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Abstract
Objective—To summarize the effects of the adipokine adiponectin on the reproductive endocrine
system, from the hypothalamic-pituitary axis to the gonads and target tissues of the reproductive
system.

Design—A Medline computer search was performed to identify relevant articles.

Setting—Research institution.

Intervention(s)—None.

Result(s)—Adiponectin is a hormone secreted by adipose tissue that acts to reduce insulin
resistance and atherogenic damage, but it also exerts actions in other tissues. Adiponectin mediates
its actions in the periphery mainly via two receptors, AdipoR1 and AdipoR2. Adiponectin
receptors are present in many reproductive tissues, including the central nervous system, ovaries,
oviduct, endometrium, and testes. Adiponectin influences gonadotropin release, normal
pregnancy, and assisted reproduction outcomes.

Conclusion(s)—Adiponectin, a beneficial adipokine, represents a major link between obesity
and reproduction. Higher levels of adiponectin are associated with improved menstrual function
and better outcomes in assisted reproductive cycles.
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Obesity has reached epidemic proportions in developing and developed countries.
According to the practice committee of the American Society for Reproductive Medicine,
obesity is the most common chronic disease in the U.S. (1). Despite worldwide awareness
and international campaigns, the incidence of obesity is increasing, and obesity has been
described as the new worldwide epidemic (2). In 2009, the American Obesity Association
reported that obesity affects nearly one-third of the adult American population, ~60 million
individuals. Today, 64.5% of adult Americans (~127 million) are categorized as being
overweight or obese. Each year, obesity causes at least 300,000 excess deaths in the U.S.,
and health care costs of American adults with obesity amount to ~$100 billion.
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An understanding of adipose tissue and its functions is therefore of special interest to
identify mechanisms that account for the metabolic consequences of obesity. Among the
main endocrine products of the adipose tissue are the proteins leptin, adiponectin, and
resistin. Leptin, first described over a decade ago (3), has been thoroughly studied regarding
reproduction and at several levels of the reproductive axis, from the pituitary to end organs
(4–6). In contrast, few reports have summarized the effects of adiponectin on the
reproductive organs, either at a molecular level or for clinical relevance. The present review
focuses on the role of adiponectin as a hormone in order to clarify its role in reproduction.

ADIPOSE TISSUE
To meet metabolic demands and needs of energy expenditure, adipose tissue secretes several
proteins and bioactive peptides—adipokines—(Table 1) that act either locally (paracrine or
autocrine action) or systemically (endocrine action) (7). Adipose tissue is considered to be a
true endocrine gland (8). Many of these molecules directly or indirectly influence
metabolism, cardiovascular function, immunity or reproduction (Fig. 1). An excellent
example of the importance of adipose tissue in reproduction is its ability to convert
androgens to estrogens, owing to the presence of P450 aromatase in adipose tissue.

Adipose tissue is primarily composed of lipid-laden adipocytes surrounded by loose
connective tissue. In humans, most fat is white adipose tissue, in contrast to animals, which
have brown adipose tissue (9). The abundant adipocytes serve as triglyceride storage (9) and
are surrounded by a network of collagen fibers, vascular elements, fibroblasts, and immune
system cells. The metabolic role of adipose tissue is as an energy storage compartment. In
cases of prolonged fasting, lipolysis of adipose tissue promotes fatty acid delivery to be used
by muscle, liver, and kidneys. Conversely, a glucose load stimulates lipogenesis through
insulin (9), and thus adipose tissue maintains energy homeostasis. Many of the metabolic
consequences of obesity are caused by altered secretion of adipokines.

ADIPONECTIN
Structure and Expression

Adiponectin is a member of the adipose-secreted proteins called adipocytokines (Fig. 2).
Adiponectin was first described in 1995 as adipocyte complement-related protein of 30 kDa
(Acrp30) (10). Adiponectin was discovered independently by several laboratories, thus its
various names: Acrp30, adipose most abundant gene transcript 1 (apM1), adipose-specific
gene adipoQ (AdipoQ), and gelatin-binding protein of 28 kDa (GBP28). Adiponectin is a
244–amino acid protein (molecular weight 30,000 Da) derived exclusively from adipocytes
in white adipose tissue (6). Adiponectin is the protein product of the APM1 gene transcript,
which is located at chromosome 3q27, close to the locus responsible for type II diabetes and
adiposity (11, 12).

Of note, adiponectin is one of the most abundantly secreted adipokines and corresponds to
0.05% of the serum proteins (13). In fact, serum levels are 3–30 μg/mL in humans and 3–6
μg/mL in rodents (14). Adiponectin is related to the complement 1q family and contains a
carboxyl-terminal globular domain and an amino-terminal collagenous domain. Adiponectin
is secreted by adipose tissue (Fig. 3) in the form of a trimer as a low-molecular-weight
(LMW), a combination of two trimers as a middle-molecular-weight (MMW), or as six
trimers as a high-molecular-weight (HMW) form (15) and circulates either as a trimer or an
oligomer (16–18). Adiponectin is post-translationally modified by hydroxylation and
glycosylation, and circulating levels in mammals have been shown to be differentially
glycosylated, with approximate molecular weights of >250,000, 180,000, and 90,000 Da,
which correspond to HMW, MMW, and LMW forms of adiponectin (18). Similarly to
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leptin, adiponectin levels are lower in men (19, 20), obese individuals, individuals with
diabetes, and those with coronary artery disease (14, 21, 22). Adiponectin mediates its action
in the periphery principally through two receptors, AdipoR1 and AdipoR2 (23), although a
third receptor, t-cadherin, has also been identified (24).

AdipoR1 and AdipoR2 receptors are 7-transmembrane receptors that belong to a recently
discovered family of 11 progestin AdipoQ receptors (PAQRs), but they are structurally and
functionally distinct from G-protein–coupled receptors (25). AdipoR1 and AdipoR2 are also
known as PAQR1 and PAQR2, respectively. Both AdipoR1 and AdiopR2 bind adiponectin
with an EC50 in the range of 0.7–2.4 pmol/L (26). Related PAQR family members PARQ5
(also known as membrane progesterone receptor gamma [mPRγ]), PAQR 7 (mPRα), and
PAQR8 (mPRβ) exhibit strong binding to progesterone (EC50 1–3 nmol/L in yeast), show a
similar pattern of activation to known membrane-associated progestin effects, and transduce
progestin-dependent signals (26). For example, PAQR5, PAQR7, and PAQR8 are activated
by 17α-hydroxyprogesterone, an agonist that is known to activate membrane progesterone,
but not the nuclear progesterone receptor. Thus, PAQR receptors closely related to AdipoR1
and AdipoR2 (25, 26) may have an important role in reproduction, although incontrovertible
evidence for the in vivo role of PAQR5, PAQR7, and PAQR8 in progesterone action would
require targeted deletion in mice or a similar approach.

Adiponectin functions as an agonist of PAQR3, a previously incompletely characterized
member of the newly discovered PAQRs. Therefore, PAQR3 could potentially be a newly
discovered target receptor of adiponectin in the PAQR family. AdipoR1 receptor is
expressed mainly in skeletal muscle, activates the adenosine monophosphate-activated
protein kinase (AMPK) pathway, and shows a high affinity to globular adiponectin and low
affinity for full-length adiponectin (Fig. 3). In contrast, AdipoR2 receptor is enriched in liver
and acts through peroxisome proliferator–activated receptor alpha (PPARα) pathway. Both
AdipoR1 and AdipoR2 show affinity for both molecular forms of adiponectin. Although
studies have failed to demonstrate a blood-brain transport of adiponectin, both AdipoR1 and
AdipoR2 are widely distributed in the brain (see below).

Actions of adiponectin are mediated through activation of AMPK, leading to inhibition of
acetyl coenzyme A carboxylase and an increased fatty acid beta-oxidation (27). Activation
of AMPK acts to regulate energy homeostasis of the cell via fatty acid oxidation and glucose
uptake stimulation. Adiponectin is markedly reduced in obesity and rises with prolonged
fasting and severe weight reduction.

Adiponectin functions as an insulin-sensitizing agent by reducing hepatic glucose
production and enhancing insulin action in the liver (28, 29). Studies have shown that
adiponectin lowers levels of glucose, free fatty acids, and triglycerides in vivo (30–32) and
increases fatty acid oxidation in the liver via a reduction in CD36 expression, thus reducing
fatty acid influx and liver triglycerides (33). Adiponectin levels negatively correlate with
levels of fasting insulin, glucose, and triglyceride (21), and the administration of insulin
sensitizers significantly increase serum adiponectin levels in insulin-resistant humans (34).
Adiponectin, particularly HMW adiponectin, is increased by thiazolidinediones (TZDs) and
mediates the insulin-sensitizing effect of this class of antidiabetic drug (35). Adiponectin
levels are low in insulin-resistant states and increase in insulin-sensitive states, such as with
weight loss or treatment with thiazolidinediones (21). Further evidence for a key role for
adiponectin in glucose homeostasis is the hepatic insulin resistance found in rodents and
humans lacking adiponectin. It is important to mention that in vivo studies in humans are
associative and that more direct evidence for the importance of adiponectin is provided by
experiments in animals. In contrast, adiponectin treatment enhances insulin sensitivity,
primarily by suppressing glucose production. High adiponectin levels may protect the
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cardiovascular system and reduce the incidence of myocardial infarction (36, 37) while
accelerating endothelial renewal (38).

In addition to its effects on insulin sensitivity, adiponectin increases lipoprotein lipase and
lowers lipid levels (39, 40), increases nitric oxide production in endothelial cells and induces
angiogenesis (41), and mediates antiinflammatory (42) and anti-atherogenic actions (43). It
was recently reported that adiponectin levels were low in patients with breast cancer (44),
endometrial cancer (45), gastrointestinal cancer (46, 47), and prostate cancer. (48).
Therefore, adiponectin acts as a hormone to fine-tune energy homeostasis involving food
intake and the catabolism of carbohydrate and lipid (49) and may offer an interesting
alternative treatment for type II diabetes, obesity, and metabolic disturbances (2).

Adiponectin in the Hypothalamus and Pituitary
Both AdipoR1 and AdipoR2 are expressed in human pituitary (Table 2), suggesting local
modulation of the central reproductive endocrine axis by adiponectin (50). Although earlier
studies (51) reported that adiponectin did not cross the blood-brain barrier, subsequent
studies (50) showed that AdipoR1 was expressed in the hypothalamus and nucleus basalis of
Meynert. In 2008, Wen et al. (52) reported that both adiponectin receptors were expressed in
arcuate and lateral hypothalamic nuclei. Moreover, the expression and regulation of multiple
adipose-related hormones (including adiponectin) in the central nervous system and pituitary
gland was described (53).

Adiponectin has also been shown to regulate hormone secretion and gene expression in two
critical endocrine cell types of the pituitary involved in reproduction: somatotrophs and
gonadotrophs. Adiponectin inhibited LH and GH release as well as both ghrelin-induced GH
release and GnRH-stimulated LH secretion in short-term (4 h) GT1–7 cells derived from
GnRH neurons. Adiponectin inhibited GnRH secretion via activation of AMPK (52). These
results were supported by Lu et al. (54), who reported that adiponectin acutely reduced basal
and GnRH-stimulated LH secretion through increased phosphorylation of AMPK but had no
impact on FSH levels. At the level of the hypothalamus, adiponectin also influenced
oxytocin-secreting neuron excitability, perhaps explaining increased oxytocin secretion in
the obese population (55). Furthermore, adiponectin increased GHRH-R and GH
secretagogue–R mRNA content, which are the two main stimulatory receptors in
somatotrophs (56). Taken together, these results suggest a role for adiponectin as a link
between adiposity and reproduction. Specifically, low levels of adiponectin may contribute
to chronically elevated LH levels.

Adiponectin and the Gonadal Organs
Ovaries—The effects of adipokines on the process of ovulation and ovarian
steroidogenesis have not been extensively studied (57). Although leptin levels have been
correlated with progesterone levels throughout the menstrual cycle, Lord et al. (58) were the
first to demonstrate that pig ovaries and ovarian follicles expressed AdipoR1 and AdipoR2.
Subsequent studies confirmed expression of these receptors in the human ovary (59). The
isoforms of adiponectin (trimer, hexamer, and HMW) were present in both porcine and
human follicular fluid at concentrations equivalent to serum concentrations (60, 61).

Page et al. (62), as well as Lanfranco et al. (63), showed that increased T levels in humans
were inversely correlated with circulating adiponectin levels, and a similar inverse
relationship has been observed in mice (64). Ledoux et al. (60) found that AdipoR1 and
AdipoR2 mRNA was present in theca and granulosa cells, and that adiponectin receptors
(AdipoR1, AdipoR2) were detected in human granulosa cells and mediated adiponectin
action for increased production of P and E2 by insulin-like growth factor (IGF) I (65).
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Dupont et al. (66) highlighted the expression of PPARs and AMPK (the main adiponectin
mediators) in the ovary.

In 2008, Gutman et al. (67) first demonstrated the in vivo induction of adiponectin by
gonadotropins in the human ovary after treatment with recombinant LH (Table 2). The
addition of recombinant LH during the late follicular phase may enhance follicular insulin
sensitivity, resulting in reduced androgen levels through a cascade mediated by increased
production of adiponectin. Lagaly et al. (68) showed that adiponectin inhibited P- and LH-
dependent A production and insulin in theca cells in vitro. This was accompanied by
reduction of LHr, Cyp11a1, and Cyp17a1 transcripts in theca cells; thus adiponectin reduced
theca cell steroidogenesis. However, adiponectin did not affect insulin-induced proliferation
of theca cells from large follicles or granulosa cell function. In addition, LH was found to
increase AdipoR2 mRNA in theca cells, but not granulosa cells (68). Thus, adiponectin can
directly induce gene expression in theca cells, which has potential relevance to the
pathophysiology of polycystic ovary syndrome (PCOS; see below). The synergistic role of
adiponectin with insulin or IGF-I is consistent with the insulin-sensitizing role of
adiponectin.

Anovulation (PCOS)—Polycystic ovary syndrome is characterized by the presence of
clinical or biochemical hyperandrogenism, chronic anovulation, and polycystic ovaries (69)
and is frequently associated with insulin resistance. Obesity and insulin resistance are
accompanied by a decrease in SHBG and an increase in the free androgen index (70).
Considering the insulin-sensitizing actions (71–74) of adiponectin, its lower levels in obesity
(75), and the fact that adiponectin levels were reduced by T (76), it is reasonable to postulate
that adiponectin levels would be low in women with PCOS. Several studies have addressed
this point (Table 3). Some studies (77, 78) observed no difference in adiponectin levels
between PCOS women and normal weight-matched control subjects, whereas other studies
showed lower adiponectin levels in PCOS women (79, 80). Meta-analyses of these studies,
in combination with the homeostasis model assessment of insulin resistance (HOMA-IR),
supported the conclusion that adiponectin levels were lower in women with PCOS (81).
According to one meta-analysis (81), adiponectin levels were lower in PCOS women
compared with healthy control subjects of a similar body mass index (BMI). Furthermore,
adiponectin levels were lower in obese PCOS women compared with non-PCOS obese
women. Adiponectin levels were related to insulin sensitivity: The more insulin-resistant
patients had lower adiponectin levels (81). As mentioned above, it is possible that lower
levels of adiponectin may contribute to the increased levels of LH observed in some women
with PCOS.

In women without PCOS, adiponectin has been negatively correlated to T (76). In women
with PCOS, adiponectin levels were also negatively related to T levels (82) and to free
androgen index (83), cholesterol, triglycerides, glucose levels, and diastolic blood pressure
(82). Because adiponectin levels are related to insulin resistance, low adiponectin levels can
not be considered to be characteristic of PCOS. Instead, the alterations relate to the
pathophysiology of insulin resistance, and for this reason measurement of adiponectin in a
patient with PCOS is not indicated. Insulin and glucose levels—which are often measured in
PCOS—in combination with BMI correlate as expected with adiponectin levels (81).

Oviduct—Though far less studied, adiponectin may play a role in oviductal function. The
oviduct has been found to produce soluble factors that influence reproduction and possibly
fetal development. The oviductal fluid consists of glycoproteins, protease inhibitors,
regulatory molecules, cytokines, growth factors, cytokines, enzyme-binding proteins, and
immunoglobulins (84). Arcancho et al. (85) were the first to show that the oviduct of cycling
rats produces and secretes leptin and adiponectin (Table 2). Immunoreactivity for both
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adipokines was found in the apical region of the secretory epithelial cells, but only in the
isthmus and ampulla, and immunostaining was stronger in the isthmus and changed
throughout the estrous cycle in the ampulla, increasing from proestrus to estrus. A specific
role for the protein in the oviduct remains to be shown.

Endometrium—Recent findings suggest a possible role of adiponectin in endometrial
function. Both AdipoR1 and AdipoR2 are highly expressed in the pig endometrium (86). In
2006, both receptors were shown to be present in the endometrial and glandular human
epithelium and in stromal fibroblasts (87), and transcript levels were higher during the
midluteal phase of the cycle. Adiponectin acts through adenosine monophosphate–activated
protein kinase phosphorylation in epithelial and stromal endometrial cells. The fact that the
expression of both genes was increased in the midluteal phase when the implantation occurs
suggests that the homeostatic and antiinflammatory effects of adiponectin in the
endometrium might affect implantation. Interestingly, adiponectin levels were lower in
women with endometriosis compared with healthy women. In women with endometriosis,
adiponectin levels were inversely correlated to endometriosis and adhesion scores (88). Only
one study evaluated adiponectin and uterine leiomyomas (89), and the investigators reported
that women with leiomyomas had significantly lower adiponectin levels.

Testes—Whereas most studies of obesity and infertility focus on the female partner,
evidence suggests a significant effect of obesity upon male reproductive function (Table 3).
Despite a recent study showing no significant change in sperm parameters relative to BMI
(90), oligozoospermia and asthenozoospermia have been found to increase with an increased
BMI, worsening from overweight to obese men (91). Based on the role of adiponectin in the
ovary, investigators studied the possible expression of adiponectin in the rat testis.
Interstitial Leydig cells were found to express adiponectin mRNA, whose levels were
marginally regulated by pituitary gonadotropins (92). In addition, expression of transcripts
encoding AdipoR1/R2 was detected and ex vivo and recombinant adiponectin inhibited T
secretion, whereas it failed to change levels of stem cell factor and antimullerian hormone
(92). Furthermore, Ocon-Grove et al. (93) reported expression of AdipoR1/R2 mRNA in
chicken testis, adding that sexual maturation was likely associated with an up-regulation in
testicular AdipoR1/R2 and consequent influence on steroidogenesis, spermatogenesis,
Sertoli cell function, and spermatozoa motility.

Adiponectin and Assisted Reproduction
Obesity of the female partner is associated with a suboptimal outcome during an assisted
reproduction procedure. Although most studies consider obesity as a negative predictive
factor, others report differences only when marked obesity (BMI >35) is encountered.
Nevertheless, the majority of studies support the conclusion that obesity predicts reduced
success at ART (94). To date, few investigators have tested the correlation of adiponectin
levels with ART outcomes.

Based on the fact that adiponectin is reduced by increasing concentrations of estrogens and
increased by hCG, Liu et al. (95) studied whether adiponectin levels were altered in women
undergoing assisted reproduction. In that study, the investigators followed 52 women during
an IVF cycle and found a decrease in adiponectin levels from day 0 (baseline) to the day of
hCG injection. This decrease was partly explained by high E2 levels, though the E2 levels on
day of hCG injection were not correlated with adiponectin levels. On the contrary, post-hCG
adiponectin levels showed a subsequent increase, which in turn correlated with increased
levels of P after transfer, possibly explained by lipid accumulation and subsequent P
production due to adiponectin (95). Consistent with these observations, adiponectin levels
were found to be higher in 9 out of 32 women participating in IVF-ICSI who became
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pregnant, compared with lower circulating levels in unsuccessful cycles. Levels of
adiponectin were higher among the group with successful pregnancy on the day of oocyte
retrieval as well as the preceding 3 days. Interestingly, adiponectin levels were higher in the
group with successful outcome, despite no difference at the beginning of ovarian stimulation
(96). Moreover, in the same study, adiponectin was present in the follicular fluid, but levels
were not correlated with fertilization rates or the gonadotropin dosage. The authors
speculated that because follicular fluid adiponectin levels differed at various stages of
blastomere development, levels of adiponectin might hold predictive value (96). A second
case-control study of 56 women found that adiponectin levels on the day before
gonadotropin administration correlated with the number of oocytes retrieved and that
adiponectin levels were higher in women who conceived (97).

Independently of the number of oocytes obtained or estrogen levels, adiponectin levels in
the follicular fluid were found to be higher in women that received recombinant LH,
possibly relating to lower androgen and increased insulin sensitivity (67). In addition to the
correlations observed in vivo, adiponectin receptors were found to be present in human
granulosa cells, promoting an increase in P and E2 locally in granulosa cells (65), and
AdipoR1 and AdipoR2 were found to be regulated by hCG treatment in rats (98). The
mechanism responsible for the improved pregnancy outcome might be enhanced
development of oocytes (observed in porcine embryos, possibly through an inhibitory
mitogen-activated protein kinase [MAPK] pathway), with a positive effect on the meiotic
maturation and a superior rate of embryo development to the blastocyst stage (99).

Adiponectin in Pregnancy
The fact that adiponectin is implicated in the pathogenesis of insulin-resistant states, and that
an increase in adiponectin levels promotes insulin sensitivity, raises the question of whether
adiponectin plays a metabolic role in pregnancy. The beginning of pregnancy is
characterized by tissue accretion, whereas late pregnancy is notable for insulin resistance
and facilitated lipolysis (100). In early pregnancy, insulin secretion increases, although
insulin sensitivity is unchanged, decreased, or even increased (100, 101). In late gestation,
because of the progressive increase in postprandial glucose, insulin requirements must
increase (97).

Adiponectin and the Placenta
The human placenta was found to express virtually all known cytokines (101). Cytokines are
produced by three different placental cell types: the Hofbauer cells, the trophoblast cells, and
the vascular endothelium cells (101). Adiponectin receptors are present in the human and rat
placenta (102). Both human and rodent placentas express adiponectin (103). Of note,
placental cytokine release is positively correlated to adiponectin levels (104). AdipoR2, in
particular, is expressed in human syncytiotrophoblast and cytotrophoblast (103). The
trophoblast and the placenta are also local sources of adiponectin secretion (102). Placental
adiponectin secretion has been demonstrated in vitro, implicating placenta in a complex
system of source and target function. Placental adiponectin acts through a pathway common
for adiponectin, by altering the phosphorylation status of p38 and MAPK (102).

Studies have also suggested a role for adiponectin in the function of the placenta (Table 3).
Obesity is recognized as a risk factor for preeclampsia, and adiponectin levels were lower
during the first trimester in women with preeclampsia (105), whereas adiponectin and HMW
adiponectin levels were increased in preeclampsia, perhaps a physiologic response to restore
insulin sensitivity (106). Placental tissues from women with severe preeclampsia show
reduced expression of adiponectin (107). Whether adiponectin has a direct role in this
condition as related to obesity (108) or gestational diabetes (109) remains to be confirmed,
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but recent data suggest a role for adiponectin and AdipoR1 in placental angiogenesis and
placental apoptosis (110).

Recent findings also show that adiponectin secretion and adiponectin transcript levels in
white adipose tissues decline as gestation progresses, even in lean women, which suggests
that the adiponectin decrease is due to pregnancy-associated factors (111, 112). High E2
levels in vivo tend to lower adiponectin levels, possibly adding to the decrease observed
during pregnancy (113). Although women tend to have higher levels of adiponectin in
general, gestational diabetes mellitus (GDM) is associated with reduced serum adiponectin
levels both during pregnancy and after delivery. Adiponectin is negatively correlated with
HOMA-IR, and a decrease in maternal adiponectin after delivery indicates a significant
placental contribution to adiponectin production (114). Moreover, adiponectin levels
correlate with whole-body insulin sensitivity (115). This is understandable because of the
insulin-sensitizing effects of adiponectin in muscle and liver; adiponectin reduces hepatic
glucose production and enhances insulin action in the liver and peripheral utilization of
glucose. Given these data regarding expression of AdipoR1/R2 in the placenta, adiponectin
may affect the constantly changing metabolic state throughout pregnancy. Studies between
women with gestational diabetes mellitus and matched normal control subjects showed an
alteration of proinflammatory cytokines in women with GDM; adiponectin levels were
reduced in women with GDM, whereas interleukin-beta levels were increased. Moreover,
birth weight was negatively correlated with second-trimester adiponectin levels (114).

Adiponectin and the Fetus
Expanding the link between adiponectin and the placenta, and given the data that relate
adiponectin to fat distribution and insulin resistance, raises the question of adiponectin levels
in the fetus. Cord adiponectin levels were found to be significantly higher and not related to
maternal adiponectin levels, thus demonstrating a fetal source of adiponectin (116). While
adiponectin concentrations were found to be relevant only between maternal serum and
breast milk (117), low levels of adiponectin in cord serum tended to occur in fetuses
disproportionally large for their placental weight and vice versa (118). Long-term follow-up
of children with low cord adiponectin levels during fetal life predicted a more pronounced
weight gain at in the first 6 months of life, as well as an increased BMI and central adiposity
at age 3 (119). Both HMW and LMW adiponectin were detected in fetal plasma and were
stained in in vascular endothelial cells of fetal organs, skeletal muscle, kidney, and brain.
Moreover, the HMW adiponectin and total adiponectin levels are found to be higher in
umbilical plasma than in adult plasma and were associated with lower insulin concentration
and possibly lower insulin resistance in umbilical plasma, reflecting higher insulin
sensitivity of the fetus compared with the adult (120). Furthermore, although the relationship
between intrauterine growth retardation (IUGR) and perinatal and long-term complications
is established, attempts to correlate low adiponectin levels with IUGR are inconclusive,
because the majority of children resulting from IUGR are not found to have low adiponectin
levels (121, 122). Nevertheless, mothers who carried IUGR pregnancies were found to have
reduced adiponectin levels, possibly explaining the insulin insensitivity of their offspring in
term (123).

CONCLUSION
Obesity is an epidemic, causing serious health issues, including anovulation and infertility.
Because obesity is associated with low adiponectin levels, and given that many reproductive
endocrine tissues express adiponectin receptors, adiponectin represents an important
hormonal link between adipose tissue and the reproductive system. The relationship between
obesity and normal endocrine reproductive function is fertile ground for future research.
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FIGURE 1.
Adipose tissue functions as an endocrine gland. Adipose tissue secretes proteins and lipids
and metabolizes hormones that regulate not only energy homeostasis, but also influence
reproduction, immune function, and cardiovascular disease and hypertension. CETP =
cholesteryl ester transfer protein; FFA = free fatty acids; IL = interleukin; LPL = lipoprotein
lipase; TNF = tumor necrosis factor.
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FIGURE 2.
Adiponectin acts through the indicated pathways to influence organs involved in male and
female reproduction. ACC = acetyl CoA carboxylase; AMPK = adenosine monophosphate–
activated protein kinase; IGF = insulin-like growth factor; IL = interleukin; MAPK =
mitogen-activated protein kinase; PPAR = peroxisome proliferator–activated receptor.
SLC2A1 (GLUT1) = soluble carrier family 2 (facilitated glucose transporter) member 1;
SLC2A3 (GLUT3) = soluble carrier family 2 (facilitated glucose transporter) member 3.
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FIGURE 3.
Molecular structure of adiponectin and its receptors AdipoR1 and AdipoR2 and the
indicated signaling pathways in muscle, adipose tissue, and liver. Adiponectin occurs in
three molecular forms with globular and coiled domains: trimeric (low molecular weight),
hexameric (middle molecular weight), or multimeric (high molecular weight. Two trimers
associate to form a disulfide-linked hexamer (MMW). The HMW complex consists of 12–
18 monomers and is most active in suppressing hepatic glucose production. The trimeric
form is most potent for induction of AMPK activation and fatty acid β-oxidation in skeletal
muscles. G6-pase = glucose-6-phosphatase; Glut = glucose transporter; IRS = insulin
receptor substrate; mTOR= mammalian target of rapamycin; other abbreviations as in Figure
2.
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TABLE 1

Products of the adipose tissue.

Hormones Leptin, resistin, adiponectin, estrogens

Cytokines Interleukin-6, tumor necrosis factor alpha

Extracellular proteins Fibronectin, laminin, collagen

Enzymes 17β-Hydroxy steroid dehydrogenase (HSD), 11β-HSD 1, p450 aromatase, lipoprotein lipase

Renin-aldosterone system proteins Renin, angiotensinogen I, angiotensinogen II

Acute-phase proteins Haptoglobin

Complement factors Adipsyn, complement C3
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TABLE 3

Adiponectin in disease and clinical disorders.

Organ Hormone interactions Related diseases

Hypothalamus and pituitary LH (via GnRH) inhibition of release52 Obesity: increased oxytocin55

 Control of oxytocin-secreting neurons55

 GH (via ghrelin) inhibition of release56

Ovary Induction of adiponectin by gonadotropins
(recombinant LH)67

PCOS: ↓ adiponectin in anovulatory PCOS women83; no
negative correlation between adiponectin and androgens81;
inverse correlation with CHOL, Trigl, Glu, and DBP82

 ↓Androgen levels as a result of increased
production of adiponectin68

 Inhibition of P and A production68

Endometrium Increased adiponectin expression in the
midluteal phase (implantation)87

Endometriosis: Y adiponectin87

 Adhesion scores: inverse correlation with adiponectin87

 Leiomyomas: ↓ adiponectin89

 Endometrial cancer: ↓ adiponectin87

Placenta pregnancy Placental contribution to maternal
adiponectin105 ↓ estrogens = ↓ adiponectin113

Preeclampsia: ↓ first-trimester adiponectin105

 GDM: ↓ adiponectin (pregnancy and postpartum)114

Fetus Fetal source of adiponectin116 Fetuses large for placental weight: ↓ cord adiponectin118

 Offspring BMI: ↓ cord adiponectin levels relate to more
pronounced weight gain in first6 mo and increased BMI in 3
y119

 IUGR pregnancies: ↓ adiponectin121

Note: Superscript numbers correspond to references in text. BMI = body mass index; CHOL = total cholesterol; DBP = diastolic blood pressure;
GDM = gestational diabetes mellitus; Glu = glucose; IUGR = intrauterine growth restriction; PCOS = polycystic ovary syndrome; Trigl =
triglycerides.
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