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Abstract

Background: Dendritic cells (DC), present in the skin, are the first target cells of dengue virus (DENV). Dendritic cell-specific
intercellular adhesion molecule 3-grabbing non-integrin (DC-SIGN) is present on DC and recognizes N-glycosylation sites on
the E-glycoprotein of DENV. Thus, the DC-SIGN/E-glycoprotein interaction can be considered as an important target for
inhibitors of viral replication. We evaluated various carbohydrate-binding agents (CBAs) against all four described serotypes
of DENV replication in Raji/DC-SIGN+ cells and in monocyte-derived DC (MDDC).

Methodology/Principal Findings: A dose-dependent anti-DENV activity of the CBAs Hippeastrum hybrid (HHA), Galanthus
nivalis (GNA) and Urtica dioica (UDA), but not actinohivin (AH) was observed against all four DENV serotypes as analyzed by
flow cytometry making use of anti-DENV antibodies. Remarkably, the potency of the CBAs against DENV in MDDC cultures
was significantly higher (up to 100-fold) than in Raji/DC-SIGN+ cells. Pradimicin-S (PRM-S), a small-size non-peptidic CBA,
exerted antiviral activity in MDDC but not in Raji/DC-SIGN+ cells. The CBAs act at an early step of DENV infection as they bind
to the viral envelope of DENV and subsequently prevent virus attachment. Only weak antiviral activity of the CBAs was
detected when administered after the virus attachment step. The CBAs were also able to completely prevent the cellular
activation and differentiation process of MDDC induced upon DENV infection.

Conclusions/Significance: The CBAs exerted broad spectrum antiviral activity against the four DENV serotypes, laboratory-
adapted viruses and low passage clinical isolates, evaluated in Raji/DC-SIGN+ cells and in primary MDDC.
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Introduction

Dengue virus (DENV) belongs to the family of the Flaviviridae

and is the most important emerging mosquito-borne virus in

tropical and subtropical countries. According to the world health

organization (WHO), two fifths of the world’s population is at risk

of getting infected with DENV (http://www.who.int/topics/

dengue/en/). The virus can cause flu-like symptoms (dengue

fever) that may progress to dengue hemorrhagic fever (DHF) and

dengue shock syndrome (DSS). Dengue fever is characterized by a

rapid onset of fever, headache, muscle and joint pain [1]. During a

primary infection, most cases are self-limiting. There exist four

genetically related serotypes of dengue virus. Infection with one

serotype induces lifelong immunity to the homologous serotype.

However, after infection with a second different serotype, the

cross-reacting non-neutralizing antibodies against the first serotype

will recognize the heterologous virus and enhance DENV access to

Fc-receptor bearing cells [2]. This phenomenon is called antibody-

dependent enhancement (ADE) and leads to a higher viremia,

increased vascular permeability and a severe hemorrhagic disease

[3,4,5,6]. The first reported epidemic of DHF occurred in the

Philippines in 1953 [7]. The past two decades, the global incidence

of dengue fever has increased dramatically [8]. Reasons for the

spread of dengue virus are the expansion of global population and

travelling, deforestation, solid waste systems and poor vector

control. The latter one is the only weapon against dengue virus,

since there is no antiviral drug or vaccine available. Clinical studies

with tetravalent chimeric dengue virus vaccines are ongoing

[9,10,11].

Following the bite of an infected mosquito, immature dendritic

cells (DC) in the skin are believed to be the first target cells during

DENV infection [12]. Several cellular receptors for DENV have

been proposed: heparan sulfate [13], LPS/CD14-associated

binding proteins [14], heat shock protein (HSP) 90 and HSP70

[15] and the GRP78 liver receptor [16]. However, cell-surface C-

type lectin DC-SIGN (CD209), mainly expressed by DC, is

believed to be one of the most important receptors for DENV

[17,18,19,20]. DC-SIGN is a member of the calcium-dependent
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C-type lectin family and recognizes high-mannose glycans present

on different pathogens such as human immunodeficiency virus

(HIV) [21], hepatitis C virus (HCV) [22], ebola virus [23] and

several bacteria, parasites and yeasts [24]. Many of these

pathogens have developed strategies to manipulate DC-SIGN

interaction to escape from an immune response [24]. Besides DC,

macrophages play a key role in the immunopathogenesis of DENV

infection. Recently, it was shown that the mannose receptor (MR;

CD206) mediates DENV infection in macrophages by recognition

of the glycoproteins on the viral envelope [25]. Monocyte-derived

DC (MDDC), isolated from human donor blood, may not

represent all in vivo DC subsets but they express both MR and

DC-SIGN which make MDDC susceptible for DENV [17].

In most tissues, DC are in an immature state and they can

capture the antigen because of their expression of attachment

receptors, such as DC-SIGN. Following antigen capture in the

periphery, DC maturate by upregulating their co-stimulatory

molecules and migrate to lymphoid organs. Activated DC are

stimulators of naive T-cells and they initiate production of

cytokines and chemokines [26]. Inhibition of the initial interaction

between DENV and DC could prevent an immune response and

subsequently prevent cytokine release responsible for vascular

leakage [27]. DC-SIGN could be a target for antiviral therapy by

interrupting the viral entry process.

Here, we focus on the effect of various plant lectins, generally

designated as carbohydrate-binding agents (CBAs). We showed

previously that the CBAs have antiviral activity against DENV

serotype 2 in Raji/DC-SIGN+ cells [20]. In the present study, we

evaluated the antiviral activity of the CBAs in primary immature

MDDC against the four different DENV serotypes and studied the

kinetics of the antiviral activity of the CBAs during DENV

infection.

Results

Preparation and characterization of MDDC
Human DC are the primary target cells for DENV infection.

The DC used in our experiments were obtained through isolation

of monocytes from buffy coats and further differentiated into

MDDC in the presence of IL-4 and GM-CSF. Briefly, following

centrifugation and aggregation, monocytes were cultured in media

supplemented with IL-4 and GM-CSF for 5 days. The effect of IL-

4 and GM-CSF treatment on the expression of several surface

markers was analyzed by flow cytometry (Table 1). Monocytes

efficiently differentiated into MDDC by IL-4 and GM-CSF, as

evidenced by the significant decrease in CD14 expression and a

significant increase in cell surface DC-SIGN (p,0.001). Also,

other specific markers of DC, such as CD1a and CD11b, were

significantly upregulated (p,0.05). The expression level of the DC

maturation markers CD40 and CD83 were not markedly affected

(p = 0.074 and p = 0.19 respectively), indicating that the MDDC

used in our experiments are mainly in an immature cellular phase.

Susceptibility of MDDC for DENV infection
MDDC can be efficiently differentiated from monocytes by

their expression of DC-SIGN. We examined the susceptibility of

MDDC for DENV infection and the role of DC-SIGN in this

infection process. Monocytes and immature MDDC were infected

with DENV-2 and the infection was monitored by confocal

microscopy and flow cytometry at day 2 post infection. Monocytes

that are negative for DC-SIGN expression are very weakly

susceptible for DENV-2 infection (Figure 1A). MDDC, with a high

expression level of DC-SIGN, are readily infected with DENV-2

(Figure 1B). To investigate a possible role of DC-SIGN in DENV

infection, we preincubated the MDDC with 10 mg/ml of a specific

anti-DC-SIGN antibody 30 minutes prior to DENV-2 infection

(Figure 1C). In parallel, an anti-MR antibody was included

because MR was also described to interact with DENV

glycoproteins [25] and is expressed by MDDC (Table 1). Flow

cytometric quantification of viral infectivity revealed that treat-

ment with the anti-DC-SIGN antibody had a marked inhibitory

effect on DENV-2 infection (80% inhibition). Comparable results

were obtained with the other serotypes of DENV (DENV-1,

DENV-3 and DENV-4) (data not shown). Also, anti-MR

antibodies diminished viral infection, although to a lesser extent.

Combination of both anti-DC-SIGN and anti-MR antibodies

prevented DENV-2 infection by .90% (Figure 1C).

Antiviral activity profile of CBAs against the DENV
serotypes

Thus, DC-SIGN and MR are crucial cellular viral receptors in

DENV infection. Several plant lectins are known to interact with

glycoproteins on the viral envelope. Previously, we demonstrated

the antiviral activity of the mannose-specific lectins HHA, GNA

and the GlcNAc-specific lectin UDA against DENV serotype 2

infection in Raji/DC-SIGN+ cells [20]. We now evaluated the

ability of HHA, GNA and UDA to inhibit replication of all four

DENV serotypes, i.e. laboratory-adapted DENV-2 and DENV-3

and low-passage clinical isolates DENV-1 and DENV-4, in

Table 1. Phenotypic analysis of monocytes and MDDC.

Cell type CD14 CD1a CD11b CD40 CD80

Monocytes 9561.3 0.2260.17 6667.2 060 0.1260.01

MDDC 1363.4 3166.2 9960.11 8.063.3 8.962.9

p-value ,0.001 ,0.05 ,0.05 0.074 ,0.05

Cell type CD83 CD86 DC-SIGN MR HLA-DR

Monocytes 1.961.2 3568.5 0.5360.22 59611 8864.8

MDDC 5.661.6 50615 8268.5 9861.0 81611

p-value 0.19 0.32 ,0.001 ,0.05 0.68

PBMCs were isolated from fresh donor blood buffy coats. After an aggregation step, the cells were cultured with or without 25 ng/ml IL-4 and 50 ng/ml GM-CSF for 5
days to derive MDDC or monocytes, respectively. Expression of several cell surface markers was analyzed flow cytometrically with specific PE-labeled mAbs. Data
represent mean % positive cells 6 standard error of the mean (SEM) from 5 different donors. The expression level of each marker was compared between monocytes
and MDDC and the corresponding p-value was calculated with a paired t-test.
doi:10.1371/journal.pone.0021658.t001

CBAs with Potent Anti-Dengue Virus Activity
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primary immature MDDC. Viral infectivity in MDDC was

quantified by means of flow cytometry at day 2 post infection, a

time point when virus yield peaked in these cells (data not shown).

MDDC were permeabilized and intracellularly stained with an

anti-DENV antibody recognizing specifically the E-protein of

DENV-2. Another antibody was used recognizing the PrM

protein, detecting the four DENV serotypes. A dose-dependent

inhibitory activity of HHA on DENV-2 infection in MDDC was

observed by E-protein detection (Figure 2A). In addition, a dose-

dependent inhibition by HHA, GNA and UDA against all four

DENV serotypes in MDDC was observed (Figure 2B). The

antiviral activity of all the CBAs evaluated was pronounced

(nanomolar range). The plant lectins proved to be most active

against DENV-2 infection (EC50 values of HHA, GNA and UDA

of respectively 4.6, 3.8 and 480 nM). Next, we investigated

whether the CBAs had similar broad antiviral activity in Raji/DC-

SIGN+ cells. Under comparable experimental conditions, the

three plant lectins had consistent antiviral activity against the four

DENV serotypes in Raji/DC-SIGN+ cells (Table 2). In addition,

comparison of the antiviral activity of HHA, GNA and UDA

against the four serotypes of DENV between MDDC and Raji/

DC-SIGN+ cells revealed a significant more pronounced antiviral

activity of the CBAs in the MDDC. In fact, HHA, GNA and UDA

were observed even to be up to 100-fold more active in MDDC

than in Raji/DC-SIGN+ cells (Figure 3).

However, since plant lectins are expensive to produce and not

orally bioavailable, the search for non-peptidic small molecules is

necessary. PRM-S, a highly soluble non-peptidic small-size

carbohydrate-binding antibiotic is a potential new lead compound

in HIV therapy [28]. Since PRM-S efficiently prevents capture of

HIV to DC-SIGN+ cells, we determined the antiviral activity of

PRM-S against DENV-2 infection in Raji/DC-SIGN+ cell culture

and in MDDC. PRM-S dose-dependently inhibited DENV-2

replication in MDDC (EC50: 1162.9 mM) but had only a weak

antiviral activity in Raji/DC-SIGN+ cells (EC50$55 mM)

(Figure 4).

Actinohivin (AH), a small prokaryotic peptidic lectin containing

114 amino acids, exhibits anti-HIV-1 activity by recognizing high-

mannose-type glycans on the viral envelope [29]. Although DENV

has high mannose-type glycans on the E-protein, we observed no

antiviral activity of AH against DENV infection (EC50.1.6 mM).

Another small CBA is mAb 2G12 which is reported to be a

broad neutralizing anti-HIV antibody [30]. The mAb 2G12

interacts with a well defined epitope on gp120 of HIV-1

(comprising at least three N-glycans) and this interaction is

abrogated with soluble DC-SIGN [31]. The effect of mAb 2G12

on DENV infection in Raji/DC-SIGN+ cells and in MDDC was

evaluated but no inhibitory activity of mAb 2G12 was observed

(EC50.20 mg/ml).

Effect of CBAs on virus-induced activation of MDDC
Viral infection of monocytic cells is known to evoke general

activation of the cells. DC maturation and activation is

characterized by upregulation of the costimulatory molecules

CD80, CD86 and the DC specific marker CD83 [32,33].

Therefore, the expression of several cell surface markers following

infection with DENV-2 was analyzed by means of flow cytometry.

It was observed that DENV-2 significantly upregulated CD80

(uninfected MDDC: 7.264.1% CD80+ versus infected MDDC:

35610% CD80+, p,0.05) and CD86 expression (uninfected:

4167.5% CD86+ versus infected: 9461.6% CD86+, p,0.05) and

significantly downregulated the expression of DC-SIGN (unin-

fected: 67611% DC-SIGN+ versus infected: 34612% DC-

SIGN+, p,0.05). The expression of MR was downregulated, but

not signficantly (p = 0.94) (Figure 5). DENV-2 infection did not

alter the expression of CD83, CD40 and HLA-DR (data not

Figure 1. Infection of MDDC by DENV. Monocytes isolated from PBMCs were untreated (A) or treated with 25 ng/ml IL-4 and 50 ng/ml GM-CSF
(B) for 5 days prior to DENV-2 infection. Two days after infection the cells were permeabilized and analyzed for DC-SIGN expression and DENV
infection by confocal microscopy and flow cytometry. Uninfected cells were stained with a PE-labeled monoclonal DC-SIGN-antibody (red). Infected
cells were stained with a mixture of antibodies recognizing DENV-2 E-protein and PrM protein (green). Nuclei were stained with DAPI (blue). Infected
monocytes (A) and MDDC (B) were analyzed by flow cytometry to detect DENV-2 positive cells. The values indicated in each dot plot represent the %
of DENV-2 positive cells. (C) MDDC were preincubated with 10 mg/ml of isotype control IgG2a, anti-DC-SIGN or anti-MR antibody for 30 minutes
before DENV-2 infection. Viral replication was analyzed by flow cytometry. % Inhibition of viral replication 6 SEM of 4 different blood donors is
shown.
doi:10.1371/journal.pone.0021658.g001

CBAs with Potent Anti-Dengue Virus Activity

PLoS ONE | www.plosone.org 3 June 2011 | Volume 6 | Issue 6 | e21658



shown). As a control, DENV-2 was inactivated by UV-irradiation

and it was shown that UV-inactivated DENV-2 did not induce

any significant cellular changes in MDDC as determined by CD80

(p = 0.87), CD86 (p = 0.25) and DC-SIGN (p = 0.74) expression.

Also the plant lectin HHA as such did not induce any changes in

the expression profile of MDDC (data not shown). These data

indicate that all MDDC are affected by replicating DENV-2

infection, although only ,5% of MDDC were positive for DENV-

Ag expression. When 400 nM of HHA or GNA or 2.3 mM of

UDA was added when MDDC were infected with DENV-2, the

expression level of CD80, CD86 and DC-SIGN was almost

identical to the expression level of the uninfected immature cell

cultures (Figure 5). In conclusion, HHA, GNA and UDA not only

efficiently inhibit DENV infection but also inhibit subsequent

cellular activation levels of infected and uninfected MDDC

induced by DENV-2 infection.

Binding assays
Experiments were set up to determine at which stage of

infection the CBAs exert their inhibitory activity. Four different

experimental conditions were used with Raji/DC-SIGN+ cells,

DENV serotype 2 and HHA. In the first condition - i.e. the

standard antiviral assay - HHA was present in the culture medium

during the entire viral entry process. Briefly, cells were infected

with DENV-2 in the presence of various concentrations of HHA

and incubated for 4 hours at 37uC to allow internalization and

replication of the virus. In the second condition - the prebinding

assay - cells were first pretreated with HHA and then exposed to

DENV-2 in the presence of HHA. In the third condition - the

postbinding assay - cells were first incubated with DENV-2 for

15 minutes at 4uC, washed to remove unbound virus and treated

with HHA. In the last condition - pre-exposure assay - cell-free

concentrated DENV-2 was pre-exposed to HHA. This virus-HHA

mixture was diluted 50-fold and exposed to Raji/DC-SIGN+ cells

to investigate whether HHA interacts with DENV. In all four

conditions, cells were finally washed to remove compound and/or

virus and cultured in compound-free medium at 37uC for 4 days

(Figure 6). A dose-dependent inhibition of DENV-2 infection was

observed in all four conditions, as analyzed by flow cytometry

(Figure 6) and confirmed by RT-PCR data. HHA proved most

potent when cell-free virus was pre-exposed to HHA (pre-exposure

assay: EC50: 8.066.8 nM) indicating that HHA efficiently

interacts with the virus. The observation that the affinity of

Figure 2. Dose-dependent antiviral activity of HHA, GNA and UDA in DENV-infected MDDC. (A) MDDC were infected with DENV-2 in the
absence (2) or presence of dose-dependent concentrations of HHA. The number of DENV-2 positive cells was determined by flow cytometry using
5 mg/ml anti-DENV antibody recognizing the E-protein of DENV-2 (clone 3H5). In each plot, the number of DENV positive cells is indicated. (B) MDDC
were infected with the four serotypes of DENV in the presence or absence of various concentrations of HHA, GNA and UDA. DENV infection was
analyzed by flow cytometry using an anti-PrM antibody recognizing all four DENV serotypes (clone 2H2). % of infected cells compared to the positive
virus control (VC) 6 SEM of 4 to 12 different blood donors is shown.
doi:10.1371/journal.pone.0021658.g002

Table 2. Antiviral activity profile of various CBAs against the
four serotypes of DENV.

EC50
a

CBA Cell type DENV-1 DENV-2 DENV-3 DENV-4

HHA (nM) Raji/DC-SIGN 54613 34613 2963.6 92632

MDDC 1765.6 4.661.1 1465.2 1166

p-value ,0.05 ,0.05 0.05 0.099

GNA (nM) Raji/DC-SIGN 2806102 240632 170660 5606174

MDDC 2264.2 3.861.5 1164.4 5.661.4

p-value 0.079 ,0.05 0.092 ,0.05

UDA (mM) Raji/DC-SIGN 2.460.87 1.460.34 3.261.3 7.062.0

MDDC 0.5260.13 0.4860.14 0.2960.052 0.7960.23

p-value 0.12 ,0.05 ,0.001 ,0.05

aEC50: 50% effective concentration, or drug concentration required to inhibit
DENV infection in Raji/DC-SIGN+ cells and MDDC by 50% as measured by viral
antigen expression. Values are the mean 6 SEM of 3 to 10 independent
experiments. EC50 values for each lectin and each DENV serotype was
compared between Raji/DC-SIGN+ cells and MDDC. p-values were calculated
with a t-test.

doi:10.1371/journal.pone.0021658.t002

CBAs with Potent Anti-Dengue Virus Activity
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fluorescently labeled HHA to DENV-2-infected Raji/DC-SIGN+

cells is higher compared to uninfected cells also indicates that

HHA selectively binds to DENV envelope proteins (data not

shown). In comparison to the standard antiviral assay (EC50:

34622 nM) a short pretreatment of the cells with HHA prior to

virus infection resulted in a lower antiviral activity of the plant

lectin (prebinding condition: EC50: 1846214 nM). When HHA

was removed by washing the cells before DENV infection, no

antiviral activity was observed, indicating also that HHA does not

interact directly with DC-SIGN or other membrane proteins. In

the postbinding condition, very weak if any activity of HHA was

noted (EC50.2 mM), indicating clearly that HHA interferes with

DENV attachment to the target cell. However, in this postbinding

assay, treatment of the cells with HHA during the incubation

period of 4 days at 37uC, resulted again in a significant inhibition

of viral replication (EC50: 164616 nM). Presumably, this is due to

the fact that the virus undergoes multiple replication cycles and

HHA can prevent the entry of newly synthesized virus particles. In

conclusion, these data demonstrate that HHA binds to the

envelope of the virus and not to cellular receptors such as DC-

SIGN to prevent attachment and subsequent replication of the

virus. Comparable results were obtained with other CBAs such as

Figure 3. Antiviral activity of HHA, GNA and UDA in MDDC and in Raji/DC-SIGN+ cells. MDDC (.) or Raji/DC-SIGN+ cells (%) were infected
with DENV-1, DENV-2, DENV-3 or DENV-4. Cells were incubated with increasing concentrations of HHA, GNA, UDA and viral infectivity was quantified
by flow cytometry using 5 mg/ml anti-DENV mAb (clone 2H2). Data represent the percentage of inhibition of viral replication relative to the positive
control (DENV-infected cells). Each value represents the mean 6 SEM of 3 to 8 independent experiments.
doi:10.1371/journal.pone.0021658.g003

Figure 4. Dose-dependent antiviral activity of PRM-S in MDDC
and in Raji/DC-SIGN+ cells. MDDC (.) and Raji/DC-SIGN+ cells (%)
were infected with DENV-2. Raji/DC-SIGN+ cells and MDDC were
incubated with PRM-S at the start of the infection. The cells were
collected and viral infectivity was quantified by flow cytometry using
5 mg/ml anti-DENV-2 mAb (clone 3H5). Data represent the mean % of
inhibition of viral replication 6 SEM of 3 independent experiments.
doi:10.1371/journal.pone.0021658.g004

CBAs with Potent Anti-Dengue Virus Activity
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GNA in DENV-2 infection in Raji/DC-SIGN+ cells (data not

shown).

Discussion

Dendritic cells and macrophages are the cellular targets for

DENV [12,18,34,35,36]. The four DENV serotypes used in our

experiments were grown in the insect cell line C6/36 to mimic the

first encounter of the DC with DENV. Thereby, infection of

human primary MDDC with mosquito-derived DENV represents

a good in vitro model to investigate the entry mechanism of DENV

and the activity of specific antiviral compounds.

DENV-infected DC and macrophages play a key role in the

immunopathogenesis of dengue hemorrhagic fever by the

production of proinflammatory cytokines, chemokines, metallo-

proteinases and the induction of cell maturation [37,38]. In most

tissues, DC are in an immature state, unable to stimulate T-cells.

They lack the expression of CD40 and CD86, the prerequisite for

accessory signals for T-cell activation. However, immature DC are

equipped with attachment receptors, such as DC-SIGN, to

capture diverse pathogens [26]. We generated immature DC-

SIGN expressing MDDC out of primary monocytes. Addition of

IL-4 and GM-CSF to monocytes induces cell differentiation, DC-

SIGN expression and enhances DENV susceptibility, consistent

with other studies [25,39]. DC-SIGN is nowadays hypothesized to

be the main receptor for DENV, because it renders unsusceptible

cells susceptible for DENV infection [20] and DC-SIGN is highly

expressed in immature DC [17,18,19]. Another possible receptor

for DENV is MR, expressed in immature DC and macrophages

[25]. We confirm that DC-SIGN is an important receptor for

DENV infection, because DC-SIGN-specific antibodies profound-

ly inhibit DENV infection of MDDC. Furthermore, the

combination of anti-DC-SIGN and anti-MR antibodies was even

more effective in inhibiting DENV infection. Yet complete

inhibition of DENV infection was not achieved, indicating that

other entry pathways are potentially involved. In the case of HIV,

DC-SIGN is found to be an important attachment receptor on DC

to capture HIV and transmit the virus to resting T-cells [21]. DC-

SIGN-independent pathways for the transmission of HIV must

exist, since anti-DC-SIGN mAbs and DC-SIGN small interfering

RNA did not completely inhibit the transmission of HIV from DC

to T-cells [40]. Two other receptors on DC reported to be

responsible for HIV attachment are syndecan-3 (a member of the

heparan sulfate proteoglycan family) [41] and the DC immunor-

Figure 5. Differentiation process of MDDC induced by DENV-2 and inhibition of this process by CBAs. MDDC were infected with DENV-
2 in the absence or presence of 400 nM HHA, GNA or 2.3 mM UDA. 5 days post infection, cell surface expression of CD80, CD86, DC-SIGN and MR were
analyzed by flow cytometry with specific PE-labeled mAbs. Shown is the surface expression of the marker in uninfected cell culture (dashed line),
untreated DENV-2-infected cell culture (full line) and the CBA-treated DENV-2-infected cell culture (full histogram). Data shown here are from 1
representative donor out of 4 different blood donors.
doi:10.1371/journal.pone.0021658.g005

CBAs with Potent Anti-Dengue Virus Activity
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eceptor [42]. Since DENV interacts with heparan sulfate,

syndecan-3 may be a possible (co)-receptor on DC. It has been

hypothesized that DENV needs DC-SIGN for attachment and

enhancing infection of DC in cis and needs MR for internalization

[25]. In fact, cells expressing mutant DC-SIGN, lacking the

internalization domain, are still susceptible for DENV infection

because DC-SIGN can capture the pathogen [19].

Interaction between DENV and DC-SIGN or MR is abrogated

by deglycosylation of the DENV envelope and by EDTA or

mannan [17,25], indicating that the interaction is carbohydrate-

dependent. DC-SIGN and MR have respectively 1 and 8

carbohydrate recognition domains (CRD) responsible for patho-

gen recognition [43,44,45]. Other pathogens recognized by DC-

SIGN and MR are HIV, HCV and human cytomegalovirus

(HCMV). These interactions are carbohydrate-dependent and are

inhibited by various CBAs [46,47,48,49]. In a previous report, we

were the first to demonstrate the antiviral activity of the CBAs

against DENV-2 in Raji/DC-SIGN+ cells and IL-4-treated

monocytes [20]. In the present study, we studied the antiviral

activity of these CBAs on the four DENV serotypes in primary

MDDC, the most important target cells for DENV. A number of

these CBAs proved about 100-fold more effective in inhibiting

DENV infection in primary MDDC compared to the transfected

Raji/DC-SIGN+ cell line.

We also demonstrated that the mannose binding lectin HHA

prevents DENV-2 binding to the host cell and acts less efficiently

in the postbinding stage. HHA interacts with DENV and not with

DC-SIGN on the target cell. The potency of HHA to inhibit

Figure 6. Antiviral assays with DENV-2 in Raji/DC-SIGN+ cells and HHA. Raji/DC-SIGN+ cells were infected with DENV-2 under four different
experimental conditions. (N) Standard antiviral assay: cells were infected with DENV-2 together with HHA (2000-400-80-16-3.2 nM) and incubated at
37uC to allow internalization of the virus. (%) Prebinding assay: cells were pretreated with HHA (2000-400-80-16 nM) before binding to DENV-2. (m)
Postbinding assay: cells were infected with DENV-2 and after washing to remove unbound virus, HHA was added dose-dependently (2000-400-80-
16 nM). (=) Pre-exposure assay: cell-free DENV-2 was pre-exposed to HHA prior to exposure to Raji/DC-SIGN+ cells. Raji/DC-SIGN+ cells were infected
with a 50-fold dilution of HHA-exposed DENV (final HHA concentration: 40-8-1.6-0.32 nM). For all four conditions, cells were washed twice to remove
virus and/or compound and collected after 4 days. Viral infectivity was analyzed by flow cytometry. Data represent the mean % of inhibition of viral
replication 6 SEM of 3 independent experiments.
doi:10.1371/journal.pone.0021658.g006
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attachment of DENV to Raji/DC-SIGN+ cells is comparable to its

inhibitory activity of the capture of HIV and HCV to Raji/DC-

SIGN+ cells [47]. CBAs could thus be considered as unique

prophylactic agents. However, plant lectins are not orally

bioavailable, sensitive for proteolytic cleavage and expensive to

produce [50], they provide novel insights into the entry

mechanism of DENV in human primary cells. The search for

non-peptidic small molecules with CBA-like activity is therefore

warranted. PRM-S, a derivate of the antibiotic PRM-A, acts as a

CBA in terms of glycan recognition and exerts antiviral activity

against HIV and SIV [28]. The compound has high solubility and

a high barrier for HIV resistance development. In MDDC, we

observed a dose-dependent antiviral activity of PRM-S against

DENV-2, comparable to the antiviral activity against HIV [28]. In

contrast, PRM-S exerted only weak antiviral activity in Raji/DC-

SIGN+ cells. Accordingly, the antiviral potency of the other CBAs,

HHA, GNA and UDA was higher in primary MDDC than in

Raji/DC-SIGN+ cells as well. This may be due to several cell-

dependent specificities. First, Raji/DC-SIGN+ cells are more

susceptible for DENV infection compared to MDDC (100%

infected cells versus 5%, respectively) although the DC-SIGN

expression level is comparable in the two cell-types. Although

MDDC cultures contain a low amount of T-cells and B-cells, these

cell types are not susceptible for DENV infection [51]. Second, the

entry process of DENV in Raji/DC-SIGN+ cells (a transfected B-

cell line) and in MDDC is fundamentally different. In Raji/DC-

SIGN+ cells, the entry process is mainly dependent on DC-SIGN.

This is in contrast to MDDC, where unidentified cofactors for

infection or DC-SIGN-independent entry pathways of the virus

may be present. Although, whatever entry pathway in MDDC is

employed by the virus, DENV infection is efficiently inhibited by

CBAs. This indicates that the DENV entry in human cells is

carbohydrate-dependent and that CBAs also inhibit DC-SIGN-

independent entry pathways in MDDC. Consequently, the

observed antiviral activity of the CBAs in human primary MDDC

may be considered more relevant than in artificial constructed cell

lines such as the Raji/DC-SIGN+ cell line.

Another CBA with anti-HIV activity is AH, isolated from

actinomycetes. We observed neither in Raji/DC-SIGN+ cells nor

in MDDC antiviral activity of AH against DENV. This indicates

that AH interacts rather specifically with high-mannose N-glycans

on HIV-1 glycoprotein gp120 [29,52], but not with DENV

glycoprotein E.

The mAb 2G12 specifically recognizes a cluster of high-

mannose-type oligosaccharides on HIV-1 gp120 [31]. mAb 2G12

could inhibit HIV binding to Raji/DC-SIGN+ cells [46] and could

also bind to yeast glycoproteins [53]. We therefore assumed that

mAb 2G12 could potentially recognize the E-protein of DENV,

however no inhibitory effect on DENV was observed.

We can thus conclude that not all CBAs interact with all types of

glycosylated enveloped viruses. The lectins HHA, GNA and UDA

have a broad spectrum antiviral activity against HIV [46], SIV

[54], HCV [47], HCMV [49,55] and DENV but not against

parainfluenza-3, vesicular stomatitis virus, respiratory syncytial

virus or herpes simplex virus [47]. This may be because of

differences in carbohydrate structures on the glycoproteins of the

viral envelope of different viruses grown in different host cells. The

glycosylation pattern in DENV differs from HIV because they

replicate in mosquito cells and human cells, respectively. In

vertebrate and invertebrate hosts the glycosylation process is

fundamentally different [56,57]. N-glycosylation in mammalian

cells is often of the complex-type because a lot of different

processing enzymes could add a diversity of monosaccharides.

Glycans produced in insect cells are far less complex, because of

less diversity in processing enzymes and usually contain more

high-mannose and pauci-mannose-type glycans.

When DENV is captured by DC, a maturation and activation

process occurs. DC require downregulation of C-type lectin

receptors [58], upregulation of costimulatory molecules, chemo-

kine receptors and enhancement of their APC function to migrate

to the nodal T-cell areas and activate the immune system [59].

Cytokines implicated in vascular leakage are produced, the

complement system becomes activated and virus-induced anti-

bodies can cause DHF via binding to Fc-receptors. Several

research groups demonstrated maturation of DC induced by

DENV infection [32,33]. Some groups made segregation in the

DC population after DENV infection, the infected DC and the

uninfected bystander cells. They found that bystander cells, in

contrast to infected DC, upregulate the cell surface expression of

costimulatory molecules, HLA and maturation molecules. This

activation is induced by TNF-a and IFN-a secreted by DENV-

infected DC [27,60,61]. We observed an upregulation of the

costimulatory molecules CD80 and CD86 and a downregulation

of DC-SIGN and MR on the total (uninfected and infected) DC

population following DENV infection. This could indicate that the

DC are activated and can interact with naive T-cells and

subsequently activate the immune system resulting in increased

vascular permeability and fever. When we examined the effect of

the CBAs on the expression level of the cell surface markers of the

total DC population, we are able to inhibit the activation of all DC

caused by DENV and keeping the DC in an immature state.

Furthermore, DC do not express costimulatory molecules and can

not interact nor activate T-cells. An approach to inhibit DENV-

induced activation of DC may prevent the immunopathological

component of DENV disease. Immunoglobulin G was previously

shown to inhibit the differentiation and maturation of DC in vitro

indicating that the DC activation process is an important target for

controlling immune responses in several diseases [62].

In conclusion, we observed broad spectrum antiviral activity of

HHA, GNA and UDA against all four serotypes of DENV,

laboratory-adapted strains and low-passage clinical isolates,

evaluated in primary MDDC. The DENV MDDC infection

model mimicks more closely a primary infection of DC in vivo than

other infection models. CBAs act by binding to DENV

glycoproteins and subsequently interrupt the interaction between

DENV and DC-SIGN. Our data provide more insight into the

mechanism of action of the CBAs in MDDC and indicate the

relevance of the carbohydrate-dependent entry pathway of DENV

in primary human cells. It is important to further develop

therapeutic concepts that may prevent DENV-induced diseases.

Small-size non-peptidic analogues, such as PRM-S, should be

further pursuit for this purpose.

Materials and Methods

Cell lines and viruses
All cell cultures were maintained at 37uC in a humidified, CO2-

controlled atmosphere, except for C6/36 mosquito cells (isolated

from Aedes albopictus; ATCC CRL-1660), which were maintained at

28uC in the absence of CO2. C6/36 cells were grown in Minimum

Eagle’s Medium (MEM) (Invitrogen, Merelbeke, Belgium) supple-

mented with 10% fetal bovine serum (FBS) (Hyclone, Perbio

Science, Aalst, Belgium), 0.01 M HEPES buffer (Invitrogen), non-

essential amino acids (Invitrogen), 2 mM L-glutamine (Invitrogen),

100 units/ml penicillin and 100 units/ml streptomycin (Invitro-

gen). Raji/DC-SIGN+ cells were constructed by Geijtenbeeck et

al. [21] and were kindly provided by Dr. L. Burleigh (Pasteur

Institute, Paris, France). Raji/DC-SIGN+ cells were cultivated in
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RPMI-1640 medium supplemented with 10% FBS and 2 mM L-

glutamine. African green monkey kidney cells (Vero-B cells;

ATCC CCL-81) were grown in MEM (Invitrogen,) supplemented

with 10% FBS, 2 mM L-glutamine and 0.075% sodium

bicarbonate (Invitrogen).

Dengue virus (DENV) serotype 2 laboratory-adapted New

Guinea C (NGC) strain was kindly provided by Dr. V. Deubel

(Institut Pasteur, Paris, France). Low-passage clinical isolate

DENV serotype 1 Djibouti strain D1/H/IMTSSA/98/606

(Genbank Accession Number AF298808), laboratory-adapted

DENV serotype 3 strain H87 (prototype) (Genbank Accession

Number M93130) and low-passage clinical isolate DENV serotype

4 strain Dak HD 34 460 (no complete sequence available, only

partial unpublished sequences) were kindly provided by Dr. X. de

Lamballerie (Université de la Méditerranée, Marseille, France). All

four DENV serotypes were propagated in C6/36 cells. Superna-

tant containing virus was harvested 5 days post infection and

stored at 280uC. Titer of DENV was determined in Vero-B cells

by validation of cytophatic effects to obtain the cell culture

infective dose infecting 50% of the cells (CCID50)/ml value. In

some experiments, DENV-2 virus stock was inactivated by

ultraviolet (UV)-irradiation from a 30 W germicidal lamp at a

distance of 10 cm for 15 minutes at room temperature. UV-

inactivated DENV-2 was not able to infect Raji/DC-SIGN+ cells

indicating the absence of replicating virus (data not shown).

Isolation and differentiation of MDDC from human
PBMCs

Buffy coat preparations from healthy donors were obtained

from the Blood Bank in Leuven, Belgium. Human peripheral

blood mononuclear cells (PBMCs) were first isolated by density

gradient centrifugation over Lymphoprep (Nycomed, Oslo, Nor-

way). PBMCs were gently rotated at 4uC to form aggregates of

monocytes. After sedimentation of the monocytes, the pellet was

grown in RPMI culture medium supplemented with or without

25 ng/ml IL-4 and 50 ng/ml GM-CSF (Peprotech, London,

United Kingdom). After 5 days, IL-4 and GM-CSF differentiated

monocytes into immature MDDC as analyzed by various cellular

markers by flow cytometry (Table 1).

Test agents
The mannose-specific plant lectins from Hippeastrum hybrid

(HHA) (50 kDa), Galanthus nivalis (GNA) (50 kDa) and the N-

acetylglucosamine (GlcNAc)-specific plant lectin from Urtica dioica

(UDA) (8.7 kDa) were derived and purified from these plants as

described previously [63,64]. Pradimicin-S (PRM-S, 910 Da) was

isolated from Actinomadura sp. TP-A0020 as described previously

[65]. Actinohivin (AH) (12.5 kDa) was prepared from a culture

broth of the actinomycete strain L. albida K97-0003 as described

previously [66,52]. The 2G12 mAb was purchased from Polymun

Scientific (Vienna, Austria). Purified DC-SIGN (clone 120612) and

MR (clone 19.2) antibody were purchased from R&D Systems

(Minneapolis, MN, USA) and BD (BD Biosciences, Erembode-

gem, Belgium), respectively. Purified mouse IgG2a isotype control

antibody (clone MOPC-173) was purchased from BD Biosciences.

Antiviral assays
Cells were seeded in flat-bottom polystyrene plates (Iwaki,

International Medical Products, Belgium) and infected with an

inoculum of DENV that caused 100% infected Raji/DC-SIGN+

cells analyzed by flow cytometry at day 4 post infection (,100

CCID50/ml of each DENV serotype). Raji/DC-SIGN+ cells (0.5

106 cells/well), monocytes and MDDC (1.5 106 cells/well) were

infected with the four different DENV serotypes in the absence or

presence of compound for 4 hours at 37uC. The cells were washed

twice with medium to remove excessive virus and compound and

were further incubated at 37uC in fresh culture medium.

Monocytes, MDDC and Raji/DC-SIGN+ cells were used at day

2 or 4 post infection, respectively, to detect DENV antigen by flow

cytometry, RT-PCR or by confocal microscopy.

Binding assays
Raji/DC-SIGN+ cells were infected with DENV-2 under four

different experimental conditions: the standard antiviral assay as

described above, a prebinding assay, a postbinding assay and a

pre-exposure assay (Figure 6).

Prebinding assay: Raji/DC-SIGN+ cells were preincubated with

various concentrations of HHA (2000-400-80-16 nM) for 15 min-

utes at 4uC. Then the cells were incubated with DENV-2 for

15 minutes at 4uC, a temperature that only allows virus binding to

occur. After the incubation period, cells were washed excessively

to remove unbound virus and were further incubated for 4 days at

37uC to allow viral internalization and replication.

Postbinding assay: Raji/DC-SIGN+ cells were preincubated

with DENV-2 for 15 minutes at 4uC. Cells were washed with

medium to remove unbound virus. The cells were then treated

with different concentrations of HHA (2000-400-80-16 nM) and

incubated at 4uC for 15 minutes. After the incubation period the

cells were washed thoroughly with medium and the cells were

further cultured in compound-free medium for 4 days at 37uC.

Pre-exposure assay: concentrated cell-free DENV-2 (5000

CCID50/ml) was pre-exposed to HHA (2000-400-80-16 nM) for

30 min at 4uC. Then, the drug-exposed virus was diluted (50-fold)

in a way that the same amount of virus as in the standard antiviral

assay was exposed to the cells (final lectin concentration 40-8-1.6-

0.32 nM). The cells were incubated for 4 hours at 37uC and after

2 washing steps, cells were further cultured for 4 days at 37uC in

the absence of product. Then, the cells were collected to analyze

DENV antigen expression by flow cytometry and supernatants

were collected to extract the RNA and quantify the amount of

viral RNA by RT-PCR.

Flow cytometry analysis
The expression of surface molecules on monocytes and MDDC

was analyzed 5 days after isolation. Floating cells were collected

and remaining adherent cells were scraped off using a cell scraper

(BD Biosciences). Cells were washed with phosphate buffered

saline (PBS) supplemented with 2% FBS and stained with

phycoerythrin (PE)-labeled monoclonal antibodies recognizing

CD14, CD1a, CD11b, CD40, CD80, CD83, CD86, MR, HLA-

DR (BD Biosciences) and DC-SIGN (clone 120507, R&D

Systems) for 30 minutes at room temperature. As a negative

control for background staining, cells were stained in parallel with

simultest control c1/c2a (BD Biosciences). After a washing step

with PBS, cells were fixed with 1% formaldehyde.

Raji/DC-SIGN+ cells were infected with the four different

DENV serotypes and analyzed by flow cytometry 4 days post

infection, as described previously [20]. Briefly, Raji/DC-SIGN+

cells were collected, washed with PBS supplemented with 2% FBS

and stained with 5 mg/ml monoclonal anti-dengue virus type 2

antibody, specific to the E-glycoprotein of DENV type 2 NGC

(clone 3H5, Chemicon International/Millipore, Billerica, MA) or

with an antibody recognizing the premembrane (PrM) protein of

all DENV serotypes (clone 2H2, Millipore). After an incubation

period of 30 minutes at room temperature, cells were washed with

PBS and incubated with secondary PE-conjugated goat F(ab9)2
anti-mouse antibody (1 mg/ml, Caltag Invitrogen Carlsbad, CA,
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USA) for 30 minutes at room temperature. Finally the cells were

washed with PBS and fixed with 1% formaldehyde.

MDDC were infected with DENV and incubated for 2 days.

After collecting the cells, cells were washed with PBS, fixed and

permeabilized using the Cytofix/Cytoperm Kit (BD Biosciences)

according to the manufacturer’s instructions. Briefly, cells were

fixed and permeabilized with cytofix/cytoperm buffer at 4uC for

20 minutes. After washing the cells with perm/wash buffer the

permeabilized cells were incubated with 5 mg/ml anti-DENV Ab

(clone 3H5 for serotype 2 or clone 2H2 for the other serotypes) for

30 minutes at 4uC. Following a washing step, the secondary PE-

conjugated goat F(ab9)2 anti-mouse Ab (Caltag Invitrogen) was

added and incubated at 4uC. As a control for unspecific

background staining, Raji/DC-SIGN+ cells and MDDC were

stained in parallel with secondary antibody only. To avoid any

crossreactions, MDDC preincubated with anti-DC-SIGN Ab were

stained with 5 mg/ml anti-DENV Ab directly labeled with alexa

fluor 488 IgG labeling kit (Zenon, Invitrogen) according to the

manufacturer’s instructions. The stained cells were washed and

analyzed by flow cytometry with a FACSCalibur (BD Biosciences,

San Jose, CA). Data were acquired and analyzed with CellQuest

software (BD Biosciences). The mean fluorescence of intensity

(MFI) of the background staining was subtracted from the MFI of

each sample to obtain the number of DENV-infected cells.
RNA extraction and Real Time (RT)-PCR. Total RNA

was extracted from 150 ml cell culture supernatant using the

Nucleospin RNA Virus Kit according to the manufacturer’s

instructions (Macherey-Nagel, Düren, Germany). RT-PCR was

performed as described previously [20]. Briefly, the sequences of

the forward (59-TCGGAGCCGGAGTTTACAAA-39 position

4628–4647) and reverse (59-TCTTAACGTCCGCCATGAT-39,

position 4722–4741) Taqman primers were selected from non-

structural gene 3 (NS3) of DENV NGC using Primer Express

software (version 2.0, Applied Biosystems, Lennik, Belgium). The

probe was selected between the primers and is fluorescently

labeled with 6-carboxyfluorescein (FAM) at the 59 end as the

reporter dye and with a quencher at the 39 end. The quencher is a

minor groove binder (MGB) (59-FAM-ATTCCACACAATG-

TGGCA-MGB-39, position 4656–4674). The nucleotide

sequence and position of the primers and probes were obtained

from the nucleotide sequence of DENV 2 NGC (Genbank

accession no. M29095) [67]. One step RT-PCR was performed

in a 25 ml reaction mixture containing 12.5 ml One-Step Reverse

Transcriptase qPCR Master Mix (Eurogentec, Seraing, Belgium),

900 nM forward primer, 900 nM reverse primer, 200 nM probe

and 100 ng sample RNA. RT-PCR was performed under the

following conditions: reverse transcription at 48uC for 30 min,

initial denaturation at 95uC for 10 min, followed by 40 cycles of

denaturation at 95uC for 15 s, annealing and extension at 60uC for

1 min. RT-PCR was performed using the ABI 7500 Fast Real-

Time PCR System (Applied Biosystems, Branchburg, New Jersey,

USA) and data were analyzed with ABI PRISM 7500 SDS

software (version 1.3.1, Applied Biosystems). Standard curves were

made of dengue virus plasmid with known concentrations to

calculate the absolute quantification of infection.

Confocal microscopy. Isolated monocytes were seeded in

coverslips to allow adherence. Monocytes were grown in RPMI

culture medium. To generate MDDC, monocytes were incubated

with IL-4 and GM-CSF. After 5 days, monocytes and MDDC

were infected with DENV-2. 2 days post infection, cells were fixed

with 3.7% formaldehyde for 15 minutes at room temperature and

permeabilized with 0.1% Triton X-100 for 10 minutes at room

temperature. After several washing steps, cells were incubated with

2% bovine serum albumine (BSA) (Sigma-Aldrich, St. Louis, MO,

USA) in PBS to block Fc-receptors. Next, cells were stained with a

mixture of anti-DENV Ab (clone 2H2 and clone 3H5) followed by

incubation with a secondary antibody goat-anti-mouse IgG Alexa

fluor 488 (Invitrogen). The coverslips were mounted with prolong

gold antifade reagent and DAPI (Invitrogen) to stain the nucleus

and incubated at 4uC until the cells were processed for

microscopic analysis. Images were collected with a Leica TCS

SP5 laser scanning confocal microscope (Leica Microsystems,

Mannheim, Germany) equipped with an AOBS, using a HCX PL

APO 63.06 (NA:1.40) oil immersion lens. The different

fluorochromes were detected sequentially using excitation lines

of 405 nm (DAPI), 488 nm (Alexa fluor 488) or 561 nm (PE).

Emission was detected between 410–475 nm; 493–575 nm and

566–675 nm, respectively.

Statistical analysis. Statistical analysis performed on the

results included the calculation of the mean, SEM and p-values by

use of a paired or unpaired t-test. The significance level was set at

p,0.05. Statistical analysis was performed with GraphPad Prism

statistical software (GraphPad Software, Inc., San Diego, CA).
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