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Estimating changes in free-living energy intake and its
confidence interval1–3

Kevin D Hall and Carson C Chow

ABSTRACT
Background: Free-living energy intake in humans is notoriously
difficult to measure but is required to properly assess outpatient
weight-control interventions.
Objective: Our objective was to develop a simple methodology that
uses longitudinal body weight measurements to estimate changes in
energy intake and its 95% CI in individual subjects.
Design: We showed how an energy balance equation with 2 param-
eters can be derived from any mathematical model of human me-
tabolism. We solved the energy balance equation for changes in free-
living energy intake as a function of body weight and its rate of
change. We tested the predicted changes in energy intake by using
weight-loss data from controlled inpatient feeding studies as well as
simulated free-living data from a group of “virtual study subjects”
that included realistic fluctuations in body water and day-to-day
variations in energy intake.
Results: Our method accurately predicted individual energy intake
changes with the use of weight-loss data from controlled inpatient
feeding experiments. By applying the method to our simulated free-
living virtual study subjects, we showed that daily weight measure-
ments over periods .28 d were required to obtain accurate esti-
mates of energy intake change with a 95% CI of,300 kcal/d. These
estimates were relatively insensitive to initial body composition or
physical activity level.
Conclusions: Frequent measurements of body weight over extended
time periods are required to precisely estimate changes in energy
intake in free-living individuals. Such measurements are feasible,
relatively inexpensive, and can be used to estimate diet adherence
during clinical weight-management programs. Am J Clin Nutr
2011;94:66–74.

INTRODUCTION

Evaluation of weight-management strategies in humans is
complicated by the well-known difficulties in measuring free-
living energy intake (EI) (1). This has been called “the funda-
mental flaw of obesity research” (2), and addressing this flaw is of
paramount importance. The gold standard doubly labeled water
(DLW) method is an expensive and specialized technique that
provides an accurate measurement of average CO2 production
over time intervals of 1–2 wk. Translating the measured CO2

production rate to an estimate of EI requires several assumptions
about the composition of the diet, and any changes in body weight
(BW) or body composition further complicate the calculation.

Recently, several publications have suggested that mathe-
matical models of human energy metabolism and BW change

might provide an inexpensive and convenient way to estimate
free-living EI (3–5). Whereas some investigators have empha-
sized the use of such methods to estimate the average free-living
EI in groups (3, 4), it has also been proposed that such models can
determine EI in individuals (5). Individual EI estimates would be
extremely valuable for assessing diet adherence and patient
compliance during a weight-loss program. However, such an
application would require an estimate of the EI CI to identify
dietary compliance.

Here, we propose a simple methodology for using longitudinal
BWmeasurements to estimate changes inEI (DEI) from its energy-
balanced value. Importantly, our method provides an explicit cal-
culation of the DEI CI and does not require solving a differential
equation. Themethodcan alsobeusedwith arbitraryweight change
models to define the parameter values.We evaluated themethod by
using individual weight-loss data from inpatient feeding studies in
which energy intakewas controlled. To investigate the accuracy and
precision of the method in a free-living situation with significant
variations in day-to-dayEI and realistic bodywater fluctuations,we
simulated data from groups of “virtual study subjects” with the use
of a validated computational model of human metabolism (3). We
show that frequent BW measurements over extended time periods
are required to obtain a reasonably precise estimate of DEI in free-
living individuals.

METHODS

Estimating changes in EI and its 95% CI

As we have shown previously (6), any mathematical model of
human energy metabolism and BW change can be linearized
around an initial BW value, BW0, to yield the following differ-
ential equation:
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q
dBW

dt
¼ DEI2 e

�
BW2BW0

� ð1Þ

where q is the effective energy density associated with the BW
change and e is a parameter that defines how energy expenditure
depends on BW. This linearized energy balance equation can be
solved for the change of energy intake as follows (4):

DEI ¼ eðBWi 2BW0Þ þ qa ð2Þ

where a is an estimate of the rate of change of BW over the
corresponding time interval t. Because q/e .365 d, we can safely
assume that the time course of BW can be fit with a linear model
over times shorter than ’60 d, such that BWi = ati + b. We show
in Appendix A that the DEI estimate has a variance (var) of:

var
�
DEI

� ¼ �2e2 þ 12q2

nðn2 2 1ÞT 2
þ 12eq
ðnþ 1ÞT 2

�
var
�
BW

� ð3Þ

where n is the number of data points and T is the time interval
between data points over a time interval t = nT. The precision of

DEI is optimized by maximizing the number of points n (and as
a consequence minimizing the interval between measurements
T). Thus, daily BW measurements (ie, T = 1 d) provide the most
precise estimate of DEI. Using n = 28 along with our previously
reported average model parameter values of q = 9100 kcal/kg,
e = 22 kcal/kg/d (4) with assumed BW fluctuations that were
normally distributed with SD ’0.5 kg (7–10), we obtained an
estimate of SD(DEI) = 180 kcal/d with a 95% CI of 6350 kcal/
d. Therefore, daily BW measurements over at least 28-d time
intervals will likely be required to provide information about
DEI that is sufficiently precise to assess diet adherence in
a free-living situation.

The 95% CI of the total EI can also be estimated by summing
the estimate of the variance of DEI (Equation 3) and the variance
of the initial energy-balanced value of EI. However, the pre-
cision of the total EI is bounded by the precision of the estimate
of the initial EI, which is quite poor without DLW measure-
ments. For example, the 95% CI for the baseline EI is .450
kcal/d using Institute of Medicine equations for total energy
expenditure (11). All of the calculations to determine DEI and

FIGURE 1. Weight changes and estimated changes in energy intake (DEI) during 800-kcal/d inpatient controlled diets. A: Results for a 135-kg, 45-y-old
woman. The left panel shows daily body weight measurements (circles), and the right panel depicts the DEI measurements (red curve) and their 95% CI
(dotted red curves) along with our DEI estimate (black dots) and its 95% CI (blue curves) (number of data points = 6, time interval between data points = 1 d).
B: Results for a 107-kg, 49-y-old woman. C: Results for a 39-y-old, 199-kg man. BW, body weight.
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its 95% CI can be performed by using simple spreadsheet
software, and an example is provided in the supplemental ma-
terials under “Supplemental data” in the online issue.

Evaluation of the estimated DEI in controlled inpatient
feeding studies

We applied our DEI method to previously reported daily body
weight measurements of 3 obese subjects consuming ’800 kcal/d
in an inpatient setting (12). We used the measured initial body
fat mass to calculate q and e as described in Appendix A. Be-
cause baseline EI was not assessed in this study, we used the
Institute of Medicine equations (11) to calculate the baseline en-
ergy requirements of each subject assuming light physical activity.
This value, along with the measured dietary intake, was used to
calculate the DEI data for comparison to our estimation method.

Comparison with a computational model prediction of DEI

A recent report described a computational model for de-
termining EI in individuals (5) and compared themodel predictions
with data from the CALERIE phase I study (21). We compared the
predictions of this computational model by applying our simple
DEI method to the individual subject data presented in the sup-
plemental material of this previous report (5).

Evaluation of the estimated DEI in simulated free-living
virtual study subjects

In contrast to controlled feeding studies, free-living individuals
are known to have large day-to-day EI fluctuations with CVs of
’20–30% (22–26). Corresponding variations in both dietary
sodium and carbohydrate can cause rapid changes in extracel-
lular fluid because these nutrients affect renal sodium handling
(27, 28). Furthermore, intracellular fluid fluctuations are asso-
ciated with changes in intracellular glycogen and protein. Thus,
daily variations in body fluids underlie the typical day-to-day
fluctuations in free-living BW (7–10). Because these rapid fluid
fluctuations are a significant component of measured individual
BW changes, they confound the estimate of free-living DEI
based on BW measurements.

To test the ability of our method to estimate DEI in free-living
conditions, we used simulated BW data from a computational
model of human macronutrient balance that included body fluid
fluctuations in response to variations in dietary sodium, carbo-
hydrate, and energy (3). This computational model was de-
veloped and validated with the use of data that were independent
of the data used to develop the DEI equations. After 28 d of
average energy balance, we simulated a step decrease of EI by
500 kcal/d, which was held constant for 240 d and then returned
to the original EI. Over and above these step changes in EI, we
simulated 20% random variations in EI, dietary sodium, and
dietary carbohydrate to mimic the free-living fluctuations in
BW. This same basic diet time course was implemented in all
model simulations to test the DEI estimation method’s ability to
recover the known EI change pattern. This strategy allows for
the most rigorous evaluation of the methodology because all
aspects of the comparisons were controlled for and the EI
changes were known.

We also varied the initial conditions of the computational
model to represent subjects with different physical activity level

(PAL) and varying initial body composition. As a test of the
method and of its sensitivity to the parameters, we did not derive
new values for the parameters q and e. In practice, if information
about the initial conditions is available on an individual subject,
the parameter values of the DEI estimation method should be
modified to improve the accuracy of the results.

RESULTS

Estimating DEI in controlled inpatient feeding studies

The performance of our DEI estimation method in 3 obese
subjects during an inpatient controlled feeding study is shown in
Figure 1. In all cases, the rapid initial weight-loss led to an
overestimation of the magnitude of DEI because our simple
method does not account for large changes in body water that
likely comprised the initial weight-loss. However, the sub-
sequent phase of approximately linear weight-loss resulted in
accurate predictions of DEI, with the 95% CI of the estimate and
the measurements overlapping in all 3 subjects.

Comparison with a computational model for estimating
DEI

Our simple method for estimating DEI was compared with
the results of a recently published computational model to

FIGURE 2. Comparison of our simple method for estimating change in
energy intake (DEI) with a recently proposed computational model for
determining individual EI. A: Measured body weight (BW) data from a
83.8-kg, 45-y-old woman (circles) along with the moving linear regression
estimate (red curve) (number of data points = 3, time interval between data
points = 14 d). B: DEI estimated with our simple model (black dots) along
with its 95% CI (blue curves) and the computational model prediction for DEI
(open red squares).
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determine EI in a 45-y-old, 83.8-kg woman during a 6-mo ca-
loric restriction study shown in Figure 2 (5).The previous
computational model prediction of DEI (open red squares)
agreed reasonably well with our simple estimate and falls within
our calculated 95% CI for all but one data point.

Estimating DEI in a computational model of macronutrient
balance

We simulated the free-living BW dynamics using a previously
validated computational model of human macronutrient me-
tabolism (3) with initial conditions corresponding to a 90-kg man
with body fat mass of 23 kg and PAL of 1.5 (Figure 3A). We
added 20% random fluctuations in dietary sodium, carbohy-
drate, and EI superimposed on the 500-kcal/d step diet changes
to mimic realistic free-living BW fluctuations resulting from
variations in extracellular and intracellular water (7–10). This
computational model was developed with the use of completely
independent data from our simple nonlinear energy balance
model and thus provides a fair and unbiased assessment of our
DEI estimation method. That the method accurately tracked the
actual changes in DEI is shown in Figure 3B, and the residuals
in 10 simulated runs of the model with a 95% CI of 290 kcal/d
for n = 28 and T = 1 are shown in Figure 3C. The mean value of

the residuals was 90 kcal/d. Note that the diet transitions at days
28 and 268 resulted in the largest deviations from the estimated
DEI, which is due to changes in body fluids unaccounted for by
the simple method.

Estimating DEI in subjects with varying body composition
and physical activity

We next tested the DEI estimation method by using simulated
subjects who varied in their initial body composition and physical
activity. Ideally, we would have information on these parameters to
adjust the DEI estimation method. However, we decided to test the
sensitivity of our method by holding the parameters q and e fixed
and to examine the effect on the accuracy of the estimated DEI.

The simulated BW dynamics with initial conditions corre-
sponding to a 120-kg woman with an initial body fat mass of
52.6 kg and PAL of 1.5 with 20% random fluctuations in dietary
sodium, carbohydrate, and EI superimposed on the step diet
changes are shown in Figure 4A. The estimated DEI tracked the
actual changes in EI (Figure 4B) despite the significant differ-
ences in the initial body-composition variables. The 95% CI was
290 kcal/d, and the mean residual value was 54 kcal/d (Figure
4C). The simulated BW dynamics with initial conditions cor-
responding to an active 70-kg man with an initial body fat mass

FIGURE 3. Simulated free-living data from a sedentary 90-kg male virtual study subject generated by using a computational model of macronutrient
metabolism. A: Simulated body weight (BW) data for an example run of the model incorporating day-to-day fluctuations in energy intake (EI), dietary sodium,
and carbohydrate. B: Estimated changes in EI (DEI; black dots) along with the 95% CI (blue lines) and moving average actual EI (red line) for the same
example subject as depicted in panel A (number of data points = 28, time interval between data points = 1 d). C: Residuals of the estimated EI changes (black
dots) for 10 runs using the same subject. Blue lines denote the calculated 95% CI.
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of 11.6 kg and PAL of 1.7 are shown in Figure 5A. Again, the
estimated DEI tracked the actual changes in EI reasonably well
(Figure 5B), and the 95% CI was 300 kcal/d with a mean residual
of 120 kcal/d (Figure 5C).

Estimating DEI during an unknown added exercise
program

Addition of an exercise program to a diet intervention is
a common prescription for weight-loss, but this confounds the
estimation of DEI because both the diet and the added exercise
contribute to the energy imbalance. We examined the effect of
an unknown increase of physical activity on our estimate of DEI
by combining the usual diet intervention with a relatively vig-
orous exercise program that increased energy expenditure by
3 kcal � kg21 � d21 (equivalent to running ’1.8 miles every day)
in a 90-kg man with an initial fat mass of 23 kg and PAL of 1.5.
A comparison of Figure 6A with Figure 3A shows that the
additional exercise resulted in more weight-loss. As expected,
without accounting for the added exercise, these BW data
caused a systematic deviation of the estimated DEI (Figure 6B),
although the actual changes in EI continued to decrease within
the calculated 95% CI. The mean of the residuals was 2220
kcal/d (Figure 6C), which corresponded with the energy cost of
exercise which averaged ’240 kcal/d.

DISCUSSION

We showed the ability of a simple method for estimating DEI
that has reasonable accuracy and precision and provides a con-
venient way to monitor the free-living patterns of DEI in in-
dividuals undergoing a weight-management program. Unlike
previous reports (3, 5), our methodology does not require
solving a differential equation and provides an explicit calcu-
lation of the 95% CI of the estimated DEI for each individual,
which is required to properly assess compliance. We showed
that frequent BW measurements over extended time periods are
required to obtain reasonably precise estimates of free-living
DEI. Recent advances in telemedicine make such BW meas-
urements feasible and relatively inexpensive (29).

All mathematical models of human energy metabolism can be
linearized (6) and result in the same DEI estimation method, albeit
with different parameter values. We showed that the linearized
model resulted in accurate DEI estimates for realistic ’10% BW
changes that might be expected in clinical weight-management
programs. However, a nonlinear method that iteratively updates
the energy partitioning rule can be used for very large weight
changes and this method is described in Appendix A.

Our method was applied to BW data from 3 obese subjects
engaged in an inpatient weight-loss program and provided ac-
curate estimates of DEI after the initial period of rapid weight-

FIGURE 4. Simulated free-living data from a sedentary 120-kg female virtual study subject generated by using a computational model of macronutrient
metabolism. A: Simulated body weight (BW) data for an example run of the model incorporating day-to-day fluctuations in energy intake (EI), dietary sodium,
and carbohydrate. B: Estimated changes in EI (DEI; black dots) along with the 95% CI (blue lines) and moving average actual EI (red line) for the same
example subject as depicted in panel A (number of data points = 28, time interval between data points = 1 d). C: Residuals of the estimated EI changes (black
dots) for 10 runs using the same subject. Blue lines denote the calculated 95% CI.
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loss. This transient disagreement was expected because the
initial weight-loss was primarily due to reductions of body water
that are not captured by our simple method (30). Such body
water losses are also unaccounted for by a recent computational
modeling method for estimating EI, and we showed that our
simple method gave comparable results without the need to
solve a differential equation. In addition, our simple method
provides the first calculation of the 95% CI of DEI, which is
needed to properly evaluate an individual’s adherence to a pre-
scribed diet change.

To investigate the ability of our method for estimating DEI in
conditions representative of the free-living situation, we simu-
lated BW data from a variety of “virtual subjects” with the use
of a computational model of human macronutrient balance that
incorporated realistic day-to-day fluctuations in EI and body
water. As a test of the sensitivity of our DEI estimation method
to the assumed parameter values, we simulated the BW changes
in subjects who had substantially different initial BW, body fat,
and PAL without adjusting the parameters of our method. De-
spite this challenge, the method provided reasonably accurate
estimates of DEI and indicates that knowledge of model pa-
rameters is not the main limitation to estimating DEI in in-
dividuals. Rather, fluctuations in body water and day-to-day
variations in EI limit the precision of the calculated DEI. This is

why averaging the measured BW changes over several subjects
significantly improves the precision of the estimated DEI for the
group (data not shown). Similar to the initial rapid weight-loss in
actual obese subjects, we showed that our DEI method had
difficulty in the days after significant diet transitions due to body
fluid shifts not accounted for in the simple model.

Because BWdynamics are affected by changes in both diet and
physical activity, we showed that a substantial unknown change i
physical activity can negatively affect the accuracy of the DEI
method. This was the most severe test of our DEI estimation method
because we fully expected that unaccounted-for changes in physical
activity would bias the estimate of DEI. Nevertheless, the actual DEI
remained within the predicted 95% CI, and our method therefore
still provided a valid estimate of actual DEI even in this extreme
example. In the future, it may be possible to incorporate measure-
ments of physical activity changes using pedometers, accel-
erometers, heart rate monitors, or physical activity logs to adjust
model parameters and to improve the DEI estimate. Future work
will address this possibility and evaluate the effect on the accuracy
and precision of the calculated DEI.

Estimates of absolute free-living EI in individuals will have very
low precision due to the uncertainty of the initial energy-balanced
EI. For example, the 95% CI for the baseline EI is .450 kcal/d
using the Institute of Medicine equations for total energy expenditure

FIGURE 5. Simulated free-living data from an active 70-kg male virtual study subject generated by using a computational model of macronutrient
metabolism. A: Simulated body weight (BW) data for an example run of the model incorporating day-to-day fluctuations in energy intake (EI), dietary sodium,
and carbohydrate. B: Estimated changes in EI (DEI; black dots) along with the 95% CI (blue lines) and moving average actual EI (red line) for the same
example subject as depicted in panel A (number of data points = 28, time interval between data points = 1 d). C: Residuals of the estimated EI changes (black
dots) for 10 runs using the same subject. Blue lines denote the calculated 95% CI.
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(11), and this calculation requires an estimate of the physical
activity of each individual. With the use of DLW measurements
from 1399 adults reported in reference 31, the SD of the energy
expenditure measurements is ’500 kcal/d within a 5-kg BW
range for both men and women. This very large variance for the
initial EI estimate must be added to the calculated variance of
our DEI estimate. If DLW measurements are performed on each
individual before instituting the diet (an expensive and not
widely available option), the SD of the initial EI can be sub-
stantially reduced but is still ’100 kcal/d (32). As a result,
without a precise estimate of the initial EI at energy balance, the
use of BW measurements should be restricted to providing es-
timates of DEI and not absolute EI. Our simple method provides
a convenient and inexpensive new tool for estimating free-living
DEI and its CI using longitudinal BW measurements in in-
dividual subjects.
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APPENDIX A

Linearized energy balance equation

We previously developed and validated a nonlinear mathe-
matical model of human energy expenditure that included resting
metabolic rate, thermic effect of feeding, tissue deposition and
turnover costs, and adaptive changes in energy expenditure with
over- and underfeeding (4, 13, 14). The linearized version of our
model can be written as follows (4):

"
gF þ qF þ agL þ aqL

ð12bÞð1þ aÞ

#
dBW

dt
¼ DEI2

1

ð12 bÞ

"
cF þ acL
ð1þ aÞ

þ d

#�
BW2BW0

� ðA1Þ

where BW is the body weight, DEI is the change of EI from its
initial energy balanced value, and cL = 22 kcal � kg21 � d21 and
cF = 3.2 kcal � kg21 � d21 are the regression coefficients relating
resting metabolic rate compared with lean body mass and fat
mass, respectively (15). The parameter b = 0.24 accounts for the
thermic effect of feeding as well as adaptive changes of energy
expenditure during under- and overfeeding (4, 14, 16). The pa-
rameters gF = 180 kcal/kg and gL = 230 kcal/kg account for the
biochemical efficiencies associated with fat and protein synthe-
sis (16, 17), assuming that the change of lean body mass is
primarily accounted for by body protein and its associated in-
tracellular water (18). The parameter d = 7 kcal � kg21 � d21

represents the physical activity of a relatively sedentary person

with a PAL of 1.5. The parameter a represents the relation be-
tween changes of lean and fat mass a[ dL=dF ¼ C=F (6),
where C = 10.4 kg is the Forbes parameter. For modest weight
changes, a can be considered to be approximately constant with
F fixed at its initial value F0 (19). An estimate for DEI is ob-
tained by rearranging Equation A1:

DEI ¼ eðBW2BW0Þ þ qa ðA2Þ

where a is an estimate of the rate of change of BW over the
corresponding time interval t,

q ¼ gF þ qF þ agL þ aqL
ð12 bÞð1þ aÞ ðA3Þ

and

e ¼ 1

ð12 bÞ

"
cF þ acL
ð1þ aÞ þ d

#
ðA4Þ

Any mathematical model of human energy metabolism can be
linearized into the form of Equation A2, and corresponding val-
ues for q and e can be determined.

The CI of DEI

The variance of DEI at time t is given by:

varðDEIÞ ¼ 2e2varðBWÞ þ q2varðaÞ
þ 2eqcovðBW; aÞ2 2eqcovðBW0; aÞ ðA5Þ
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where BW refers to the body weight at time t. We estimate
parameter a using the ordinary least-squares regression formula
a ¼ cov½BWðtÞ;t�

varðtÞ to obtain the following:

a ¼
12
Pn
i¼1

iBWi 2 6ðnþ 1ÞPn
i¼1

BWi

nðn2 2 1ÞT ðA6Þ

where we consider n equidistant time points i with spacing
between the points of T and used the identities:

1

n

Xn
i¼1

i ¼ ðnþ 1Þ
2

ðA7Þ

1

n

Xn
i¼1

i2 ¼ ðnþ 1Þð2nþ 1Þ
6

ðA8Þ

The variance in a is given by the standard least squares for-
mula s2

nvarðtÞ, where s2 is the residual error of the body weight
around the regression line. We can use the empirically determined
value of s2 or estimate it using the stationary body weight fluc-
tuations var(BW), which then gives

var
�
a
� ¼ 12

varðBWÞ
n
�
n2 2 1

�
T 2

ðA9Þ

We find that this formula and the empirical estimate give similar
results. Similarly, the covariance of a and BW is

cov
�
BW; a

� ¼ 6varðBWÞ
nðnþ 1ÞT

covðBW0; aÞ ¼ 6ð12nÞvarðBWÞ
nðnþ 1ÞT ðA10Þ

Therefore, the DEI estimate over a time interval t = nT has
a variance of:

var
�
DEI

� ¼
 
2e2 þ 12q2

nðn2 2 1ÞT 2
þ 12eq
ðnþ 1ÞT 2

!
var
�
BW

�
ðA11Þ

The 95% CI is then given by 61:96
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
varðDEIÞp

:

Nonlinear DEI estimation method

To account for the nonlinear changes of body composition that
occur with large BW changes (19, 20), we rewrite the energy
balance equation as follows:

DEI ¼ cL þ d
ð12 bÞðBWi 2BW0Þ þ cF 2 cL

ð12 bÞðFi 2F0Þ

þ
"
gF þ qF þ aigL þ aiqL

ð12 bÞð1þ aiÞ

#
a ðA12Þ

where ai ¼ C=Fi and Fi ¼ Fi21 þ ðBWi2BW0Þ=ð1þ ai21Þ:
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