
lator but also a stable point (labeled as Oscillatory 2). Oscil-
latory systems are familiar in biology (10,11,23), but the
oscillations described here were distinctive as they spanned
multiple compartments. The greatest diversity of states arose
when bistable systems underwent trafficking. Negative slope
systems gave rise to 1 to 3 stable states, but not oscillations.
Finally, positive slope systems were singly stable, except in
the case of SNARE-type trafficking (Fig. 4 L).
Trafficking parameters regulate emergent system
properties

The second broad result was that trafficking mechanisms
and parameters strongly influenced emergent system prop-
erties. Thus, similar trafficking configurations led to similar
system outcomes, as seen in their state maps. For example,
in Fig. 4, E, H, I, and K, the bistable (yellow) regions of the
negative slope state maps were similar to the corresponding
regions of the bistable state maps. This similarity was also
seen between cases when the trafficking was identical
except for the reaction in compartment B (e.g., Fig. 4, E
and K, F and J). Among the trafficking categories studied,
multistability was least likely in the cases in Fig. 4, D and
G, and most likely by far for SNARE trafficking (Fig. 4
L). Oscillations were found in 6 of the 13 cases in Fig. 4.

Beyond these overarching effects where trafficking mode
determined what states were accessible, there were also
important quantitative regulatory effects. One observation
was that there were large and distinct domains in the state
maps for different functional properties. The size of the
functional domains is a measure of robustness of system
behavior with respect to parameter variation. With the
exception of oscillations in Fig. 4 A, and bistability in
Fig. 4 D, these domains were large, typically spanning at
least one log unit.
The graphical analysis produces good estimates
of stable states despite assumptions about
steady state and intermediates

The graphical analysis predicts system stable states based on
two key assumptions: the flux terms have a negligible effect
on the shape of the M-versus-Mtot curves, and Mtot ~ M þ
M* are in each compartment (Eq. 2). As discussed above,
moderate flux terms are expected to give quantitative but
not qualitative shifts in the stable states. The impact of the
second assumption can be examined because the biochem-
ical models in Fig. 4 have intermediate states, in the form
of enzyme-substrate complexes for each enzymatic step.
Thus, there are two intermediates between M and M* in
each compartment in which there is a bistable or negative
slope model.
To quantitatively test the effect of the two assumptions, I

compared the graphical solutions with numerically accurate
solutions obtained for the complete ODE systems in Fig. 4.
The numerical solutions were obtained by solving the ODE
equations for zeros, as described in the Methods in the Sup-
porting Material. These solutions are plotted in the middle
column of Fig. 4 as dots for stable states, and circles for
unstable fixed points. In almost all cases the overlap with
the graphical intersection points is excellent. Notable
discrepancies occurs for some of the oscillatory models
(blue on white background) and for panels A(iii), I(ii),
J(iii), and L(iv). The average error of the graphical estimate
was only 5.4% over the 100 stable and unstable states esti-
mated in Fig. 4 (Methods in the Supporting Material).
The analysis predicts properties of known
biological and model systems

I finally applied this analysis to selected published experi-
mental and modeling studies that involve molecular traffic.
These included diverse cellular phenomena such as com-
partmental identity, long-term state switches, and protein
turnover.
Biophysical Journal 101(1) 21–32
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FIGURE 4 Many system properties emerge from combinations of signaling and trafficking. Left column shows the model schematic, with one to three

cases that obey the same equations. Middle columns show different signaling categories as M versus Mtot curves, along with example solutions. Tick marks

on graph axes are at 1 mM intervals. Solutions are also shown from numerical computation of steady states, using dots for stable solutions and open circles for
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FIGURE 5 Analysis of SNARE trafficking. (A) Schematic of SNARE

trafficking, between two compartments each of which bud out vesicles.

The SNARE molecules X and U are represented as differently shaded

membrane proteins in the compartments and in the vesicles. Trafficking

is indicated by the thick black arrows. (B) Reduced reaction scheme for

current analysis. The two SNARE species X and U are represented by

MA in compartment A, MA* in vesicles originating from compartment

A, MB in compartment B, and MB* in vesicles budding from compartment

B. The formation of vesicles is a reversible conversion reaction in compart-

ments A and B. For docking to occur the complementary SNAREs must be

present on the target, thus the reaction depends both on vesicle and target

compartment levels of SNARE. (C) Nullcline analysis of stable points of

SNARE system. Here, total molecule concentration ¼ Tot ¼ 2.When all

the molecules are in compartment A, MA can then take any value below

Atot, hence the vertical line at Atot ¼ Tot ¼ 2.
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A major mechanism for the formation of distinct cellular
compartments involves SNARE trafficking. I considered
just one pair of complementary SNARE molecules, t and
v, that can dock with each other to enable vesicle fusion
(Fig. 5). Following (4), I assigned them the symbols X
and U, and assumed they would remain at equal concentra-
tions. This enables the mixture of X and U to be mathemat-
ically represented simply as molecule M. I do not make any
assumptions about the mechanisms involved in generating
vesicles from the parent compartment, except that the
process falls into one of the three cases for M-versus-Mtot
curves. M represents the compartment-bound SNAREmole-
cule and M* the vesicle-bound SNARE (Fig. 5, A and B).
The rate to dock onto compartment B is proportional both
to MA* (vesicular SNARE from compartment A) and MB
(SNARE on compartment B). The converse applies for
docking from MB* to compartment A.

Using Eq. 15, I found that the SNARE-mediated traf-
ficking equations generated bistability over a wide param-
eter range regardless of whether the vesicle formation
process was positive slope, negative slope, or bistable. If
we stipulate that M (which represents specific SNAREs)
confers compartment identity, the property of bistability
results in the formation of complementary compartments
identified by high and low levels of M, respectively. This
has the interesting prediction that the generation of distinct
compartment identities by SNARE traffic should be
substantially independent of the specifics of the reaction
systems for budding off and docking vesicles.

I next investigated long-term cellular switches. Some of
the most detailed models of long-term switches are in
synaptic plasticity. At least four such switches have been
described (20,21,24,25). I considered two that involve traf-
ficking: CaMKII and glutamate receptor (AMPAR) switches.
CaMKII is a dodecamer that is activated by Ca4.CaM as well
as by autophosphorylation. CaMKII translocates rapidly to
the postsynaptic density (PSD) when it binds to Ca4.CaM.
We treat CaMKII as molecule M, and Ca4.CaM.CaMKII
as M*, and regard the PSD as compartment A (Fig. 6 A).
CaMKII has been proposed to be bistable on its own (24).
However, in the model used as the basis for this study (20),
neither the cytoplasmic nor the PSD-bound forms were indi-
vidually bistable. Instead, the autophosphorylation resulted
in a negative slope curve for CaMKII in the PSD. I took
into account the role of the N-methyl-D-aspartate receptor
as an anchor protein, and therefore used Eq. 8. I considered
directional mass action traffic to set kb* ¼ 0, kf ¼ 0, and
saddles and unstable solutions. Graphs are color-coded to indicate the solution cl

ground; the rest have the indicated color as background. All graphs are for comp

(K iv), which shows how solutions from compartment A in K iii map to compar

slope, negative slope, and bistable systems, respectively. These maps indicate by

ratio of trafficking rates (x axis). The positive slope cases were all singly stable

explained in the Methods in the Supporting Material.
Kccw ¼ kf �=kb as in Eq. 11a. Although the actual reactions
were complex, preliminary simulations showed that the
dependence of MB* on MB was nearly linear. I therefore
approximated MB* as

Mb� ¼ Keq:Mb: (17a)

Applying Eq. 2b: BtotzMbþMb�, we get

Mb ¼ f bðBtotÞzBtot=ð1þ KeqÞ: (17b)

Combining Eqs. 8, 11a, and 17b, we get

Ma ¼ KccwðPtot� AtotÞ ðTot� AtotÞ
1þ 1=Keq

(17c)
ass. Oscillatory solutions (blue) are indicated by blue lines on a white back-

artment A, except for panel J(i–iv)), which is for compartment B, and panel

tment B. State maps are shown in the rightmost three columns for positive

color code the system states that occur for various levels of Mtot (y axis) and

, except for panel L, and were therefore left blank. State map generation is
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FIGURE 6 Analysis of synaptic plasticity and oscillator models. (A)

CaMKII model schematic, based on model from (20). CaMKII is repre-

sented by a hexagon of six circles, which are shaded when phosphorylated.

When calcium enters the synapse it binds to CaM, which in turn binds to

CaMKII and promotes its translocation to the postsynaptic density near

the membrane. This binding occurs on an anchor protein, which is the

N-methyl-D-aspartate receptor. The terminal autophosphorylated state

releases the CaM, and CaMKII returns to the cytosol. (B) Nullcline calcu-

lations for the CaMKII trafficking cycle. This system has two stable states.

(C) Reaction schematic for AMPAR trafficking cycle (20). AMPAR

undergoes turnover in the basal state and also degradation from the phos-

phorylated state. Several of the higher-phosphorylation states can associate

with PSD-95 and thus translocate to the PSD. (D) Nullcline diagram for

the major low-phosphorylation state in the bulk. This predicts bistability.

(E) Reduced model of AMPAR trafficking, with fewer intermediates and

single rather than tetrameric receptors. (F) Nullcline intersection diagrams

for stable states of the reduced model, with or without anchor molecule.

Bistability is retained for the original nullcline, but not if turnover or degra-

dation are removed. (G) Model for MAPK cascade oscillations, in which

the kinase KK is synthesized at a constant rate and is degraded at a rate

proportional to the amount of KK (10). (H) Oscillations as predicted

from an implementation of this turnover model.
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The graphical analysis predicts bistability with steady states
close to the original study (Fig. 6 B). This is an interesting
outcome as it shows that CaMKII-mediated synaptic bist-
ability need not depend on bistability of the autophosphory-
lation reactions.

I then considered trafficking and turnover of the alpha-
amino-3-hydroxy-5-methyl-4-isoxazoleproprionic (AMPA)
receptor at the synapse using the original model in accession
60 from DOQCS, from the same study (20). I constructed
the MA-versus-Atot curve for the spine compartment, and
replaced the AMPAR turnover and degradation reactions
with the corresponding trafficking terms. The nullcline
equation is very similar to Eq. 16b, with an additional
term for the degradation step of the system:

Ma ¼ ðZ � Atot:kb�Þ=ðkb� kb�Þ: (18)

Here, MA represents the unphosphorylated, internalized
form of AMPAR. (open circles in Fig. 6 C). Once the stable
points were estimated from the null-clines (Fig. 6 D), the
levels of PSD-expressed AMPAR were computed by setting
the system to these levels and running the model to steady
state. The results were close to the original stable-state esti-
mates: ~16 AMPARs in the PSD for the low state and ~148
for the high state. Original values were ~20 and 135, respec-
tively. In addition to its predictive value, this analysis
simplifies understanding of the properties of a particularly
complex model that has over 200 molecular species.

To further dissect out the role of trafficking conditions
and reaction intermediates in the formation of bistability, I
constructed a simplified version of the AMPAR trafficking
model that eliminated many of the intermediates (Fig. 6
E). Here, the trafficked receptor had only one subunit and
only one intermediate phosphorylation state (represented
by a half-shaded circle). This had a similar M-versus-Mtot
curve as the original system and similar predicted bistable
states (Fig. 6 F, blue trace, blue dots to represent stable
states). As a first variant, I eliminated the anchor protein
(green trace, green dots). This too was bistable, but at some-
what different state values. As a second variant, I eliminated
the degradation step. This resulted in a different nullcline,
(indicated by the dashed red line). This system was now
only singly stable. As a third variant, I eliminated the turn-
over step specified by reaction rate kb in Eq. 18. This re-
sulted in the nullcline indicated by the dashed blue line.
This again was only singly stable (blue crosses for the
with-anchor and no-anchor cases). This series of tests estab-
lished that, in this case at least, a), the presence or absence of
intermediates did not remove bistability, b), the presence or
absence of an anchor protein also did not eliminate bistabil-
ity, but c), removing either of the key trafficking terms did
eliminate bistability.

A final comparison based on models from the literature
considered an example of protein turnover of MAPK regu-
lators of multisite phosphorylation, leading to oscillations
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(10). Unlike other models considered here, this system
involves synthesis and degradation of the regulatory kinase
KK and phosphatase P (Figs. 4 F and 6 G), rather than traf-
ficking. This turns out to have the same mathematical form
as zero-order trafficking considered in Eq. 16a:

Ma ¼ Atot� Z=Kcw:

I considered the turnover of the kinase KK. As seen in Fig. 6
H, this system can indeed oscillate, as predicted in the orig-
inal study (10). The current results uncover an interesting
mathematical equivalence between protein turnover and
trafficking.
DISCUSSION

The current study integrates signaling and trafficking in
a predictive mathematical framework that works for a large
number of systems. The analysis is based on a survey of
models of signaling systems that are based on experimental
data. The survey reveals a new kind of signaling motif, to
my knowledge, that constrains how a system will behave
in the context of intercompartmental traffic. The current
mathematical analysis builds on these motifs to predict
system behavior for a wide range of trafficking mechanisms.
The special strength of the analysis is that it is agnostic to
the actual molecular mechanisms of reactions occurring
within compartments. The domain of applicability of the
current analysis is for systems where the compartmental
reactions are substantially (at least 5 times) faster than the
trafficking steps. Thus, it includes numerous trafficking
configurations, including SNAREs. It also applies to many
cases of molecular turnover. The analysis does not extend
to several interesting nuclear and transcriptional switches
and oscillators (Table S2).
Signaling motifs for trafficking

Signaling motifs provide important unifying concepts in
studying complex biochemical networks, and are especially
valuable in predicting likely functions (11,26,27). The
current study identifies a new kind of signaling motif, to
my knowledge, that applies when biochemical systems
undergo molecular traffic. Here, I describe three such
motifs: the breaking wave form, typical of bistable systems,
the negative slope form, and the positive slope form (Fig. 2).
Previously defined motifs have considered chemical
connectivity features such as feedback and feedforward
loops, and typically apply to small numbers of chemical
reactions. Unlike such motifs, the present trafficking motifs
are defined in terms of system properties, and are applicable
to quite complex reaction networks. However, the traf-
ficking motifs serve a similar role in identifying key compo-
nents of a larger system, and predicting the kinds of
behavior that may emerge when they are combined.
Trafficking and compartmental identity

The fundamental prediction of this analysis is that a variety
of multistable and relaxation oscillator systems emerge
from molecular trafficking between two compartments.
This prediction has two main implications. First, for cell
biology, it suggests molecular mechanisms for generating
distinct compartmental identities, as determined by molec-
ular composition. The multistable systems predicted in the
current study result in a differential distribution of key
signaling molecules between compartments. Here, the rele-
vant feature of multistability is not that the system as a whole
can flip states, but that the symmetry between compartments
is broken when the system settles into any one state. In bio-
logical terms, as soon as the trafficking mechanisms bring
the system into the bistable regime, the two compartments
begin to settle into distinct molecular states predicted by
the current analysis (e.g., Fig. S1). This kind of self-organi-
zation has already been analyzed for SNARE trafficking
using specific assumptions about reaction mechanisms (4).
This study generalizes this analysis, and shows that SNARE
trafficking can generate distinct compartmental identities
for a wide range of mechanisms for vesicle formation and
trafficking parameters.
Trafficking and synaptic states

The secondmajor implication of the study applies to synaptic
plasticity. Bistable systems, such as the CaMKII autophos-
phorylation switch, are candidate mechanisms for long-
term changes in synaptic properties (24). However, bistability
typically appears for a rather narrow range of chemical
parameters, and candidate bistable chemical mechanisms
are rather few in number. For example, in the CaMKII auto-
phosphorylation switch, the level of phosphatase activity is
a rather tight constraint on the emergence of bistability
(28). The current study incorporates the observation that
many molecules translocate to or from the postsynaptic
density following trigger stimuli such as Ca2þ influx. These
include CaMKII itself, and the AMPA receptor. I have shown
that even in the absence of biochemical bistability, this trans-
locationmay result in an overall bistable system (Fig. 6). Thus
trafficking, which is essential for changing synaptic composi-
tion during plasticity, may simultaneously play an integral
role in defining distinct stable states of the synapse.
Generalization

Given that two compartments and a single trafficked molec-
ular species yield such a wide range of functional states, it is
interesting to consider how such mechanisms might scale to
more compartments and more trafficked molecules. At
a trivial level, if each compartment holds N independent
trafficking reactions, each of which gives rise to bistability,
then there are potentially 2N possible compartmental states
Biophysical Journal 101(1) 21–32
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or identities. It is more biologically plausible that the traf-
ficked molecules interact, thus reducing the number of states
but resulting in coordinated functioning of the resulting
compartments. It is known that cells can rapidly lose and
then rebuild an array of compartmental subtypes following
metabolic insults. The proposed mechanism may provide
insights into this kind of self-organization of distinct
compartment types.

Overall, this study shows that the combination of traf-
ficking and signaling is a potent mechanism for creating
and maintaining multiple distinct molecular signatures and
states of cellular compartments.
SUPPORTING MATERIAL

Two tables, a figure, Methods, and Supporting Dataset with model defini-

tion files are available at http://www.biophysj.org/biophysj/supplemental/

S0006-3495(11)00607-2.
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