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Mutations in the serine-threonine kinase with-no-lysine 4 (WNK4)
cause pseudohypoaldosteronism type 2 (PHAII), a Mendelian form
of humanhypertension.WNK4 regulates diverse ion transporters in
the kidney, and dysregulation of renal transporters is considered
the main cause of the WNK4 mutation-associated hypertension.
Another determinant of hypertension is vascular tone that is
regulated by Ca2+-dependent blood vessel constriction. However,
the role of WNK4 in vasoconstriction as part of its function to reg-
ulate blood pressure is not known. Here, we report that WNK4 is
a unique modulator of blood pressure by restricting Ca2+ influx via
the transient receptor potential canonical 3 (TRPC3) channel in the
vasculature. Loss of WNK4 markedly augmented TRPC3-mediated
Ca2+ influx in vascular smooth muscle cells (VSMCs) in response to
α-adrenoreceptor stimulation,which is the pathological hallmark of
hypertension in resistance arteries. Notably, WNK4 depletion in-
duced hypertrophic cell growth in VSMCs and increased vasocon-
striction in smallmesenteric arteriesviaTRPC3-mediatedCa2+ influx.
In addition, WNK4 mutants harboring the Q562E PHAII-causing or
the D318A kinase-inactive mutation failed to mediate TRPC3 inhibi-
tion. These results define a previously undescribed function of
WNK4 and reveal a unique therapeutic target to control blood pres-
sure in WNK4-related hypertension.

Hypertension, or elevated arterial blood pressure, is one of
the most common diseases in industrialized countries, in-

creasing the risk of a wide spectrum of cardiovascular illnesses
including stroke, congestive heart failure, and myocardial in-
farction (1). More than 90% of hypertensive patients are clas-
sified as essential hypertension because of the lack of knowledge
regarding the gene identity involved in blood pressure regulation
(2, 3). In the last few years, most attention has been focused on
the with-no-lysine (WNK) kinases, including WNK4, that were
found mutated in patients with pseudohypoaldosteronism type 2
(PHAII; Online Mendelian Inheritance in Man no. 145260),
which is a rare autosomal dominant disorder featuring hyperten-
sion associated with hyperkalemia, hyperchloremia, and meta-
bolic acidosis (4).
Mice harboring the PHAII-causing WNK4 mutations Q562E

(5) and D561A (6) reconstituted the phenotypes observed in
PHAII patients. Deletion of the Na+Cl− cotransporter (NCC)
reversed most of the phenotypes seen in the transgenic mice har-
boring the PHAII-causing WNK4 mutants (5), which indicated
that aberrant regulation of NCC by the mutant WNK4 is critically
involved in the pathogenesis of PHAII. This finding led to the
suggestion that increased Na+ in systemic fluids by the altered
NCC activity is associated with elevated blood pressure (7–10).
Another important aspect of hypertension is vascular tone. How-
ever, despite the diverse extrarenal tissue distribution of WNK4
(11), the expression and function ofWNK4 in the resistance artery
and the role in vasoconstriction as part of its function to regulate
blood pressure has not been considered before.

Recent studies have suggested that the transient receptor po-
tential canonical (TRPC) channels, such as TRPC1, TRPC3, and
TRPC6, play an important role in the pathogenesis of several
cardiovascular diseases andhypertension (12–14). TRPCchannels
activatedbyG-protein-coupled receptors (GPCRs)mediate [Ca2+]i
increase in vascular smooth muscle cells (VSMCs), which de-
termine luminal diameter and contractility and thus peripheral
resistance that markedly influences blood flow and pressure (12–
14). In particular, accumulating evidence suggests that TRPC3 is
up-regulated in hypertensive animal models (15), as well as in
patients with hypertension (16–18), establishing a correlation be-
tween elevated TRPC3 activity and high blood pressure. Here, we
report a molecular mechanism by which WNK4 regulates TRPC3
activity to determine vascular tone and its ablation by WNK4
mutations associated with hypertension. These results not only
shed light on the previously undescribed signal pathway ofWNK4-
related hypertension, but also provide important therapeutic
strategies to correct aberrant blood pressure.

Results
WNK4 Depletion Increases TRPC3 Activity and Promotes Hypertrophic
Cell Growth in VSMCs. To determine the role of WNK4 in TRPC3-
mediated Ca2+ influx in primary cultured rat aortic VSMCs,
endogenous WNK4 and TRPC3 proteins were knocked down by
using specific siRNAs for each protein (Fig. 1A). Ba2+ influx was
measured to isolate Ca2+ influx by TRPC3 in Fura-2 loaded
cells, because TRPCs are highly permeable to Ba2+. TRPC3 was
stimulated with its direct activator, 1-oleoyl-2-acetyl-sn-glycerol
(OAG; ref. 19). Influx through voltage-gated L-type Ca2+

channels was excluded by including nifedipine in the bath solu-
tion. Treatment with TRPC3-specific siRNA had minimal effect
on Ca2+ influx in resting cells, suggesting that TRPC3 primarily
mediates Ca2+ influx in receptor-stimulated cells. Notably, de-
pletion of WNK4 in VSMCs significantly increased Ba2+ influx
that was largely abolished by knockdown of native TRPC3 (Fig. 1
B and C). siRNA against TRPC3 had no effect on the expression
of TRPC1 and TRPC6 (Fig. S1), which are also known to induce
GPCR-mediated [Ca2+]i increase in VSMCs (12–14). These
results indicate that WNK4 exerts an inhibitory effect on Ca2+

entry via TRPC3.
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Ca2+ has two well established effects in the cardiovascular
system. Ca2+ mediates the acute response of vasoconstrictors
(20, 21) and the long-term GPCR-mediated cell hypertrophy
(22). A prominent Ca2+ channel associated with these vascular
activities is TRPC3 (23). To assess the role of WNK4 on the
TRPC3-mediated vascular hypertrophy, VSMCs were stimulated
with the α-1-adrenoreceptor agonist phenylephrine (PE) for 48 h
in the absence of serum, and cell hypertrophy was analyzed by
measuring cell size and stress fiber formation (Fig. 1D). To better
observe the WNK4 effect, the VSMCs were stimulated with a low
dose (1 μmol/L) of PE, which caused a marginal cell size increase
in control cells. Significantly, depletion of WNK4 alone was
sufficient to cause 16.0 ± 3.4% and 30.8 ± 7.3% increase in cell
size and stress fiber (F-actin) formation, respectively. Treatment
with PE further increased the hypertrophic cell growth indices
(Fig. 1 E and F). Most notably, the WNK4 depletion-induced
hypertrophic changes were abolished by knockdown of TRPC3.
Collectively, these results indicate that WNK4 negatively regu-
lates TRPC3 activity and that the loss of WNK4 function induces
a TRPC3-mediated hypertrophic cell growth in VSMCs.

WNK4 Depletion Augments TRPC3-Mediated Vasoconstriction. Next,
the direct role of WNK4 and TRPC3 in vasoconstriction was ex-
amined by measuring the PE-induced vasoconstriction in isolated
small mesenteric arteries. Small arteries greatly contribute to
blood pressure because they are highly innervated by sympathetic
nerves and react dynamically to vasoactive compounds (20).

siRNAs were successfully introduced into intact arterial smooth
muscle cells by a reversible permeabilization procedure (ref. 24;
Fig. 2A). Immunoblot and RT-PCR analyses demonstrated the
markedly reduced expression of endogenous proteins within 2 d
after siRNA treatment (Fig. 2B). Arteries were mounted in an
arteriograph chamber attached to a pressure myograph, and
intraluminal pressurewasmaintained at 40mmHg. Inner diameter
of mesenteric artery was measured by using a video-recording
system. The mesenteric arteries showed dose-dependent con-
striction in response to PE. The 500 nmol/L PE, which is within the
logarithmic phase of the dose–response curve (Fig. 2C), was ap-
plied in subsequent experiments. A summary of multiple experi-
ments is depicted in Fig. 2D, and individual examples of video
images and inner diameter recordings are presented in Fig. 2 E–H
and I–L, respectively. Compared with controls treated with
scrambled siRNA, depletion of TRPC3 alone in resistance arteries
induced a 47% reduction in the PE-induced vasoconstriction (Fig.
2 D, H, and L), indicating that TRPC3 plays an important role in
the agonist-induced blood pressure control. Of note, depletion of
WNK4 dramatically augmented the PE-induced vasoconstriction
(Fig. 2 F and J). However, knockdown of TRPC3 nearly abolished
the effect of depleting WNK4 (Fig. 2G and K), indicating that the
increased TRPC3 activity is responsible for most of the WNK4
depletion-inducedup-regulationof vascular contraction.Hence, in
addition to its effect on VSMC hypertrophy, WNK4 directly reg-
ulates the acute α-1-adrenoreceptor-induced constriction of small
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Fig. 1. Effects of WNK4 depletion on TRPC3-mediated Ba2+ influx and hypertrophic growth of VSMCs. (A) Immunoblot analysis of endogenous WNK4 and
TRPC3 expression in cultured VSMCs treated with scrambled (Scrm) or indicated siRNA (80 nmol/L). The lower blots of β-actin were used as controls. siRNAs
specific for WNK4 and TRPC3 reduced their protein expressions by 87% and 82%, respectively. *P < 0.05, from control scrambled siRNA. (B and C) WNK4
depletion augments TRPC3-mediated Ba2+ influx by OAG (100 μmol/L) stimulation. Nifedipine (10 μmol/L) was applied to block voltage-gated L-type Ca2+

channel. (D) Fluorescence images of rhodamine-phalloidin-stained VSMCs that were treated with (Lower) or without (Upper) 1 μmol/L PE for 48 h in the
absence of serum, after treatment with the indicated siRNA. (Scale bars, 100 μm.) (E and F) Analysis of hypertrophic cell growth. Measurements of relative cell
size (E) and stress fiber formation represented by rhodamine-phalloidin fluorescence intensity (F) of VSMC images in D. In each experiment, 300–500 cells
were analyzed. Values are the means ± SEM of indicated numbers.
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arteries (Fig. 2D). Depletion or reduction ofWNK4 activity is thus
likely to elicit a steep increase in peripheral vascular resistance.

Human Mutations in WNK4 Alleviate TRPC3 Inhibition. PHAII-caus-
ing mutations in WNK4 have been linked to hypertension.
Therefore, it was of interest to determine the effects of PHAII-
causing mutation WNK4Q562E on the activation of TRPC3 by
GPCRs and OAG. For these experiments, HEK 293T cells were
cotransfected with the Gq-coupled M3 muscarinic receptor
(M3R), TRPC3, and the indicated WNK4 constructs and were
then stimulated with the M3R agonist carbachol (Fig. 3A). WT-
WNK4 strongly inhibited TRPC3-mediated Ba2+ influx, whereas
WNK4Q562E was much less effective (Fig. 3 A and B). Similar
results were obtained when TRPC3 was directly activated by
OAG (ref. 19; Fig. 3 C and D). Therefore, it is conceivable that
impaired inhibition of TRPC3 in the vasculature by mutant
WNK4 contributes to the high blood pressure observed in PHAII
patients and to the related vascular pathology.

Mechanisms Associated with WNK4-Induced Inhibition of TRPC3. To
gain insight into the molecular mechanism by which WNK4
regulates TRPC3, first we analyzed the role of WNK4 kinase
activity. Fig. 4 shows that the inhibitory effects of WNK4
on TRPC3 were dependent on the kinase activity of WNK4.
Inactivation of kinase activity (Ki, WNK4D318A) significantly
released the inhibition of the TRPC3-mediated Ba2+ influx by
WNK4 (Fig. 4 A and B). More direct evidence was obtained
in the whole cell current measurements. HEK 293T cells
were cotransfected with M3R, and receptor-stimulated TRPC3-
mediated current was measured. Similar to the fluorescence-
based Ba2+ influx measurements, WNK4 reduced the TRPC3-
mediated cation currents activated by receptor stimulation
[WNK4(WT); Fig. 4 C–E]. Notably, inactivation of WNK4 ki-
nase activity abolished this inhibition [WNK4(Ki); Fig. 4 C–E].
Analyses on TRPC3 surface expression reveal that WNK4-

induced TRPC3 inhibition is mainly mediated by decreasing its
cell surface expression. As shown in Fig. 5A, WNK4 depletion
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induced a 60% increase in the surface expression of native
TRPC3 in VSMCs. Furthermore, expression of WT-WNK4
caused a significant reduction in the surface biotinylated frac-
tions of TRPC3 without affecting its total protein levels in HEK
293T cells. However, the PHAII-causing WNK4Q562E and
kinase-inactive WNK4D318A mutants failed to decrease TRPC3
surface expression (Fig. 5B). These results imply that WNK4 may

modulate TRPC3 activity by maintaining proper copy number at
the cell surface via a WNK4 kinase-dependent mechanism. The
TRPC6 channel, which is also activated by GPCRs, and the
Cav1.2 L-type Ca

2+ channel, which opens in response to TRPC3-
mediated depolarization, are other candidates to elevate in-
tracellular Ca2+ concentration ([Ca2+]i) in VSMCs (23). How-
ever, neither WT nor mutant WNK4 altered the surface
expression of both TRPC6 and Cav1.2 (Fig. S2), in agreement
with the findings that knockdown of TRPC3 is sufficient to
alleviate most of the WNK4 depletion-induced pathologic res-
ponses in VSMCs (Figs. 1 and 2).
To further explore how WNK4 regulates TRPC3, we analyzed

protein–protein interaction between the two proteins. Coimmu-
noprecipitation experiments in HEK 293T cells and rat aorta
(Fig. 6 A and B) indicate that WNK4 and TRPC3 are present in
a protein complex both in vitro and in vivo. Next, we designed
truncated constructs of each protein (Fig. 6C) and performed
coimmunoprecipitation assays with the truncated proteins to
identify the WNK4 and TRPC3 interacting domains. WNK4
strongly interacts with constructs bearing the ankyrin repeats at
the N terminus of TRPC3 (Fig. 6D), which are known to be in-
volved in the targeting of TRPC3 to the plasma membrane (25).
TRPC3 interacts with WNK4441–799 and WNK4441–1032, which
share the first coiled-coil domain and the acidic motif where the
PHAII-causing mutations are clustered (Fig. 6E; constructs 2 and
4 of Myc-WNK4). However, the interaction of WNK4441–799 with
TRPC3 was insufficient to retain the inhibition of TRPC3 activity
by WNK4 (Fig. 6F), which accords with the importance of the
kinase activity of WNK4 for this inhibition (Fig. 4).

Discussion
Despite its morbid consequences as a major risk factor for diverse
cardiovascular diseases, only few genes have been identified to
date that impart significant effects on blood pressure (26). Hence,
regulatory pathways of renal ion transport that have been
revealed by the discovery of WNK4 mutations in PHAII patients
provide valuable insights into the pathogenesis of hypertension.
To date, fluid retention due to the increased Na+ and fluid
reabsorption by the kidney through increased activity of NCC is
considered as the sole mechanism for the increased blood pres-
sure in PHAII patients harboring the WNK4Q562E mutation (5,
27–29). However, the expression of WNK4 in diverse extrarenal
tissues (11) suggests that an additional pathway may contribute to
the elevated blood pressure. In addition to blood volume ex-
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pansion, increased vascular resistance is a major determinant of
hypertension. Accordingly, the present study provides an impor-
tant reference on the expression and function of WNK4 in the
vasculature and its direct role in the control of vascular resistance.
Our findings indicate that regulation of blood pressure by

WNK4 is more complex than previously assumed. Notably,
WNK4 is directly involved in the control of vascular tone by
reducing TRPC3 activity (Fig. 2). TRPC3 and TRPC6 mediate
cation influx evoked by stimulation of GPCRs that controls va-
soconstriction in the resistance artery (14, 15, 23). The cation
influx by TRPC3/TRPC6 subsequently induces membrane de-
polarization, which further increases [Ca2+]i by activation of the
Cav1.2 L-type Ca2+ channel. Neither surface expression of
TRPC6 nor that of Cav1.2 was altered by WNK4 (Fig. S2), which
suggests that the primary effect of WNK4 on the vasculature is
mediated by regulation of TRPC3 function.
Previous reports suggested that TRPC3 activity is essential for

cardiovascular hypertrophy induced by angiotensin II (23).
Accordingly, TRPC3 depletion abolished α-adrenoreceptor–
induced hypertrophic cell growth in VSMCs (Fig. 1 D–F), which
is likely to increase the wall thickness/lumen diameter (W/L)
ratio and raise peripheral resistance. Activations of angiotensin
II receptor and α-adrenoreceptor are critical signaling cascades
in the progression of human hypertension and related cardio-
vascular diseases. Importantly, WNK4 negatively regulated
TRPC3 and greatly reduced TRPC3-mediated vascular hyper-
trophy (Fig. 1). Of note, histological analysis of mice harboring
the Q562E (5) and D561A (6) mutations showed significant in-
crease in the luminal surface area and size of the distal convo-
luted tubules (DCTs) by an unknown mechanism. In addition,
increased expression of TRPV6 was recently observed in the
DCTs of the WNK4D561A/+ mouse (30). Similar to TRPC3 in

VSMCs, the aberrant regulation of Ca2+-permeable channels in
the kidney (31) might be responsible for the hypertrophic phe-
notype observed in the DCTs of transgenic mice. Together, these
results raise the possibility that WNK4 may be a potential
therapeutic target both to acutely control blood pressure and to
chronically modulate vascular remodeling.
Similar to WNK4 regulation on NCC (29, 32, 33), WT-WNK4

inhibits TRPC3 activity by regulating its surface abundance,
which was dependent on the kinase activity of WNK4. Similarly,
parallel to the effect on NCC, the aberrant regulation by
WNK4Q562E increased the surface expression of TRPC3 and
thus raised [Ca2+]i. The combined effect of WNK4 on NCC and
TRPC3 would likely function to set both adequate blood volume
and peripheral resistance in normal subjects. Mutations in
WNK4, such as WNK4Q562E, or altered WNK4 activity due to
mutations in WNK1 (32, 33), would increase blood volume and
induce vasoconstriction to raise blood pressure in PHAII
patients. The present findings have direct clinical implications, in
which a combination of vasodilators in addition to the NCC in-
hibitor thiazide diuretics should be considered in the treatment
of WNK4-related hypertension, especially in those who exhibit
limited response to thiazide. Further characterization of WNK4
and its signaling pathways in the vasculature are needed to
provide insight for possible therapeutic strategies to control ab-
errant blood pressure.

Materials and Methods
Plasmids, Cell Culture, and siRNAs. The mammalian expressible plasmids for
mWNK4 (7), hTRPC3 (34) pRK5-HA-TRPC6 (34), and rCav1.2 (35) were de-
scribed. HEK 293T cells were cultured in Dulbecco’s modified Eagle medium.
Full methods are described in SI Materials and Methods.
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Isolation and Culture of VSMCs and Mesenteric Artery. The rat aortic VSMCs
were isolated as reported (36). To isolate mesenteric artery, the third and
fourth branch of mesenteric arteries (120–220 μm, inner diameter) were cut
into 2- to 3-mm segments for subsequent analysis. Full methods are available
in SI Materials and Methods.

Immunoblotting, Immunoprecipitation, Cell Surface Biotinylation, RT-PCR, and
Real-Time PCR Analysis. Conventional protocols were used in these experi-
ments. Full methods are described in SI Materials and Methods.

Cell Hypertrophy Analysis. Fluorescent images of 300–500 cells were taken
from 10–15 randomly chosen fields, and relative cell size and rhodamine-
phalloidin fluorescence intensity of VSMCs were analyzed by using Meta-
Morph software (Molecular Devices). Full methods are described in SI
Materials and Methods.

Reversible Permeabilization and Arterial Constriction Analysis in Mesenteric
Artery. siRNAs were introduced into intact mesenteric arteries through
reversible permeabilization procedure as reported (24). The difference in di-
ameter at resting state (α) andmaximum constricted state after PE stimulation
(β) wasmeasured as percent constriction, and each groupwas comparedby the

fold increase relative to the scrambled siRNA transfected group.% constriction
= (α − β)/α × 100. Full methods are described in SI Materials and Methods.

Measurements of Ba2+ Influx and TRPC3 Current. Ba2+ influx was measured in
cultured VSMCs and HEK 293T cells by using Fura-2 (Invitrogen) as described
(34). For current recording of TRPC3, whole cell current measurement was
accomplished in M3R-cotransfected HEK 293T cells. Full methods are de-
scribed in SI Materials and Methods.

Statistical Analysis. The results of multiple experiments are presented as the
means ± SEM. Statistical analysis was performed with Student’s t tests or
with ANOVA followed by Tukey’s multiple comparison test, as appropriate.
P < 0.05 was considered statistically significant.
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