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SUMMARY
This work focuses on the estimation of distribution functions with incomplete data, where the
variable of interest Y has ignorable missingness but the covariate X is always observed. When X is
high dimensional, parametric approaches to incorporate X — information is encumbered by the
risk of model misspecification and nonparametric approaches by the curse of dimensionality. We
propose a semiparametric approach, which is developed under a nonparametric kernel regression
framework, but with a parametric working index to condense the high dimensional X —
information for reduced dimension. This kernel dimension reduction estimator has double
robustness to model misspecification and is most efficient if the working index adequately
conveys the X — information about the distribution of Y. Numerical studies indicate better
performance of the semiparametric estimator over its parametric and nonparametric counterparts.
We apply the kernel dimension reduction estimation to an HIV study for the effect of antiretroviral
therapy on HIV virologic suppression.
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1 Introduction
With advances in technology, high dimensional auxiliary variables or covariates can be
collected to augment the incomplete observations in the variable of interest. In surveys,
observation of the survey variable is restricted by sampling design, while auxiliary variables
are collected prior to sampling to determine the sampling scheme. In clinical trials,
observation of the response can be limited due to drop outs, but covariates like baseline
characteristics are readily available. Making efficient and reliable use of the auxiliary or
covariate information is important.

We consider the incomplete data of a general form
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For data with missing response, N is the number of subjects involved, Xi ∈ ℝd is the vector
of covariates and is always observed, Yi is the response, δi is an indicator with δi = 1 if Yi is
observed and δi = 0 if otherwise. We will refer to (Xi, Yi, δi) with δi = 1 a complete case and
δi = 0 a nonresponse. According to Little & An (2004), for incomplete data with missing
response, efforts should be made to collect all the covariates that predict a nonresponse so
that missingness in Y is ignorable (Rosenbaum & Rubin, 1983), i.e.,

(2)

That is, the chance a subject’s response will be observed is determined by the value of the
covariate but not by the response. We will refer to π(X) as the selection probability.

The focus of this paper is the estimation of the distribution function of incompletely
observed Y. Naive complete case estimation, i.e., estimating the distribution function using
only Yi’s from complete cases is biased unless Y is missing completely at random. Statistical
methods that incorporate covariate information into the distribution estimation of Y fall into
two major categories — parametric and nonparametric. A parametric regression estimator,
e.g., the model-based estimator (Chambers & Dunstan, 1986) and the modified difference
estimator (Rao et al., 1990), assumes a linear regression model of Y versus X. It is consistent
and most efficient if the assumed linear relationship is true but not otherwise. There is the

Horvitz—Thompson estimator , which is consistent if
the selection probability is correctly specified but biased otherwise (Särndal et al., 1992).
Denote F(y) as the distribution of Y and Q(y ∣ x) as the conditional distribution of Y given X

= x. As F(y) = E{Q(Y ∣ X)}, a nonparametric kernel estimator of F(y) is 
with Q ̂(y∣x) the nonparametric kernel estimate of Q(y ∣ x) (Kuk, 1993; Cheng & Chu, 1996).
It is consistent with no model specifications, but it is not as efficient as the parametric
regression estimators as it uses no model information about Y.

For high dimensional covariates, neither parametric nor nonparametric approaches may
work satisfactorily. The parametric approach is hampered by the risk of model
misspecification: with high dimensionality in the covariates, it is very hard to check on the
relationship between Y and X as well as to find an exactly correct model for the selection
probability. The nonparametric kernel estimation is hampered by the curse of
dimensionality, as the conditional distribution Q(y∣x) needs to be estimated through a
multivariate kernel regression, which suffers the curse of dimensionality and is feasible for d
≤ 5 (Härdle et al., 2004).

We pursue a semiparametric approach. It is built upon a nonparametric estimation
framework but utilizing prior model information through a parametric working index for
reduced dimension. It consists of two steps. In the parametric step, information contained by
X about Y is summarized by a parametric working index S = S(X), a condensation of the
covariate information from ℝd to ℝ1. In the nonparametric step, the conditional distribution
of Y given the univariate index S, denoted by Q(y∣S), is nonparametrically estimated by

univariate kernel regression, and F(y) is estimated by  with Si = S(Xi). With
a proper parametric working index, it not only reduces the dimension in nonparametric
regression from d to 1, but also improves estimation efficiency by guiding nonparametric
regression along a direction that adequately summarizes the covariate information. With
nonparametric kernel regression for Q(y ∣ S), it relieves reliance on model specification. We
will refer to this semiparametric approach as the kernel dimension reduction (KDR)
estimation.
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We will describe KDR estimation in section 2. It is shown theoretically in section 3 and
numerically in section 4 that KDR estimator has improved robustness over its parametric
counterparts and is more efficient than the nonparametric kernel estimator. It relies on
minimal prior model information, which is especially attractive for high dimensional data,
where model specification and checking is difficult. As an illustration, we apply KDR to an
HIV study in section 5. A brief discussion about KDR for survey data is given in section 6.

2 Methodology
Let S : ℝd → R be a continuous function, such that S(X) summarizes covariate information
about Y. Denote the univariate image as S = S(X). We will discuss the selection of S in the
next section. Here, S can be any continuous function. Denote Q(y∣s) as the conditional

distribution of Y given S = s. It follows that  is unbiased estimator of F(y)
for any S. However, Q(y ∣ s) is unknown and needs to be estimated. To avoid reliance on
model specification, we do not want to assume any parametric form of Q(y ∣ s) but estimate
it nonparametrically.

For Q(y ∣ s) = E{I[Y ≤y]∣S = s}, it can be estimated by a nonparametric regression of I[yi≤y]
versus si = S(xi), for example, by the Nadaraya – Watson kernel regression (N-W: Nadaraya
(1964) and Watson (1964)). However, the ignorable missingness (2) does not ensure the
conditional independence between Y and δ given S. That is, Q(y ∣ s) can be different from
Q(y ∣ s, δ = 1), the conditional distribution over the complete cases. Therefore, the N-W
kernel estimation of Q(y ∣ s) needs to be modified to

(3)

In (3), I(·) is the indication function, πj = π(xj), sj = S(xj), Kb(u) = b−1 K(u/b), K(·) is the
kernel function which is generally a symmetric density function with finite variance, and b is

the smoothing bandwidth. Q ̂(y ∣ s) can be written as a weighted average ,
with

a Horvitz – Thompson (H-T: Horvitz & Thompson (1952)) and N-W combined weight.
With H-T weight 1/πj, it assigns a higher weight to a complete case (sj, yj, δj = 1) that is less
likely to be observed. With N-W weight Kb(s − sj), it assigns a higher weight to a complete
case with sj closer to s. As shown in the appendix, (3) is consistent for Q(y ∣ s). Furthermore,
at any given s, Q ̂(y∣s) is a conditional distribution function: it is non-decreasing with Q ̂
(−∞∣s) = 0 and Q ̂(∞∣s) = 1 and right continuous. However, Q ̂(y ∣ s) may be not continuous.
A continuous version is

(4)
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where K is the distribution function of kernel density K. For example, if normal density is
used as the kernel, then K is the normal distribution function. It is obvious that (4) is

weighted average , with the only difference from (3) being that the
binary function is replaced by the continuous kernel distribution function. The resultant
estimators for F(y) are

(5)

We will refer to (5) as the KDR estimators for F(y), S the working index function and S =
S(X) the working index. For multidimensional X ∈ ℝd, (5) are semiparametric estimators as
a parametric working index S is involved for summarizing the covariate information and
reducing the dimension from d to 1. For univariate X and S = X, (5) reduce to nonparametric
kernel estimators. As shown in the appendix, the two estimators in (5) are asymptotically
equivalent, and we will use the same notation F̂ unless stated otherwise.

For the selection of bandwidth b in estimating Q(y ∣ s), we will follow a simple bandwidth
selection strategy proposed in Silverman (1986) and Kuk (1993). Denote R as the range of

working index S, the bandwidth in (3) is chosen as b = R/n with . For bandwidth
selection in (4), we pre-scale {Si : δi = 1} and {Yi : δi = 1} to be of the same range and
estimate the common bandwidth by b = R/n.

3 Asymptotic properties
Asymptotic properties are developed under the regularity conditions in the appendix.

Theorem 1
At any given y, N1/2 {F̂(y) − F(y)} is asymptotically N (0, σ2(y)) distributed with

Theorem 1 shows that F̂(y) is consistent for any index S but the choice of the working index
affects the efficiency. Intuitively, an index function that adequately summarizes the X —
information about Y should lead to good estimation efficiency.

Remark 1—In the asymptotic variance, the first part N−1{F(y) − F2(y)} is the variance of
the empirical distribution function with no missingness in Y. The second part N−1 E [(π(X)−1

− 1){Q(y∣s) − Q2(y∣s)}] is the variance due to missingness in Y, and it is zero if π ≡ 1. This
second part depends on the selection of index S. If S = Q(y∣X), then

and the second part of σ2(y) becomes E [(π−1 − 1){Q(y∣X) − Q2(y∣X)}]. That is, with S =
Q(y∣X), it conveys all the X — information about the distribution of Y and leads to the
estimation of F(y) with the same efficiency as if the full covariates are used. Such an index
gives the optimal efficiency among all possible working indices. In fact, any index S that
recovers Q(y∣X), i.e., Q(y∣X) = L(S) for some integrable function L, shares this same
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efficiency as Q(y∣s) = E{E(I[Y ≤y] ∣ X)∣S} = E{L(S)∣S} = Q(y∣X). Therefore, prior model
information about Q(y∣X) should be used in the selection of the working index for improved
efficiency.

Theorem 1 shows the robustness of KDR to working index selection. Firstly, any working
index leads to consistent estimation. Secondly, to reach optimal efficiency, S does not need
to be fully correctly specified for Q(y∣X) but only to grasp the core information about
Q(y∣X), and the specification of link L is not crucial.

Remark 2—When taking account of the omitted higher order terms, the asymptotic
variance of F̂(y) is N−1 σ2(y) + O{(N2b)−1}, with the higher order term coming from the
kernel estimation of Q(y∣s). This higher order term is O(N−9/5) at the optimal bandwidth for
univariate kernel regression and is inversely related to the density of S. For high dimension
d, this higher order term diminishes faster than that of the nonparametric kernel estimator,
which is of order O{N−(d+8)/(d+4)} at the optimal bandwidth for multivariate kernel
regression and is inversely related to the density of X (Ruppert & Wand, 1994). Therefore,
KDR leads to improved efficiency over a completely nonparametric kernel estimator.

Remark 3—In most cases, the working index S = S(X; β) involves an unknown parameter
vector β. Similarly, the selection probability π(X; α) involves an unknown parameter vector
α. KDR estimation has to use the estimated index S = S(X; β̂) and the estimated selection
probability π(X; α̂) in (5). We show in the appendix that, with maximum likelihood
estimation for β and α, the asymptotic normality in Theorem 1 stays the same.

The above properties are developed with the selection probability correctly specified, which
is not always possible. Next, we study the robustness of KDR to misspecification. Denote
p(X) as a working model for the selection probability, so πj is replaced by p(xj) in (3) and
(4).

Theorem 2
The KDR distribution estimator F̂(y) has the following double robustness: (i) when p is
correctly specified for the selection probability, F̂(y) is consistent for any working index S;
(ii) when p is misspecified for the selection probability, F̂(y) is consistent if the working
index S = S(X) can recover Q(y ∣ X) in the sense Q(y ∣ X) = L(S) for some integrable
function L.

Consistency under (i) follows from Theorem 1. Under condition (ii), the denominator of Q ̂(y
∣ s) in (3) converges almost surely to E{δ/p(X)Kb(s − S)} which equals

(6)

where g(s) denotes the marginal density of the working index S. The numerator converges
almost surely to E{δ/p(X)Kb(s − S)I[Y ≤y]} = E{π(X)/p(X)Kb(s − S)Q(y ∣ x)}. With Q(y ∣ x) =
L(S), the limit of the numerator becomes

(7)

It follows from (6) and (7) that Q ̂(y ∣ s) is consistent for Q(y ∣ s), and consequently F̂(y)
consistent for F(y).
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Based on Remark 1 and Theorem 2, an ideal working index is such that S can recover Q(y ∣
x). With π correctly specified, such an index ensures good efficiency; with π misspecified,
such an index ensures consistency. As a special case of recoverable working index, we look
for S that approximates Q(y ∣ x) as much as possible. Under ignorable missingness (2), Q(y ∣
x) = Q(y ∣ X, δ = 1) and we can carry out a logistic regression of I[yi≤y] versus xi over the
complete cases to approximate Q(y ∣ x) = E(I[Y ≤y] ∣ X). As the working index needs only to
grasp the core information of Q(y ∣ x), even logistic link is not exactly correct, the working
index S = logit−1(X; β̂) can still lead to good performance.

For 0 < α < 1, denote the α-th quantile as ξα. The KDR quantile estimator is

The following Theorem gives the asymptotic property of the quantile estimator for
continuous distributions. Denote F′ as the first order derivative of F.

Theorem 3
If F′ is continuous at ξα with F′ (ξα) > 0, then the quantile estimator of ξα has an asymptotic
normal distribution

where σ2(·) is the variance function in Theorem 1.

Theorem 3 shows that the KDR quantile estimator is consistent for any S; in addition, the
working index that gives the most efficient estimation of F(y) around y = ξα also leads to the
most efficient estimation of ξα. Therefore, a working index should be ideally as close to
Q(ξα∣X) as possible. To find such a working index, we first get a rough estimate of ξα from a

naive complete case quantile estimation, i.e., .
Then fit a logistic regression of I[Y ≤ξ ̂cc,α] versus X and let S = logit−1(X; β ̂), which is an
approximate to Q(ξα∣X). We use this working index S to estimate the distribution function by
(5) and then ξα from F̂.

In conclusion, for incomplete data (1) with ignorable missingness in Y, KDR estimation of
F(y) at a given y consists of four steps.

Step 1 Estimate the selection probability π(x), for which the common practice is to fit
a logistic regression of δi versus xi over i = 1, ⋯ , N.

Step 2 Find a working index S = S(X), such that S(x) approximates or grasps the core
information about the conditional distribution Q(y ∣ x). We can fit a logistic
regression of I[yi≤y] versus xi as following Theorem 2. Though in the logistic
regression, a higher order polynomial of X may lead to better approximation,
a logistic regression with linear terms of X works well.

Step 3 Estimate the conditional distribution Q(y ∣ s) by a H-T weighted N-W kernel
regression (3) or (4).

Step 4 Estimate F(y) by (5).
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4 Simulation studies
In this section, we evaluate the numerical performance of KDR for distribution and quantile
estimation. We compare KDR with parametric estimation on robustness and with
nonparametric kernel estimation on the effect of dimensionality.

We consider the following estimators: the naive complete case estimator F̂cc, the model-
based estimator F̂m (Chambers & Dunstan, 1986), the modified difference estimator F̂dm
(Rao et al., 1990), the Horvitz-Thompson estimator F̂HT, the nonparametric kernel estimator,
and KDR estimator F̂ and its continuous version F̂c. For nonparametric kernel estimation,
two estimators are considered: one uses only X1 out of X = (X1, …, Xd)T and estimate F(y)

by , where Q ̂(y∣X1) is from a univariate kernel regression; the other

uses the d-dimensional covariate X and estimate F(y) by , where Q ̂
(y∣X) is from multivariate kernel regression. For F̂m, F̂dm, and KDR estimators, they are all
evaluated under the same prior model information, which may be incorrect, that Y is linearly
related to covariate X. Thus, in KDR, S = logit−1(XT β ̂) from a logistic regression of I[Y ≤y]
versus linear terms of X is used as the working index. The selection probability is assumed
as linear logistic and estimated by a logistic regression of δi versus linear terms of Xi over i =
1, ⋯ , N, which may or may not be correct.

For distribution estimation, we estimate F(y) at y = ξα for α = 1/12, ⋯ , 11/12. For quantile
estimation, we estimate ξα for α = 1/12, ⋯ , 11/12. We report the bias and the root mean
squared error (RMSE) at α = 1/4, 1/2, and 3/4, as well as the average maximum of the
absolute error over α = 1/12, ⋯ , 11/12.

In the first simulation, Yi is generated from a linear model  for i = 1, ⋯ , N,

with X = (X1, ⋯ , X5)T, β = (1, 2, 3, 2, 1)T, , and ui independently from
N(0, 1). The covariate X has each component independently from uniform (1, 10). The
selection probability is π(X) = exp(XTα − 25)/{1 + exp(XTα − 25)} with α = (1, ⋯ , 1)T.

Estimates are presented in Table 1 with 300 datasets, each of sample size N = 500. Here,
both the assumed linear relationship between Y and X and the assumed linear logistic model
for the selection probability are correct, thus the three parametric estimators, F̂m, F̂dm, and
F̂HT, are all of negligible biases. Since the linear relationship between Y and X is true, the
regression estimators, F̂m and F̂dm, are the most efficient. The KDR estimator is of nearly
the same performance as the regression estimators. It is more efficient than F̂HT as the
working index additionally incorporates information about the conditional distribution of Y.
The two KDR estimators are very close with the continuous version slightly better. For the
two nonparametric kernel estimators, F̂N.d should be consistent but it is of poor performance
due to the curse of dimensionality; F̂N.1 avoids the curse of dimensionality but at the cost of
losing information from the other four covariates, thus ignorable missingness does not hold
and the biases are non-negligible. Estimates of the quantiles show the same pattern.

In the second simulation, Y is generated from a nonlinear model Yi1 = (Xi1 + ⋯ + Xi5)2 +

υ(Xi)ui, with the selection probability logit{π(X)} = ∥X∥2 − 15 and .
The rest stays the same as in the first simulation. Estimates are presented in Table 2. Since
the assumed models for Y versus X and the selection probability are incorrect, the parametric
estimators F̂m, F̂dm, and F̂HT are all very biased. The nonparametric kernel estimators
perform poorly either due to loss of covariate information in F̂N.1 or the curse of
dimensionality in F̂N.d. The KDR estimator shows the best performance: though the working
index S = logit−1(XT β ̂) is not correctly specified for Q(y ∣ x) in this simulation, it contains
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enough information about Q(y ∣ x) and leads to negligible biases, i.e., the relative bias of
KDR quantile estimates (% bias over the true quantile value) are all below 2%, and good
estimation efficiency even with the selection probability incorrectly specified. This last
observation demonstrates KDR estimator’s robustness to model misspecification.

In case of very high dimensional covariates, model specification is difficult and model
checking is hard. Assuming a linear relationship between Y and X and a linear logistic
regression model for the selection probability is a common practice. The two simulations
indicate that, when data follows the assumed models, KDR has nearly the same performance
as the most efficient parametric regression estimator; when data deviates from the assumed
models, KDR is robust to model misspecification. As a semiparametric estimator, it
outperforms the nonparametric kernel estimator due to its dimension reduction through a
parametric working index. Its advantage over nonparametric kernel estimator is expected to
increase with increased dimensionality.

5 An application to HIV study
In project PHIDISA, an HIV clinical trial recently completed in South Africa, two
combination antiretroviral (ART) regimens were involved: one contained lamivudine
(LAM) and the other contained no LAM (non-LAM). Lamivudine has demonstrated good
activity against HIV/HBV coinfection (Dore et al., 1999), but resistance develops when it is
used as monotherapy (Matthews et al., 2007). In this study, we investigate the effect of
LAM when used in combination with other ART drugs on patients with HIV but no HBV
infection.

HIV viral load has been a major endpoint in evaluating the effectiveness of an ART
regimen. Certain levels of viral load are of clinical importance. One viral load threshold is
50 copies/mL, and a viral load below 50 copies/mL is generally considered as the standard
for an efficacious ART (Hill et al., 2007). For PHIDISA, the threshold for efficaciousness
was 400 copies/mL, as a new method was adopted for processing blood samples which led
to higher viral load reading than the standard method (Hu et al., 2008). Another viral load
threshold is 1500 copies/mL, as it is believed that patients with viral load below 1500
copies/mL are less likely to be infectious (Quinn et al., 2000). We will thus investigate the
effect of LAM containing regimen on HIV viral load control with the primary interest on the
viral load distribution around these important thresholds.

Around 1300 HIV but not HBV infected patients were involved in PHIDISA. They were
randomized to either a LAM containing regimen or a non-LAM containing regimen.
Baseline characteristics, e.g. age, gender, weight, location, education, WHO stage, albumin,
hemoglobin, platelet, CD4 and HIV viral load, were measured for each patient at
randomization. The baseline characteristics constitute the vector of covariates (X). Patients
had follow up visits at month 1, 2, 3, and every 3 months till month 18, where the response
(Y) — HIV viral load — was measured. There were missing observations in the response,
e.g., 18% under non-LAM containing regimen and 15% under LAM containing regimen at
month 6. As all baseline characteristics that were considered relevant for predicting
nonresponse had been collected, ignorable missingness in the response seems plausible.

We apply KDR estimation to the HIV viral load distribution at y = 50, y = 400, and y = 1500
copies/mL. Estimation is performed within each regimen separately, where the selection
probabilities and the working indices are estimated within the respective regimen as ART
regimen may affect the missing pattern in Y as well as the conditional distribution of Y given
X. At each given time point, denote {(Xr,i, Yr,i, δr,i) : i = 1, ⋯ , Nr} as the observations from
the Nr patients under regimen r: r = 1 for LAM containing regimen and r = 0 for non-LAM
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containing regimen. For viral load distribution estimation under regimen r, the selection
probability πr is estimated by logistic regression of δr,i versus linear terms of xr,i, the

working index is taken as  from a logistic regression of I[yr,i≤y] versus
linear terms of xr,i, and the KDR estimate of the viral load distribution at y is

, where Qr(y ∣ s) is the conditional distribution of viral load under
regimen r and is estimated by H-T weighted N-W regression (4). In this example,
exponential density is used as the kernel function, and the bandwidth is selected as described
in section 2.

Figure 1 depicts the KDR estimated virologic suppression rates under the non-LAM
containing regimen and the LAM containing regimen, as well as the difference between the
two regimen (suppression rate under LAM minus that under non-LAM) with 95%
confidence bounds from bootstrap. It shows that LAM containing regimen relates to higher
virologic suppression rates over month 3 to month 15, indicating a benefit of LAM in viral
load suppression. For the viral suppression with respect to 400 and 1500 copies/mL, benefit
of LAM appears the most around month 6, which is consistent with clinical experience that
ART starts to take effect around 3 months of use and may achieve full potency around
month 6. This LAM benefit weakens around month 18, possibly due to the development of
LAM resistance.

Next, we look into the viral load magnitude. Since in this clinical trial, viral load assay was
subject to a lower detection limit of 50 copies/mL and a high detection limit of 750000
copies/mL, the appropriate magnitude to evaluate is the viral load quantile. Figure 2 depicts
the log10 viral load quantiles and the difference in log10 quantiles (log10 quantile under
LAM minus that under non-LAM). It shows that LAM containing regimen corresponds to a
lower median viral load and lower 90% quantile viral load, indicating its better control of
HIV viral load among the moderately and severely diseased patients.

6 Discussion
For the proposed KDR distribution function estimation, we focused on the missing response
data, i.e., independent and identically distributed triplets {(Xi, Yi, δi) : i = 1, ⋯ , N}. The
same estimation procedure applies to survey data, where the triplets are not independent but

with  equaling some pre-specified survey sample size. Results for survey data were
not included in this manuscript. For survey data, the asymptotic normality of Theorem 1 and
3 cannot be easily proved, but we proved the consistency through theory of empirical
processes. Simulation studies indicated a similar performance of KDR estimation under
survey data as that in section 4.

As a semiparametric estimator, KDR is most appealing for incomplete data with high
dimensional covariates: through a parametric working index, it utilizes prior model
information to make effective use of the covariate information for reduced dimension and
improved estimation efficiency; through nonparametric kernel regression, it attains double
robustness to the specification in the selection probability and the parametric working index.

APPENDIX: PROOFS
The asymptotics are developed under the following regularity conditions: (C1) the kernel
function K is a symmetric density with ∫ u2K(u)du < ∞; (C2): π(x) is bounded away from 0;
(C3) the density of X, denoted by gx(x), is bounded away from 0 in the support of gx, so S =
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S(X) with S continuous has density g(s) bounded away from 0; (C4) ∂Q(y ∣ s)/∂s is bounded
in both s and y. As N → ∞, b → 0, Nb3 approaches 0.

A.1 Proof of Theorem 1
We write F̂(y) − F(y) as the sum RN + SN + TN, with

(A.1)

By the central limit theorem, N1/2RN ~ N (0, F(y) − F2(y)) and N1/2 SN ~ N (0, E{Q(y∣s) −
Q2(y∣s)} By algebraic calculation, we get cov(N1/2RN, N1/2SN) = −E{Q(y∣s) − Q2(y∣s)}.

Rewrite TN as TN = T1,N + T2,N with

(A.2)

where . By the law of large number
and the property E{Kb(S − s)} = g(s) + O(b2) with g(s) the density of S at s,

 converges almost surely to g(Si) + O(b2) as N → ∞.

Thus

(A.3)

The last equation is true as  converges almost surely to 1 +

O(b2). It is easy to see that  and

, where the expectation inside the
parentheses equals E (E[{IY ≤y] − Q(y∣s)}2∣S]∣X) with E[{IY ≤y]−Q(y∣s)}2∣S] = var(I[Y ≤y]∣S) =
Q(y∣s) − Q2(y∣s). It follows that N1/2T1,N ~ N (0, E[π−1{Q(y∣s) − Q2(y∣s)}]). Similar
derivation shows that T2,N = op(N−2). Theorem 1 thus follows from the asymptotic normality
of RN, SN, and TN.
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For the continuous KDR estimator, F̂c(y) − F(y) can be written the same as in (A.1) and (A.
2) except that T1,N changes to

Following the same derivation for T1,N, we have

(A.4)

As , it follows that . For the
variance of ,

where  and E{K((y − Y)/b) ∣ s} = Q(y ∣ s)+O(b2) with K a

symmetric density. Thus . It follows that
N1/2{F̂c(y) − F(y)} follows the asymptotic normal distribution in Theorem 1.

A.2 Proof of Remark 3
For the KDR estimator F̂π̂(y) with estimated selection probability π̂ = π(X; α̂),

where , πj = π(Xj), and π̂ = π(x; α̂) = π +
∂πT/∂α(x; α)(α̂ − α) by Taylor’s approximation. The denominators of both Wπ̂,j(s) and Wj(s)
converge to g(s) + O(b2). Thus
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Since α̂ − α = Op(N−1/2) from maximum likelihood estimation in α, it follows that F̂π̂(y) − F̂
(y) = op(N−1/2) and F̂π̂(y) is of the same asymptotic distribution as F̂(y) in Theorem 1. The
proof for the KDR estimation under the estimated working index is similar.

A.3 Proof of Theorem 2
The proof is similar to that of Cheng & Chu (1996). Denote Ψ for the distribution function
of N1/2(ξ ̂α − ξα). At any given t, Ψ(t) = P{N1/2(ξ ̂α − ξα) ≤ t} = P(ξ ̂α ≤ ξα + N−1/2t). Denote
ξα,N = ξα + N−1/2t, then

By Taylor’s approximation, α − F(ξα,N) = −F′(ξα)N−1/2t + O(N−1). From Lebesgue
dominated convergence theorem, σ(ξα,N) → σ(ξα). Thus, N1/2{α − F(ξα,N)}/σ(ξα,N) → −F′

(ξα)t/σ(ξα). Therefore  and Theorem 2 follows.
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Figure 1.
KDR estimated viral suppression rates (viral load ≤ 50, 400, or 1500 copies/mL) over the
time: the dotted line is under LAM containing regimen, the broken line is under non-LAM
containing regimen, and the solid line is the difference between the two with the 95%
confidence bounds.
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Figure 2.
KDR estimated viral load quantile ξα at α = 0.5 and 0.9 over the time: the dotted line is the
quantile estimate in log10 scale under LAM containing regimen, the broken line is under
non-LAM containing regimen, and the solid line is the log10 scale quantile under LAM
minus that under non-LAM.
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