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DNA Sequence Correlations Shape Nonspecific Transcription Factor-DNA
Binding Affinity
Itamar Sela and David B. Lukatsky*
Department of Chemistry, Ben-Gurion University of the Negev, Beer-Sheva, Israel
ABSTRACT Transcription factors (TFs) are regulatory proteins that bind DNA in promoter regions of the genome and either
promote or repress gene expression. Here, we predict analytically that enhanced homooligonucleotide sequence correlations,
such as poly(dA:dT) and poly(dC:dG) tracts, statistically enhance nonspecific TF-DNA binding affinity. This prediction is generic
and qualitatively independent of microscopic parameters of the model. We show that nonspecific TF binding affinity is universally
controlled by the strength and symmetry of DNA sequence correlations. We perform correlation analysis of the yeast genome
and show that DNA regions highly occupied by TFs exhibit stronger homooligonucleotide sequence correlations, and thus
a higher propensity for nonspecific binding, than do poorly occupied regions. We suggest that this effect plays the role of an
effective localization potential that enhances quasi-one-dimensional diffusion of TFs in the vicinity of DNA, speeding up the
stochastic search process for specific TF binding sites. The effect is also predicted to impose an upper bound on the size of
TF-DNA binding motifs.
INTRODUCTION
Transcription factors (TFs) are proteins that regulate gene
expression in both prokaryotic (e.g., bacteria) and eukary-
otic (e.g., yeast or human) cells. TFs bind regulatory
promoter regions of DNA in the genome. It is commonly
accepted that each TF binds specifically a relatively small
set of DNA sequences called TF binding motifs or TF
binding sites (TFBSs). ATF binds its specific binding motifs
with a higher affinity than other genomic sequences of the
same length (1,2). A typical length of TF binding motif
varies between 6 and 20 nucleotides. Recent high-
throughput measurements of TF binding preferences on
a genome-wide scale have challenged the classical picture
of TF specificity (3,4). These experiments measured binding
preferences of >100 TFs to tens of thousands of DNA
sequences and demonstrated a high level of multispecificity
in TF binding (3,4). It has been also pointed out that weak-
affinity TF binding motifs are essential for gene-expression
regulation (5).

A key question is how TFs find their specific binding sites
in a background of 106 � 109 nonspecific sites in a cell
genome. This question was first addressed theoretically in
seminal works of Berg, Winter, and von Hippel (6,7). The
central idea of this approach, as expressed in recent reviews
(8–10), is that the search process is a combination of three-
dimensional and one-dimensional diffusion. It has been
shown in different theoretical models that one-dimensional
diffusion (termed sliding or hopping in different models)
facilitates the search process under certain conditions
(11–17). Despite the success of these phenomenological
models, a complete understanding of the search process
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phenomena is still lacking (8). In particular, one of the
key open questions is what makes a TF switch from three-
dimensional diffusion to one-dimensional sliding in specific
genomic locations (8). Invariably, an assumption is made
about the existence of some nonspecific binding sites that
bring TFs to the vicinity of DNA for one-dimensional
sliding. This assumption is a key component of all theoret-
ical models, yet the molecular origin of this effect is not
understood (8,10). Recent single-molecule experimental
studies undoubtedly show that different DNA-binding
proteins spend the majority of their time nonspecifically
bound and diffusing along DNA (18–22). The question is,
what biophysical mechanism provides such nonspecific
attraction toward genomic DNA and regulates the strength
of this attraction at a given genomic location?

Here, we predict that DNA sequence correlations statisti-
cally regulate nonspecific TF-DNA binding preferences.
Depending on the symmetry and lengthscale of sequence
correlations, the nonspecific binding affinity can be either
enhanced or reduced. In particular, we show that homooli-
gonucleotide sequence correlations, where nucleotides of
the same type are clustered together generically, reduce
the nonspecific TF-DNA binding free energy, thus en-
hancing the binding affinity (Fig. 1). Sequence correlations
in which nucleotides of different types alternate have the
opposite effect, increasing the nonspecific TF-DNA binding
free energy (Fig. 1). Correlation analysis of the yeast-
genome regulatory sequences suggests that the predicted
design principle is exploited at the genome-wide level to
increase the strength of nonspecific binding at these regula-
tory genomic locations.

This article is organized as follows. First, we present
a simple, analytically solvable model that describes TF-
DNA binding. This model uses two-nucleotide alphabet
doi: 10.1016/j.bpj.2011.04.037
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FIGURE 1 Schematic representation of the model for TF binding to

DNA, and examples of DNA sequence correlation functions. (A) Random

sequence. (B) Enhanced homooligonucleotide (i.e., ferromagneticlike)

correlations lead to statistically enhanced nonspecific TF-DNA binding

affinity. (C) Enhanced antiferromagneticlike correlations (alternating

nucleotides of different types) lead to reduced nonspecific TF-DNA binding

affinity. All examples of sequences (A–C) represent simulation snapshots.

(D and E) Examples of the correlation function computed for sequences

with enhanced ferromagneticlike correlations (D) and those with enhanced

antiferromagneticlike correlations (E), where bold lines represent the expo-

nential decay of the correlation functions.
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DNA sequences. We develop a stochastic procedure allow-
ing us to design DNA sequences with a controlled symmetry
and strength of sequence correlations. We analyze the free
energy of nonspecific TF-DNA binding within the frame-
work of this model, and give an intuitive explanation for
the origin of the predicted effect. Second, we generalize
the model to four-letter alphabet DNA sequences and
show, as well, that all key conclusions hold qualitatively
true in this case. Third, we compute the free energy of
nonspecific TF-DNA binding for yeast genomic sequences
and show that sequences highly occupied by TFs in vivo
possess a statistically higher propensity for nonspecific
binding to TFs compared with sequences depleted in TFs.
We conclude by proposing experiments that will allow
direct testing of the predicted effect.
THEORY AND RESULTS

Free energy of nonspecific TF-DNA binding
in model sequences

In this work, we use a simple variant of the Berg-von Hippel
model to describe TF-DNA binding (1). For the analytical
analysis, we apply the model to artificial DNA sequences
containing two types of nucleotide rather than four.
However, we show that all key conclusions hold qualita-
tively true for four-nucleotide alphabet sequences, as well.

The energy of a TF bound to DNA at a specific location i
(see Fig. 1) can be expressed as

UðiÞ ¼ �K
XMþi�1

j¼ i

sj; (1)

where i and j represent individual basepairs, M is the effec-
tive length of the TF (i.e., the number of contacts between
TF and DNA), sj ¼ 51 describes two possible nucleotide
types at each position j, and K is the interaction strength.
We therefore assume that the energy contributions of indi-
vidual basepairs to the total binding energy, UðiÞ, are addi-
tive. We also assume that the energy of each contact is
exclusively defined by the basepair type. The sequence of
a DNA molecule of length L is uniquely defined by the set
of L numbers, sj, where j ¼ 1.L.

We note that Eq. 1 provides a minimal model for
TF-DNA binding. It captures the recognition specificity of
TF in the simplest possible way, by assigning different
contact energies, þK and �K, with two possible nucleotide
types. In reality, a TF recognizes DNA motifs forming
a complex, cooperative network of hydrogen and electro-
static bonds (1,2). Yet we suggest that the design principle
for enhanced nonspecific TF-DNA binding predicted using
such a simplified model is likely to be quite general and
robust with respect to microscopic details of TF-DNA
interactions.

The free energy of binding of an individual TF to DNA is
given by F ¼ �kBTln Z, with the partition function

Z ¼
XL

i¼ 1

expð �UðiÞ=kBTÞ; (2)

where kB is the Boltzmann constant, T is the absolute
temperature, and we imply periodic boundary conditions.
We ask the question, what are the statistical properties of
F as a function of the symmetry and strength of DNA
sequence correlations?

To answer this question, we first design a DNA se-
quence using a stochastic design procedure. This procedure
allows nucleotides within the DNA sequence to anneal, with
each configuration being accepted with the Boltzmann
probability

pðEdÞ ¼ 1

Zd

e�Ed=kBTd ; (3)

where Td is the design temperature controlling the strength
of correlations (this is different from the thermodynamic
temperature, T), Ed is the design intra-DNA energy. For
simplicity, we take into account only the nearest-neighbor
interactions in the design energy:

Ed ¼ �J
XL

i¼ 1

sisiþ1; (4)

where J is the design intrasequence interaction strength, and
Zd is the corresponding Ising model partition function (23),

Zd ¼ 2L
�
coshLðbdJÞ þ sinhLðbdJÞ

�
; (5)

where bd ¼ 1=kBTd.
The ferromagneticlike case, J>0, produces sequences

with homooligonucleotide stretches. The correlation length,
x ¼ �1=ln ðtanh bdjJjÞ, is the characteristic lengthscale of
the correlations decay, hsisiþxi ¼ expð�x=xÞ (23). The
Biophysical Journal 101(1) 160–166
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antiferromagneticlike case, J<0, produces sequences with
a different symmetry of alternating nucleotides (Fig. 1).
We define the average free energy of TF binding to DNA
as the annealed average,

hFi ¼ � 1

b
ln hZi; (6)

where the averaging is performed with probability pðEdÞ
(Eq. 3) and b ¼ 1=kBT. The quenched averaging, hFiq ¼
�hln Zi=b, is analyzed numerically below, and it gives
qualitatively similar results (Fig. 2). The averaging in
Eq. 6 gives

hZi¼ 2L�M�1L

Zd

2
64�lMþ þ lM�

��
coshL�MðbdJÞþ sinhL�MðbdJÞ

�

þ �
lMþ � lM�

��
coshL�MðbdJÞ � sinhL�MðbdJÞ

�

� e�bdJffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2bdJsinh2ðbKÞ þ e�2bdJ

q

3
75;

(7)

where Zd is given by Eq. 5, and

l 5 ¼ ebdJ coshðbKÞ5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
e2bDJsinh2ðbKÞ þ e�2bdJ

q
: (8)
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FIGURE 2 TF-DNA binding free-energy difference normalized per base-

pair, Df ¼ bhDFi=M, computed using Eq. 7 as a function of the reduced

design temperature, 1=bdJ (solid curves). The upper and lower branches of

the graph correspond to J<0 (antiferromagneticlike DNA sequence correla-

tions) and J>0 (ferromagneticlike correlations), respectively. The results of

MC simulations of the system are in excellent agreement with the analytical

results (solid circles). We used the parameters bK ¼ 1, M ¼ 18, and

L ¼ 1000. In Monte Carlo simulations, we used 7.5 � 106 MC moves to

design each DNA sequence at each value of Td. To generate each point in

the plot, we used a set of 100 sequences. To compute error bars, we divided

each set of 100 sequences randomly into 10 subsets, and then calculated the

SD of the subset averages for Df . The error bars correspond to 1 SD. The

numerically computed quenched average, �hln ðZ=ZNÞi=M, is also shown

(solid squares). In the computations, we used the same parameters and defi-

nitions as specified above. (Inset) Same data forDf as in the main figure, but

plotted as a function of x.
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We argue that the DNA correlations symmetry affects
statistically the interaction free energy. It is natural therefore
to analyze the free-energy difference between designed
sequences and their randomized analogs, which lack
symmetry:

hDFi ¼ hFi � hFNi; (9)

where hFNi is the free energy computed for entirely random
sequences (i.e., for sequences designed using a very high
value of Td or, equivalently, 1=bdJ[1). The first key
property of hDFi is that it is invariant with respect to
the sign of the TF-DNA binding-affinity constant, K.
Second, it is always satisfied that hDFi<0 if J>0 (ferro-
magneticlike correlations within designed DNA sequences
(see Eq. 4)), and hDFi>0 if J<0 (antiferromagneticlike
correlations). Fig. 2 shows the behavior of hDFi at different
magnitudes of the design strength. The central observation
here is that the behavior of hDFi critically depends on
the symmetry and the lengthscale of DNA sequence correla-
tions. The presence of homooligonucleotide stretches along
DNA sequences statistically increases the propensity of
such sequences for nonspecific binding to TFs. The DNA
stretches with nucleotides of different types alternating
produce the opposite effect: such sequences will have a
reduced propensity for nonspecific binding. We note that
the quenched average, hDFiq ¼ �hln ðZ=ZNÞi=b, com-
puted numerically, is in good agreement with the annealed
average (Fig. 2)

The reduction in TF-DNA binding free energy in the
presence of homooligonucleotide sequence correlations
can be understood intuitively in the following way. Homoo-
ligonucleotide sequence correlations generically enhance
fluctuations of the TF-DNA binding energy,
s2U ¼ hU2i � hUi2. This effect has to do with the symmetry:
a TF sliding along correlated DNA sequences where nucle-
otides of the same type have the tendency to cluster, will
experience homogeneous DNA islands, such as poly(dA:dT)
and poly(dC:dG) tracts. Statistically, this leads to the
dominant contribution of either very strong or very weak
energies to the TF-DNA binding energy spectrum. This
symmetry effect leads therefore to the widening of the TF-
DNA binding energy spectrum, PðUÞ. Such widening gener-
ically leads to the reduction of the TF-DNA binding free
energy, due to the fact that the dominant contribution to the
partition function, Z, comes from the low-energy tail of
PðUÞ (24). Alternatively, a DNA sequence with enhanced
antiferromagneticlike correlations (i.e., with alternating
nucleotides of different types) will have the opposite effect:
a TF sliding along such a sequence will experience very
heterogeneous binding sites. This leads to the narrowing
downofPðUÞ and consequently to the increase of the nonspe-
cific TF-DNA binding free energy.

We note that the predicted effect is not restricted to TFs; it
is operational for any other kind of DNA-binding protein.
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FIGURE 3 Average TF-DNA binding free energy, Df , numerically

computed at different values of the design temperature, where Df ¼
�hln ðZ=ZNÞi=M, with ZN the partition function for an entirely random

DNA sequence. We designed 200 sequences with length L ¼ 400 at each

Td. We performed 5 � 106 MC steps to design each sequence, attempting

in each step to exchange two basepairs chosen at random. The overall

nucleotide composition for each sequence was uniform and fixed. The

design potential was þJ (attraction) for identical nearest-neighbor base-

pairs and �J (repulsion) for different nearest-neighbor basepairs, with

J ¼ 1kBT. The contact energies, Ka, were drawn from a Gaussian distribu-

tion, PðKaÞ, with zero mean, hKai ¼ 0, and standard deviation sa ¼ 2kBT

for each nucleotide type a. We computed Df as an average over 250 TFs

and 200 sequences at each Td and usedM ¼ 8. The error bars are calculated

as specified in Fig. 2, and they are smaller than the marker size.
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Extension of the model to four-letter-alphabet
DNA sequences

We show in this section that four-letter alphabet DNA
sequences demonstrate statistical binding properties qualita-
tively similar to those of the two-letter alphabet sequences
analyzed above. This will allow us to extend all our insights
gained from the analytical model directly to genomic DNA
sequences. We argue that the same underlying physical
mechanism controls the nonspecific binding propensity in
both cases.

Contrary to the two-letter alphabet DNA sequences,
where within our modeling framework a TF is fully
described by the single parameter K, in the four-letter
alphabet DNA case, a TF is characterized by four energy
parameters, KA, KT, KC, and KG. Although those energy
constants are generally unknown, their order of magnitude
can be roughly estimated as 1kBT, and in addition, we allow
the TF-DNA contact energies to fluctuate. We therefore
draw these energies from the Gaussian probability distribu-
tions, PðKaÞ, with zero mean and standard deviations (SD),
sa, where a ¼ A; T;C;G; and we average the free energy
over many TF realizations.

The binding energy of TF at a given site i is expressed by

UðiÞ ¼ �
XMþi�1

j¼ i

X4

a¼ 1

Kas
a
j ; (10)

where saj is a four-component vector of the type
ðdaA; daT ; daC; daGÞ at each DNA position j, with the position
of 1 specifying one of four possible identities (A, T, C, or G)
of the basepair at position j, with dab being the Kronecker
delta. The sequence design procedure is analogous to the
one introduced above, Eq. 4, with the 4� 4 symmetricmatrix
of the design potentials entering the sum, �Jabs

a
i s

b
iþ1. The

results for the average TF-DNA binding free energy in
the ensemble of different TFs are shown in Fig. 3. The key
conclusion here is that, provided that in the design procedure
nucleotides of the same type attract, the lower the design
temperature (and thus the longer the correlation length of
homooligonucleotide stretches), Td, the lower the TF-DNA
binding free energy.
Free energy of nonspecific TF-DNA binding
in yeast genome

We ask further the key question, is the predicted design prin-
ciple for nonspecific TF-DNA binding operating in a living
cell? To answer this question, we computed TF-DNA
binding free energies using yeast-genome DNA. Our
working hypothesis here is that if the predicted effect is
operational, genomic regions that need to be highly acces-
sible to TFs should possess a higher propensity for nonspe-
cific TF-DNA binding than regions that need not be highly
accessible to TFs. To test this hypothesis, we compiled two
datasets of genomic DNA. First, we collected ~1600 high-
confidence yeast DNA regulatory promoter sequences (for
organelle organization and biogenesis genes), each
sequence 100 nucleotides long. We describe this dataset as
upstream. These upstream sequences are experimentally
known to be highly accessible to TFs. The second dataset
involves a comparable number of weakly accessible
genomic sequences. For this purpose, we chose the first
100 nucleotide stretches of the mRNA coding regions of
those organelle organization and biogenesis genes. We
describe the second dataset as downstream. The datasets
were compiled by Lee et al. (25).

It turns out that upstream sequences demonstrate statisti-
cally stronger homooligonucleotide correlations in A and T
compared to downstream sequences, and the difference
in correlations of C and G is not significant between the
datasets. The normalized correlation function, CAAðxÞ,
computed for the sets of upstream and downstream
sequences, is shown in Fig. 4 (blue and red, respectively).
This function is defined as CaaðxÞ ¼ saaðxÞ=hsraaðxÞi, where
saaðxÞ ¼ hsaðiÞsaðiþ xÞi, and hsraaðxÞi is obtained analo-
gously, using the set of randomly permuted sequences aver-
aged with respect to different random realizations. CTTðxÞ
shows qualitatively similar behavior (data not shown).

We now compare the TF-DNA binding free energies for
those two datasets. To get rid of the compositional bias, for
a given TF interacting with a given DNA sequence, we
always compare the difference, DF, between the actual
free energy,F, and the free energy computed for the random-
ized sequence (preserving the nucleotide composition of
Biophysical Journal 101(1) 160–166



0 10 20 30 40 50
0.9

1

1.1

1.2

1.3

C
A

A
(x

)

x

FIGURE 4 Normalized correlation function, CAAðxÞ (see the text for the
definition), computed for upstream (blue circles) and downstream (red

squares) sequence sets. Each set consists of 1663 sequences, with each

sequence 100 nucleotides long.

164 Sela and Lukatsky
each sequence), averaged over several random realizations,
FN: DF ¼ F�FN. We therefore compute numerically
the probability distribution, PðDFÞ, for these two datasets
of sequences interacting with a model set of TFs. The
TF-DNA binding contact energies, Ka, are drawn from the
Gaussian distributions, PðKaÞ, as described above. We stress
that the only external parameters entering the model are the
SDs, sa, of PðKaÞ. In our calculations, we set sa ¼ 2kBT
for all a. The computed PðDFÞ values for upstream and
downstream DNA sequences are shown in Fig. 5 A. We
also show the cumulative probability at different values of
the selectivity cutoff (Fig. 5 B). The central conclusion
here is that due to the presence of enhanced homooligonu-
cleotide (i.e., ferromagneticlike) sequence correlations,
nonspecific TF-DNA binding is statistically enhanced. At
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0

PðDf ÞdDf , computed using PðDf Þ from A. (Inset)

Difference between upstream and downstream PrðDf%Df0Þ.
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the maximal selectivity cutoff, where DFcx� 0:1kBT per
basepair, the probability of TF binding with the free
energy belowDFc is>30%higher to upstreamDNA regions
than to downstream regions (Fig. 5 B). This effect leads
to a shift of the thermodynamic equilibrium toward en-
hanced occupancy of TFs binding upstream regions
rather than downstream regions. The average strength of
the effect on TF occupancy can be estimated from the
difference of the average TF-DNA binding free energies,
hDDFi ¼ hDFupi � hDFdownix� 0:1kBT per basepair,
between upstream and downstreamDNA regions (difference
between the peak positions in Fig. 5 A). For a TF formingM
contacts within the TF-DNA binding site, this difference will
produce nup=ndownxexpð0:1�MÞ shift in the relative
binding occupancy, where nup and ndown are the numbers of
bound TFs in the upstream and downstream regions, respec-
tively. For a typical TF forming contacts with 10 DNA
basepairs, this leads to nup=ndownx2:7. We emphasize that
the latter estimate provides only a lower-bound limit for
the strength of the predicted correlational effect. We suggest,
therefore, that the predicted mechanism for enhanced
nonspecific TF-DNA binding is operational in promoter
regions of a significant fraction of yeast genes.

Finally, we note that our findings suggest the existence of
an upper bound for the TF-DNA binding motif size, imposed
by the maximal possible strength of nonspecific binding. It is
predicted (11) that if the free energy of TF-DNA nonspecific
binding falls below�2kBT, this significantly slows down the
sliding diffusion of TFs along DNA. Our estimates therefore
suggest that such slowing down is likely when the binding
motif approaches the size of 20 basepairs.
DISCUSSION AND CONCLUSION

Here, we predict a generic biophysical mechanism that
statistically regulates the strength of nonspecific TF-DNA
binding in a genome. We showed analytically and numeri-
cally, using both artificially designed and genomic DNA
sequences, that homooligonucleotide correlations statisti-
cally enhance nonspecific TF-DNA binding affinity. We
described the symmetry of such correlations as ferromagne-
ticlike. Alternatively, DNA sequences possessing enhanced
correlations of alternating nucleotides of different types
(referred to here as antiferromagneticlike) have a reduced
propensity for nonspecific binding to TFs.

Our model description of TF-DNA binding is highly
simplified. Yet we suggest that the design principle for
enhanced nonspecific TF-DNA binding predicted in this
work is likely to be quite general, it is operational in
genomic locations highly occupied by TFs, and it is likely
to be the rule rather than the exception. The robustness of
our conclusions with respect to the details of the model
stems from the fact that the predicted effect arises exclu-
sively due to DNA sequence symmetry and its strength
(which is determined by the lengthscale of the correlations
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decay). Computational analysis of the TF-DNA binding free
energy in ~1600 yeast genomic DNA regions highly occu-
pied by TFs shows that those regions possess much higher
propensity for nonspecific binding compared with regions
depleted in TFs. In our analysis, we used a simple procedure
to get rid of the DNA compositional bias, allowing us to
fairly compare the relative free energies of nonspecific
binding in different genomic locations.

We estimated that in yeast, the predicted effect leads to
a free energy reduction per DNA basepair in contact with
a TF of at least � 0:1kBTx60 cal=mol (on average) in
DNA regions with enhanced propensity for nonspecific
binding. This leads to at least a threefold concentration
enrichment in TFs (on average) of such highly promiscuous
DNA regions in yeast. We suggest, therefore, that in addi-
tion to all known signals, genomic DNA might also encode
its intrinsic propensity for nonspecific binding to TFs. The
predicted effect plays the role of an effective, nonspecific
localization potential, enhancing the level of one-dimen-
sional diffusion of TFs along genomic DNA at the
genome-wide level and thus speeding up the search process
for specific TF binding sites (6–11). We stress that all our
conclusions are obtained assuming a quasiequilibrium
nature of TF-DNA binding. It would be important to inves-
tigate the dynamic aspects of the predicted phenomena.

It is important to note that too high a level of nonspecific
TF-DNA binding impairs the overall search efficiency
(11,12). This suggests that the strength of the predicted
effect in vivo might be subject to both positive and negative
regulation. It has been pointed out in a seminal work of Iyer
and Struhl (26) that activity of poly(dA:dT) tracts increases
with their length. We suggest that this observation is a direct
consequence of the effect of enhanced nonspecific TF-DNA
binding by poly(dA:dT), predicted here. Another key obser-
vation of Iyer and Struhl (26), that poly(dC:dG) functions in
a similar manner to poly(dA:dT), further strengthens our
prediction.

Extensive correlation analysis of different organismal
genomes and direct, large-scale measurements of TF-DNA
binding preferences using DNA sequences with controlled
strength and symmetry of correlations, should provide an
ultimate test of the phenomenon predicted here. Protein-
DNA binding arrays (4) and high-throughput microfluidics
technology (3) allow a direct experimental test of our
predictions in vitro. A key experiment would measure the
TF-DNA binding affinity in different sets of DNA, each
set containing DNA sequences with a specific TF-DNA
binding motif embedded in a background of nonspecific
sequences with varying symmetry and strength of correla-
tions between DNA sets. We expect that DNA sequences
with enhanced homooligonucleotide correlations in back-
ground sequences will generically possess a higher binding
affinity to different TFs compared with background
sequences either lacking such correlations or having corre-
lations with alternating nucleotides of different types.
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