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In this study, new strains were isolated from an environment with elevated arsenic levels, Sainte-Marie-
aux-Mines (France), and the diversity of aoxB genes encoding the arsenite oxidase large subunit was investi-
gated. The distribution of bacterial aoxB genes is wider than what was previously thought. AoxB subfamilies
characterized by specific signatures were identified. An exhaustive analysis of AoxB sequences from this study
and from public databases shows that horizontal gene transfer has likely played a role in the spreading of aoxB
in prokaryotic communities.

Arsenic, which is one of the most toxic metalloids, is distrib- aerobic arsenite oxidases involved in such processes are het-
uted ubiquitously but not uniformly around the world. Levels erodimers consisting of a large subunit with a molybdenum
of arsenic differ considerably from one geographical region to center and a [3Fe-4S] cluster (AroA, AsoA, and AoxB) and a
another, depending on the geochemical characteristics of the small subunit containing a Rieske-type [2Fe-2S] cluster (AroB,

soil (natural contamination) and the industrial activities car- AsoB, and AoxA) (1, 13). The large subunit in these enzymes
ried out in the vicinity (anthropogenic contamination) (22). In is similar to that found in other members of the dimethyl
aquatic environments, arsenic occurs mainly in the form of the sulfoxide (DMSO) reductase family of molybdenum enzymes

inorganic species arsenate [As(V)] and arsenite [As(III)]; the  but is clearly phylogenetically divergent from the respiratory
latter species, which is more bioavailable, is usually thought arsenate reductases (ArrA) or other proteins of the DMSO
to have more-toxic effects on prokaryotes than As(V) (34). reductase family of molybdenum oxidoreductases, such as the
As(IIT) oxidation leads to the formation of the less available ~ new arsenite reductase described recently for Alkalilimnicola
form As(V), which can either precipitate with iron [Fe(III)] or ehrlichii (25, 31, 40).

be adsorbed by ferrihydrite. The oxidation process may be aox genes have been identified in 25 bacterial and archaeal
mediated by microbial activities, which contribute to the nat-  genera isolated from various arsenic-rich environments, most
ural remediation processes observed in contaminated environ- of which belong to the Alpha-, Beta-, or Gammaproteobacteria
ments (21, 26, 27, 34). Consequently, bioprocesses for the  phylum (7, 10, 12, 14, 23, 25, 29, 32, 37). Recent studies based
treatment of arsenic-contaminated waters have been devel- on environmental DNA extracted from soils, sediments, and
oped based on the precipitation or adsorption of the As(V)  geothermal mats with different chemical characteristics and

produced by bacteria (4, 9, 21). Some well-known prokaryotes various levels of arsenic contamination have suggested that the
oxidize As(III) into As(V) under aerobic (e.g., Herminiimonas distribution and the diversity of arsenite-oxidizing microorgan-
arsenicoxydans, Thiomonas spp., or Rhizobium sp. strain NT26) isms may be greater than previously suggested (6, 10, 14-16,
or anaerobic (e.g., Alkalilimnicola ehrlichii) conditions as part 18, 28, 29). The aim of this study was to investigate the pres-
of a detoxification process (12, 17, 31, 32, 39). Some chemo- ence of the aox gene in bacteria other than the Proteobacteria
lithotrophs also use arsenite as an electron donor (e.g., Rhizo- in order to improve our knowledge about the phylogeny and
bium sp. strain NT26 or Thiomonas arsenivorans) (5, 32). The evolution of AoxB. With this aim, an environment with ele-
vated arsenic levels showing considerable prokaryote diversity
o ot o s i Gl ot s il 5 et it
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December 2007, 40 m downstream of the entrance to the mine,
from a 30-m-long part of the creek. In these sediment samples,
where the total arsenic level was 320 mg kg~ ', the As(V)
species concentration was 10 times greater than the As(III)
species (15a). The main arsenic species observed in sedimen-
tary interstitial water were As(III) and As(V), in concentra-
tions of 14.6 (=0.3) pg liter ! and 135 (£5) g liter*, respec-
tively. Such concentrations correspond to moderately high
arsenic levels; our samples were either more severely contam-
inated than or similarly contaminated relative to most of pre-
viously studied sites at which arsenic oxidase-encoding genes
have been detected (see Table S1 in the supplemental mate-
rial) (3, 6, 8, 10, 14-16, 18, 29, 37). Moreover, the sediments at
this site were previously found to show considerable bacterial
diversity (15a). These characteristics made these samples suit-
able for investigation of the diversity of aox genes.

In the present study, aoxB genes were amplified from the
total sediment DNA and from DNA extracted from several
arsenic-resistant isolates. These bacterial isolates were grown
for 18 days at 20°C on DR2A medium, for which the com-
position was as follows (per liter): 0.05 g each of yeast
extract, peptone, acid hydrolysate of casein, dextrose, and
soluble starch, 0.03 g each of dipotassium phosphate and so-
dium pyruvate, and 0.0024 g of magnesium sulfate (36)
amended with either As(III) or As(V) [isolates named with the
suffix III or V refer to the presence of As(III) or As(V),
respectively] under aerobic or anaerobic conditions (isolates
named with the prefix A refer to aerobic conditions) using the
Anaerocult P system (Grosseron) (the middle letter, A or G,
corresponds to the gelling agent, i.e., agar or gellan gum, re-
spectively). Among the 220 isolates obtained and tested using
BM1-2F/BM3-1R primers (see Table S2 in the supplemental
material) to detect the presence of the aoxB gene, positive
PCR amplification was obtained for 22 aerobe strains (see
Table S3 in the supplemental material) and no aoxB amplifi-
cation was observed for anaerobe isolates. 16S rRNA genes
from these isolates were amplified and sequenced using prim-
ers W01/W02 (see Table S2). These 22 isolates belong to eight
genera (Achromobacter, Pseudomonas, Agromyces, Rhodococ-
cus, Flavobacterium, Bosea, Acinetobacter, and Bacillus), repre-
senting four bacterial phyla (Firmicutes, Actinobacteria, Bacte-
roidetes, and Proteobacteria) (Fig. 1 [underlined, bold names];
see also Table S3). To our knowledge, this is the first time aoxB
genes have been reported to occur in Bacillus, Rhodococcus,
Agromyces, and Flavobacterium spp. Positive arsenite oxidase
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activity was detected with the AgNO,; method (35) using
H. arsenicoxydans ULPAs1 as a positive control (39) in the case
of 8 isolates, 6 of which belong to the Pseudomonas genus, 1 to
the Bacillus genus, and 1 to the Bosea genus (Fig. 1 [under-
lined, bold names highlighted with circles]). The absence of
activity in the other strains may be due to a lack of aox gene
expression under the conditions tested, the lack of the small
subunit, or a gene coding for a nonfunctional enzyme. Arsenite
oxidation activity has been observed in previous studies in the
Pseudomonas, Acinetobacter, Achromobacter, and Bosea genera
(7, 28-30) (Fig. 1 [indicated with circles]).

The phylogenetic analysis of the 22 deduced AoxB amino
acid sequences and their homologues present in the nonre-
dundant protein database at the NCBI was performed. A
preliminary phylogenetic analysis (data not shown) helped
us to select only aerobic arsenite oxydase (AoxB, AroA, or
AsoA) sequences and to exclude respiratory arsenate reduc-
tases (ArrA) or other proteins of the DMSO reductase family
of molybdenum oxidoreductases, such as the new arsenite re-
ductase recently described for Alkalilimnicola ehrlichii, which
are clearly phylogenetically divergent from the AoxB/AsoA/
AroA proteins, as previously shown (25, 40). The phylogenetic
analysis of these AoxB amino acid sequences showed that most
of them belonged to two major groups (see Fig. S1 in the
supplemental material), as recently described (29). Group I
sequences were found mainly in Alphaproteobacteria, whereas
group II was composed mainly of betaproteobacterial se-
quences (Fig. 2 and 3; see also Fig. S1). This pattern suggests
that these two groups probably originated from these two pro-
teobacterial divisions. AoxB sequences belonging to none of
these two groups were found in a few representatives of vari-
ous bacterial divisions and a few archaeal phyla (see Fig. S1).
Among the 22 AoxB characterized here, four were found to
belong to group 1. More specifically, three of them were am-
plified from isolates classified as Bosea sp. (Alphaproteobacte-
ria) and one as Agromyces sp. (Actinobacteria) (Fig. 2). The 18
remaining AoxB sequences belong to group II. These se-
quences were amplified from isolates affiliated with Betapro-
teobacteria (Achromobacter sp.), Gammaproteobacteria (Pseu-
domonas sp.), Actinobacteria (Rhodococcus sp.), Firmicutes
(Bacillus sp.), and Bacteroidetes (Flavobacterium sp.) (Fig. 3).

Comparisons between the 16S rRNA and AoxB phylogenies
showed the existence of some striking inconsistencies between
organism and gene evolutionary histories (Fig. 1, 2, and 3; see
also Fig. S1 in the supplemental material). These can be ex-

FIG. 1. Maximum likelihood phylogenetic tree of the 16S rRNA sequences of our 22 isolates showing positive aoxB PCR amplification. This
tree also includes 16S rRNA sequences deposited in public databases, corresponding to the organisms found (or close relatives) to carry the aoxB
gene or closely related organisms. The tree was rooted in between Archaea and Bacteria domains. Phylogenetic analyses were performed on the
1,014 unambiguously aligned nucleic acid positions by using Treefinder (19). The evolutionary model GTR + I'4 was used for this purpose, as
suggested by the “propose model” tool available in Treefinder. Numbers at branches are bootstrap values obtained using the nonparametric
bootstrap approach implemented in Treefinder (based on 100 replicates of the original data set). Only bootstrap values above 50% are shown.
Bacteria harboring aoxB sequences corresponding to phylogenetic group I or group II or neither of these two groups are given in pink, dark blue,
or green, respectively. The 22 bacterial isolates of this study are in boldface and underlined. All bacteria experimentally shown to be able to oxidize
arsenite are labeled with a circle at the end of the name. Bacteria which were previously shown to be able to oxidize arsenite or harbor an aoxB
gene, but for which no 16S sequence was available, were therefore not included in this tree. However, in this case, we included the closest relative
of these strains for which a 16S gene was available (in gray), and the triangle color at the end of these names corresponds to the group to which
the aoxB gene harbored by the strain belongs (pink, dark blue, and green corresponding to group I, group II, and neither of these groups,
respectively). The names of bacteria which were described in the literature as able to oxidize arsenite but for which aoxB sequences were not
available are presented in black. The scale bar represents the average number of substitutions estimated per site.
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plained by four hypotheses: (i) hidden paralogies (i.e., gene
duplications followed by differential gene losses), (ii) allele
sorting, (iii) horizontal gene transfer (HGT), and (iv) tree
reconstruction artifacts. In the case of AoxB, a few HGT
events represent the most likely hypothesis to explain the pres-
ence of identical (or nearly identical) AoxB sequences in some
distant lineages, such as group I AoxB sequences found in
Agromyces and Bosea, two unrelated bacteria that belong re-
spectively to Actinobacteria and Alphaproteobacteria (Fig. 2).
Moreover, in addition to including sequences from Alphapro-
teobacteria, group I included one betaproteobacterial AoxB
sequence (Hydrogenophaga sp. strain CL3) (Fig. 2), which in-
dicates that this bacterium has very likely acquired its aoxB
gene from Alphaproteobacteria via HGT. A similar process may
account for the sequence observed in the Agromyces sp. iso-
lated in this study (Fig. 2). In group II, some Pseudomonas,
Marinobacter, Halomonas, and also Firmicutes and Chlorobi/
Bacteroidetes AoxB sequences were intermixed with those from
Betaproteobacteria (Fig. 3). This observation strongly suggests
that the former acquired their aoxB gene from the latter by
HGT. More convincingly, one of the two actinobacterial se-
quences characterized in this study belonged to group I,
whereas the second sequence belonged to group II (Fig. 2 and
3), although the strains from which these sequences were am-
plified are closely related (Fig. 1). This suggests that these two
aoxB genes were acquired by HGT from two unrelated pro-
teobacterial donors. The great similarity observed between
some AoxB sequences, such as those from Bacillus (isolate
21AAII), Flavobacterium (isolates 16AGV and 18AGV) and
Pseudomonas, indicates that the HGT events probably oc-
curred quite recently (Fig. 3). HGT in prokaryotic communi-
ties has been proposed previously to explain the strong simi-
larities observed between AoxB proteins from Ralstonia spp.
and Achromobacter sp. strain SY8 (GenBank accession num-
bers ACX69823 and ABP63660) (20). In that previous study, it
was suggested that Ralstonia has acquired the corresponding
gene cluster by HGT from another betaproteobacterium (20).
The proximity of these AoxB proteins in the AoxB phyloge-
netic tree (Fig. 3) strengthens this proposal to explain the
presence of nearly identical AoxB sequences in these two
Betaproteobacteria. Interestingly, the present work revealed for
the first time that such HGT may have occurred between
bacteria belonging to different classes or phyla.

Genomic islands (GEI) or plasmids may be involved in such
transfers. This is, for instance, the case for aoxB genes found in
Thiomonas (Fig. 3) that are localized in one genomic island
(2). We searched for other examples of genomic islands con-
taining aoxB belonging to group I (Nitrobacter hamburgensis
X14 [Alphaproteobacteria]) (Fig. 2) or group II (Thiomonas
strain 3As, Thiomonas intermedia K12, and H. arsenicoxydans
[three Betaproteobacteria)) (Fig. 3) or outside these two groups
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(Vibrio splendicus [Gammaproteobacteria], Aeropyrum pernix,
and Pyrobaculum calidifontis [Archaea], and Thermus thermo-
philus [Thermus/Deinococcus)) (see Fig. S1 in the supplemental
material). With this aim, we used the RGPfinder (for regions
of genomic plasticity [RGP]) tool of the Microscope platform
(https://www.genoscope.cns.fr/agc/microscope/) (38). Interest-
ingly, aoxB genes were present in RGP in H. arsenicoxydans as
previously proposed (24), in V. splendidus and P. calidifontis
(see Fig. S2 in the supplemental material). In addition, aox
genes were carried on plasmids in N. hamburgensis X14
(plasmid 2, NC_007960) and 7. thermophilus HBS (pTT27,
NC_006462). In the case of this microorganism, a transposase-
encoding gene was found in the vicinity of the aoxAB genes (in
green in Fig. S2 in the supplemental material). Finally, whereas
the aox operon is present in a GEI in Thiomonas strain 3As (2),
the orthologous genes were not found in an RGP in Thiomonas
intermedia. In fact, the synteny between these two strains is
restricted to the aoxABD and ptxB-aoxRS operons. More gen-
erally, the synteny of aoxAB genes is conserved among all
bacteria for which a genome sequence was available (see Fig.
S2). In contrast, synteny with the other aox genes, aoxC and
aoxD or aoxRS, was observed only in few bacteria belonging to
group II (Thiomonas sp. strain 3As and H. arsenicoxydans),
whose aoxB genes are related (Fig. 3), and in Xanthobacter
autotrophicus. Synteny of aoxAB with aoxR or aox§ was con-
served in several bacteria belonging to group II or to group I.
These observations suggest that the synteny conservation is not
linked to the aoxB phylogeny observed or to a specific energy/
carbon metabolism (heterotrophs versus autotrophs).

The phylogenic analyses support the hypothesis that HGTs
have played a role in the widespread distribution of some aoxB
genes in prokaryotes, meaning that the aoxB gene is not an
efficient phylogenetic marker. Indeed, because of the discrep-
ancies found to exist between the 16S rRNA and aoxB phylog-
enies, it is not possible to predict the taxonomic affiliation of
strains based on the aoxB sequences alone. This precludes the
use of approaches involving the direct amplification of aoxB in
order to characterize the arsenite oxidizers from environmen-
tal samples. This is the case for the 56 aoxB sequences obtained
in this study from the total DNA (shown in red in Fig. 2 and 3).
As in the case of the sequences obtained from cultivated iso-
lates, most of these deduced AoxB proteins belonged to group
I (24 sequences) and group II (29 sequences). In contrast, only
three of the characterized sequences were similar to sequences
from Chloroflexi and Thermus, which branched outside these
two groups (data not shown). Interestingly, most of our AoxB
sequences belonging to groups I and II were found to be
closely related to sequences from hitherto uncultured and/or
unidentified bacteria or to constitute new subgroups (Fig. 2
and 3). This situation clearly shows that the diversity of AoxB
is far from having been exhaustively investigated.

FIG. 2. Unrooted phylogenetic trees of the 86 group I AoxB sequences (152 unambiguously aligned positions). The 86 sequences were retrieved
from the nonredundant database of the NCBI, deduced from aoxB genes from 4 isolated strains (in bold and underlined) or deduced from the 24
PCR products obtained from metagenomic DNA (in red). Phylogenetic analyses were performed using the maximum likelihood approach
implemented in Treefinder (19). The LG + I'4 model was used for this purpose, as suggested by the “propose model” tool available in Treefinder.
Numbers at branches are bootstrap values determined using the nonparametric bootstrap approach implemented in Treefinder (based on 100
replicates of the original data set). The scale bar represents the average number of substitutions estimated per site.
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FIG. 4. Group I and group II-specific motifs deduced from AoxB sequence alignment with the WebLogo software program via the WebLogo
website (http://weblogo.berkeley.edu/) (11, 33). Residues with which these motifs could be unambiguously defined are in bold. The absence of these
motifs in AoxB sequences belonging to neither group I nor group II was checked visually. Amino acid numbering was based on the Alcaligenes

faecalis protein sequence (UniProt accession number Q7SIF4).

The comparisons between 78 AoxB proteins characterized in
this study, including the most divergent sequences, showed that
residues present in the catalytic site [*'C-X,->*C-X;-2*C-X,-
298] according to the betaproteobacterium Alcaligenes faecalis
NCIB 8687 protein sequence numbering (13) (UniProt acces-
sion number Q7SIF4), and the hydrophilic channel near the
Mo centers that was proposed to be the substrate binding site
(from amino acid positions 195 to 203 according to the A.
faecalis AoxB) were conserved in 76 of the 78 sequences stud-
ied (data not shown; see also Fig. S3 in the supplemental
material). This suggested that when they are expressed, these
AoxB proteins might function like the A. faecalis arsenite ox-
idase, for which a crystal structure was determined (13). Close
comparisons between all the AoxB sequences belonging to
groups I and II showed that four motifs differ between these
two groups (Fig. 4; see also Fig. S3 in the supplemental
material). These four regions extend from amino acid posi-
tions 65 to 70, 76 to 84, 133 to 145, and 182 to 191 (according
to A. faecalis AoxB protein sequence numbering). They con-
tain the motifs W-[YF]-[SAP]-[PA]-[SA]-M-[YH] and [MLVA]-
[TS]-X-[AT]-X,, Q-X-G-X-[DN]-[VM]-[HNQ]-X-V and X,-G-

X,[IV]-IML], P-T-X-W-X-D-A-[LFP]-[DS]-L-V-[AT]-X and
X5-W-X,-A-[LM]-X,-Y-X-G or L-Y-F-X-[AS]-[MIL]-[KR]-
[VI]-[KR]-[NH] and L-[MIVT]-[FS]-X;-[QKR]-T-[PQT]-X in
the case of group I sequences and group II sequences, respec-
tively (according to the PROSITE pattern nomenclature) (Fig.
4). These motifs were not detected in other AoxB sequences
and are therefore specific to each of these groups.

In conclusion, the results of these studies on a mildly arse-
nic-contaminated environment by using cell culture-dependent
and -independent approaches show that the aoxB gene di-
versity is wider than described in previous studies. Compar-
isons between 78 AoxB bacterial sequences obtained from
the Sainte-Marie-aux-Mines creek sedimentary microbial com-
munity and homologues previously deposited in public data-
bases confirmed that most of the aoxB sequences detected so
far belong to two subfamilies (groups I and II) harboring
specific signatures. It is worth noting that the pattern of aox
gene evolution was not strictly correlated with organism evo-
lution and that AoxB was not found to be a suitable phyloge-
netic marker for studying the microbial diversity of arsenic-
contaminated environments.

FIG. 3. Unrooted phylogenetic trees of the 97 group II AoxB sequences (260 unambiguously aligned positions). The 97 sequences were
retrieved from the nonredundant database of the NCBI, deduced from 18 isolated strains (in bold and underlined) or deduced from the 29 PCR
products obtained from metagenomic DNA (in red). Phylogenetic analyses were performed using the maximum likelihood approach implemented
in Treefinder (19). The LG +I'4 model was used for this purpose, as suggested by the “propose model” tool available in Treefinder. Numbers at
branches are bootstrap values determined using the nonparametric bootstrap approach implemented in Treefinder (based on 100 replicates of the
original data set). The scale bar represents the average number of substitutions estimated per site.
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Nucleotide sequence accession numbers. Sequences were
submitted to the GenBank database with the following acces-
sion numbers: HQ449625 to HQ449646 for 16S rRNA genes,
HQ449647 to HQ449668 for aoxB from isolates, and HQ449570
to HQ449624 for aoxB from metagenomic DNA.
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