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shown by many genes, and discusses how this could impact 

interpretation of data obtained from gene profiling studies, 

especially from nocturnal rodents. 
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 Biological Clocks Play an Important Role in the 
Regulation of Physiology 

 Most organisms live in an environment that changes 
rhythmically. Some of these changes occur with a period 
of approximately 1 day (circadian), while others (season-
al) are much slower and occur gradually. Examples in-
clude rhythmic alterations in available light, ambient 
temperature and food availability, and to survive and re-
produce under such changing conditions organisms have 
evolved various physiological adaptations that rely on in-
ternal clocks for their coordination. Furthermore, rhyth-
mic output from these biological clocks enables temporal 
compartmentalization of biochemical processes, which 
like spatial compartmentalization enables many proteins 
to perform their cellular functions more effectively.

  In mammals, the central circadian clock, located in 
the suprachiasmatic nucleus (SCN) of the hypothalamus, 
receives direct neuronal signals from photoreceptors lo-
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 Abstract 
 Hormones play a major role in regulating behavior and phys-

iology, and their efficacy is often dependent on the temporal 

pattern in which they are secreted. Significant insights into 

the mechanisms underlying rhythmic hormone secretion 

have been gained from transgenic rodent models, suggest-

ing that many of the body’s rhythmic functions are regulated 

by a coordinated network of central and peripheral circadian 

pacemakers. Some neuroendocrine rhythms are driven by 

transcriptional-posttranslational feedback circuits compris-

ing ‘core clock genes’, while others represent a cyclic cascade 

of neuroendocrine events. This review focuses on recent 

data from the rhesus macaque, a non-human primate model 

with high clinical translation potential. With primary empha-

sis on adrenal and gonadal steroids, it illustrates the rhyth-

mic nature of hormone secretion, and discusses the impact 

that fluctuating hormone levels have on the accuracy of clin-

ical diagnoses and on the design of effective hormone re-

placement therapies in the elderly. In addition, this minire-

view raises awareness of the rhythmic expression patterns 

 Received: October 1, 2010 

 Accepted after revision: March 13, 2011 

 Published online: April 21, 2011 

 Henryk F. Urbanski 
 Division of Neuroscience  
 Oregon National Primate Research Center 
 505 N.W. 185th Avenue, Beaverton, OR 97006 (USA) 
 Tel. +1 503 690 5306, E-Mail urbanski   @   ohsu.edu 

 © 2011 S. Karger AG, Basel
 

 Accessible online at:
www.karger.com/nen 



 Urbanski

 

Neuroendocrinology 2011;93:211–222212

cated in the retina, and under normal conditions it is syn-
chronized to the light-dark cycle. GABA and vasoactive 
intestinal peptide are thought to coordinate the synchro-
nized firing of SCN neurons, which are capable of re-
laying circadian signals to other tissues, either through 
direct autonomic innervations or through humoral path-
ways involving vasopressin as an intermediary  [1–5] . 
Although the SCN clearly serves as a master circadian 
pacemaker, genetic components of the underlying clock 
mechanism have been detected in other brain regions as 
well as most peripheral organs. This raises the possibility 
that circadian physiology is ultimately controlled by a hi-
erarchy of circadian oscillators synchronized by the SCN, 
rather than by a single central circadian clock  [4, 7] . 

  Major advances in our knowledge about the circadian 
clock mechanism have been made through the use of 
transgenic knockout rodent models  [7–11] . In its essence, 
this central clock consists of autoregulatory transcrip-
tional-posttranslational feedback loops. Genes encoding 
Period ( Per1  and  Per2 ) and Cryptochrome ( Cry1  and 
 Cry2 ) are activated by a dimer comprising Bmal1 and 
other PAS-domain proteins Clock or Npas2. In turn, Per 
and Cry proteins enter the cell nucleus where they ulti-
mately inhibit activation of their own genes. Ancillary 
feedback loops involving Rev-erb �  and Rora, as well as 
casein kinases (CKI �  and CKI � ), serve to stabilize the 
circadian rhythmicity. 

  In contrast to these well-documented advances in 
 basic chronobiology, clinical applications have been slow. 
On the one hand, the existence of endogenous biological 
clocks has been known for many centuries  [12] . In addi-
tion, knowledge of circadian rhythms has been used to 
develop therapies for jetlag and seasonal affective disor-
der  [13–15] . On the other hand, because of difficulties in 
maintaining human subjects under carefully controlled 
environmental conditions and difficulty in performing 
human gene expression studies, it is unclear if perturbed 
biological rhythms have a much more widespread impact 
on human physiology, especially during aging. Moreover, 
general clinical practice rarely takes underlying biologi-
cal rhythms into consideration. For example, the diagno-
sis of hormone levels is often based on infrequent blood 
samples collected at inappropriate times of day, and ther-
apeutic administration of hormones often follows non-
physiological paradigms.

  Because endocrine rhythms play a major role in regu-
lating behavioral and physiological functions, it is likely 
that their perturbation contributes to the etiology of var-
ious human pathologies  [16–21] . However, progress in 
understanding the underlying causal mechanisms has 

been hampered by the lack of suitable experimental ani-
mal models. On the one hand, rodents have proven to be 
excellent models for systematically dissecting the bio-
chemical components that constitute the central circa-
dian clock and it primary outputs, but their clinical trans-
lational potential is limited. Not only are they nocturnal, 
but they do not show consolidated sleep-wake patterns, 
Furthermore, the patterns of hormone secretion from 
their adrenal glands and gonads differ significantly from 
those of humans. This review tries to fill the gap in our 
knowledge by focusing on rhesus macaques ( Macaca mu-
latta ), which like humans are large, long-lived diurnal 
species and show similar consolidated sleep-wake pat-
terns. Importantly from a women’s health perspective, fe-
male rhesus macaques have similar menstrual cycles and 
show similar age-related changes in their reproductive 
and adrenal neuroendocrine axes  [22–25] . In this mini-
review, recent data from rhesus macaques are used to il-
lustrate the dynamic nature of hormone secretion, and 
the implication of these findings for clinical and basic re-
search is discussed.

  Circadian Hormone Rhythms Help with Adaptation 
to Daily Environmental Change 

 Rhesus macaques can be readily maintained under a 
tightly-controlled environment (e.g. photoperiod, tem-
perature, diet, and medication), thereby eliminating the 
extraneous variables and selection bias that are unavoid-
able in human clinical trials. Furthermore, because they 
are large, they readily lend themselves to serial blood col-
lection, using an implanted vascular catheter and a swiv-
el-based remote sampling system  [26, 27] . Importantly, 
this enables blood samples to be repeatedly collected 
from minimally restrained, non-sedated animals across 
the day and night, even when they are asleep; this can 
then be used to establish detailed 24-hour plasma hor-
mone profiles. By simultaneously monitoring motor ac-
tivity in the animals (e.g. using Actiwatch recorders; Phil-
ips-Respironics, Bend, Oreg., USA), the phase of the un-
derlying hormone rhythms can be readily linked to the 
animal’s circadian activity-rest cycle.

  Circadian rhythms are defined as self-sustainable 
 cyclic events that have a periodicity of approximately 
24 h. Overt examples include daily cycles of activity-rest, 
alertness-sleep, and body temperature. Although these 
rhythms are usually entrained to an environmental cue 
( Zeitgeber ), such as the daily light-dark cycle, many of 
them continue to be expressed even when environmental 
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conditions are held constant  [28, 29] . In the rhesus ma-
caque, like other mammals, many hormones have a 24-
hour rhythm. However, not all of these rhythms are self-
sustaining. For example, in humans, circulating growth 
hormone levels show a daily nocturnal peak, but this is 
not a true circadian rhythm because the peak stems 
 directly from being asleep  [30] . Similarly, the 24-hour 
prolactin rhythm is generally coupled to the sleep-wake 
cycle, although there is evidence for an underlying cir-
cadian rhythm component  [30–32] . In contrast, adrenal 
steroids such as cortisol, dehydropiandrosterone (DHEA) 
and DHEA sulfate (DHEAS) not only have robust 24-
hour patterns of release in rhesus macaques, but also they 
are self-sustaining, that is they continue to be clearly ex-
pressed even when the animals are maintained under 
continuous dim illumination. An example of this self-
sustained rhythmicity is illustrated in  figure 1 . The motor 
activity data depicted in  figure 1a  were obtained from an 
adult rhesus macaque using an Actiwatch, and emphasize 
the highly entrained diurnal pattern of activity that oc-
curs under fixed 12L:12D photoperiods  [33–36] . In addi-
tion, the data show how the activity rhythm becomes 
free-running, with slight phase advancement, when the 
animal is exposed to continuous dim illumination (30 lx). 
Serial blood samples were remotely collected while the 
animals were maintained under the continuous dim il-

lumination  [26, 27]  and the plasma was assayed for corti-
sol and DHEAS; in both cases, 24-hour circadian rhythms 
were evident despite the absence of photoperiodic cues. 
Importantly, both of these hormones showed a peak that 
was associated with the onset of activity and a nadir that 
was associated with the onset of rest. The significance of 
the distinction between 24-hour and circadian hormone 
rhythms is that the latter are more likely to be regulated 
by a circadian molecular clock mechanisms and may act 
as auxiliary circadian pacemakers, helping to synchro-
nize various physiological functions  [37] .

  DHEAS and cortisol are both produced by the adrenal 
cortex and are two of the most abundant steroids in the 
circulation  of  adult humans and non-human primates. 
In both species, circulating DHEAS shows a profound 
age-related decrease  [38–42] ; this dramatic change is il-
lustrated in  figure 2 , with respect to male rhesus ma-
caques. In contrast, plasma cortisol levels do not show a 
decline and a clear 24-hour rhythm is still evident well 
into old age ( fig. 2 ). Importantly, the age-related elevation 
of the cortisol baseline means that brain and peripheral 
organs, such as the liver, do not get a complete break from 
exposure to cortisol, which may predispose the elderly to 
insomnia and as well as to metabolic disorders. The exact 
physiological significance of an age-associated decrease 
in plasma DHEA and DHEAS levels is unclear. However, 
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  Fig. 1.   a  Actogram from a representative 
female rhesus macaque, emphasizing di-
urnal activity and a consolidated noctur-
nal rest period; each row of data shows 
consecutive days of double-plotted activi-
ty. The first 5 days of the actogram show 
entrainment of the rhythm to a fixed 
12L:12D light cycle, which is indicated by 
the white and black horizontal bars. The 
animal was then exposed to continuous 
dim illumination (DD, 30 lx), indicated by 
the arrow, and the rhythm began to free-
run with a slight daily phase advancement. 
 b  Double-plotted plasma cortisol and 
DHEAS profiles, obtained by remote serial 
blood sampling after a week of exposure to 
DD. Note that both of these adrenal ste-
roids show peaks that coincide with the 
animal’s subjective dawn. 
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these steroids can attenuate the deleterious effects of cor-
tisol and so the age-associated decline in DHEA:cortisol 
ratio is thought to underlie cognitive decline  [43, 44] . Ad-
ditionally, lower levels of DHEA and DHEAS have been 
associated with cognitive disorders with a higher preva-
lence in the elderly, such as Alzheimer’s disease  [45]  and 
depression  [46] . In healthy old men  [43]  and postmeno-
pausal women  [47] , elevated endogenous DHEAS levels 
have been linked to better cognitive performance. While 
studies of the frail elderly showed an inverse relationship 
between DHEAS and cognitive ability  [48, 49] , a compa-
rable study in non-human primates failed to disclose a 
similar association  [50] . This difference in response could 

be due to the fact that frail non-human primates are usu-
ally  not  included  in  experiments, or that the timing of 
the single daily blood samples did not correspond to the 
animals’ circadian hormonal peak. In addition to direct 
actions within the central nervous system, DHEA and 
DHEAS may exert some of their beneficial effects indi-
rectly, via intracrine conversion to sex steroids  [51, 52] . 
Many organs, including the brain, appear to express the 
enzymes necessary for this conversion, and it is well es-
tablished that sex steroids can exert neuroprotective ef-
fects in brain areas such as the hippocampus  [53] . Be-
cause estrogen can improve cognitive function and influ-
ence gene expression in various regions of the macaque 
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  Fig. 2.  Effect of age on circulating 24-hour hormone patterns in 
male rhesus macaques. Left panels: Mean 24-hour plasma cortisol 
and DHEAS profiles from young ( � 10 years old, n = 5) and old 
( � 26 years old, n = 6) males. Although the blood samples were col-
lected over 24 h, from 19:   00 to 19:   00 h, the data have been double 
plotted (indicated by a vertical dashed line) to aid in the visualiza-
tion of the night and day variations in hormone concentrations. 

The horizontal white and black bars on the abscissas correspond 
to the 12L:12D lighting schedule. Center panels: Analyses of age-
related differences in mean, maximum, and minimum hormone 
values. Right panels: Analyses of age-related differences in the 
mean 24-hour area under the curve (AUC) of cortisol and DHEAS 
concentrations. Values are expressed as mean  8  SEM.  *  p  !  0.05, 
 *  *  p  !  0.01 [from  42 , with permission]. 
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brain  [54–58] , it is plausible that DHEA and DHEAS me-
diate some of their central actions via conversion to es-
trogen. It is also plausible that the age-related loss of hu-
moral circadian signaling due to attenuated DHEA and 
DHEAS levels contributes to age-related desynchroniza-
tion of peripheral oscillators and exacerbation of circa-
dian dissonance in the elderly.

  The adipocyte-derived hormone, leptin, has been 
shown to have a 24-hour rhythm, with a nocturnal peak, 
in both lean and obese humans, as well as in individuals 
with type 2 diabetes  [59–61] . Recent studies using rhesus 
macaques have shown that this rhythm is circadian, be-
cause it persists even under continuous dim illumination 

 [62] . Interestingly, the rhythm is still evident in old male 
macaques but in peri- and postmenopausal females the 
difference between day- and nighttime plasma leptin 
levels becomes minimal. Because leptin is generally as-
sociated with suppression of appetite it makes biological 
sense for its peak to occur at night, which is when hu-
mans and rhesus macaques usually sleep. On the other 
hand, the physiological relevance of an age-related de-
cline is unclear. One possibility is that disruption of the 
circadian leptin rhythm contributes to the development 
of metabolic disorders and obesity  [63–66]  and inter-
feres with the maintenance of bone mass  [67, 68] .

  Another hormone that shows a pronounced 24-hour 
rhythm in both men  [69–71]  and adult male rhesus ma-
caques  [72–74]  is testosterone. Like leptin, the plasma tes-
tosterone rhythm shows a nocturnal peak and is associ-
ated with sleep ( fig. 3 a, b); this contrasts with the timing 
of the daily cortisol and DHEAS peaks, which occur in 
the morning in association with onset of activity ( fig. 1 , 
 2 ). In this particular study the blood samples were re-
motely collected at 30-min intervals for 24 h, and the tes-
tosterone profiles depict mean values from 10 animals. 
Although the 24-hour rhythm is clearly evident there is 
much underlying fluctuation in the testosterone levels 
because this steroid is released in an episodic manner that 
corresponds to the underlying ultradian pattern of LH 
release  [24] . Consequently, it is extremely difficult to ac-
curately assess testicular endocrine function, or diagnose 
age-related changes, in individuals based on single time 
point testosterone measurements. Instead, multiple sam-
ples need to be collected, and ideally as close to the noc-
turnal peak as possible  [72–75] .

  Circadian Hormone Rhythms Are Influenced by 
Photoperiod and Season  

 In humans, seasonal variations have been reported for 
blood pressure, immune response, birth rate, and sleep 
duration, as well as for behavioral traits associated with 
seasonal affective disorders, bulimia nervosa, anorexia, 
and suicide  [76–80] . Although the underlying neuroen-
docrine mechanisms are unclear they are thought to be 
linked to seasonal circadian neuroendocrine changes. In 
this  context,  the  pineal  hormone, melatonin, has been 
the most widely studied, because its circadian pattern of 
release is markedly affected by the photoperiod  [13] . As 
winter approaches, the duration of the night period be-
comes longer, causing more melatonin to be secreted. 
This provides a useful neuroendocrine cue that environ-
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  Fig. 3.  Characteristic plasma testosterone rhythm in adult male 
rhesus macaques, revealed by remote serial blood sampling every 
30 min for 24 h.  a  Double-plotted actogram from a representative 
male rhesus macaque, showing diurnal activity that is entrained 
to the 12L:12D light cycle (indicated by the white and black hori-
zontal bars).  b  Double-plotted mean plasma testosterone levels 
from 10 animals (               8 SEM). Note that the 24-hour rhythm is super-
imposed on ultradian testosterone level fluctuations that stem 
from an underlying pulsatile pattern of LH release. Note also that 
in contrast to the plasma cortisol and DHEAS rhythms, which 
show a peak in the early morning (cf. fig. 1), the testosterone peak 
occurs during the night when the animals are asleep.             
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mental conditions are changing, and this is exploited by 
temperate zone mammals to initiate various physiologi-
cal adaptations. For example, long-day breeding species, 
such as hamsters and voles, rely on the short-day melato-
nin profile to terminate their breeding season. In con-
trast, larger species with a gestation periods of 5–6 
months, such as sheep and deer, use it to initiate their 
breeding season. When maintained under natural photo-
periods, rhesus macaques also show seasonal reproduc-
tive cycles with breeding confined to the autumn and 
winter  [81–83] . In the males, testicular size and serum 
testosterone levels are markedly lower during the non-
breeding season ( fig. 4 ). Importantly, however, if the ani-
mals are housed indoors under fixed 12L:12D photoperi-
ods they do not show an annual decrease in these repro-
ductive parameters, instead they maintain large testes 
and elevated testosterone throughout the year, like men 
 [84–88] . This suggests that some seasonal neuroendo-
crine rhythms might simply represent direct responses to 
changing environmental cues, or to a chain of neuroen-
docrine events that are analogous to those comprising the 
menstrual cycle, rather than being driven by a circan-
nual intracellular molecular clock mechanism.

  Because adrenal steroids play a major role in regulat-
ing behavior and physiology, their seasonal profiles have 
received much attention. However, the human data for 
cortisol are largely inconclusive. Some studies have re-

ported seasonal differences  [89–93] , whereas others have 
failed to do so  [94–97] . Similarly, some studies have re-
ported seasonal differences in DHEAS levels  [98–100] , 
whereas one study found none  [101] . In a recent examina-
tion of 24-hour plasma cortisol or DHEAS profiles of 
ovariectomized rhesus macaques, no effect of photope-
riod was found on the mean or peak hormone levels. 
However, there was a marked phase advancement of both 
hormonal rhythms in short days, reflecting a similar 
phase advancement of the daily motor activity rhythm 
 [35] . Furthermore, significant differences were detected 
in the gene expression profiles of the adrenal gland under 
different photoperiodic conditions. Together, these data 
reinforce the view that normal behavior and physiology 
is dependent on the maintenance of specific phase rela-
tionships between different neuroendocrine rhythms 
 [20] , and that these relationships may change under dif-
ferent environmental conditions, as well as during aging.

  Many Genes Exhibit a 24-Hour Expression Pattern 

 Gene expression profiling in the rhesus macaque ad-
renal gland, using Affymetrix GeneChip arrays, has 
shown that many of the genes associated with rhythmic 
production of adrenal steroids have a rhythmic 24-hour 
expression profile, and that the adrenal gland itself ex-
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  Fig. 4.  Seasonal reproductive rhythms in 
male rhesus macaques. Adult males were 
maintained either under natural Oregon 
day lengths (i.e. at latitude 45°N) (left pan-
els) or were housed indoors under fixed 
12L:12D photoperiods (right panels). A 
single serum sample was collected from 
each animal (n = 5 per group) in the early 
morning, once per month across the entire 
year, and subsequently assayed for testos-
terone. Annual changes in testis size were 
monitored using calipers to measure tes-
ticular width through the scrotal wall. The 
results (mean                    8  SEM) corroborate what is 
known about the reproductive physiology 
of rhesus macaques, namely that they are 
short-day seasonal breeders when main-
tained under natural photoperiods but not 
when maintained indoors under fixed 
12L:12D photoperiods.             
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presses a circadian core-clock mechanism similar to that 
expressed in the SCN  [33] . Equally important, a signifi-
cant number of the genes showed a 24-hour expression 
pattern; some of these genes showed a peak of expression 
in the middle of the night while others showed a peak in 
the middle of the day ( fig. 5 ). Subsequent studies showed 
that day length can also influence the expression of a 
wide variety of genes in the rhesus macaque adrenal 
gland  [35]  ( fig. 6 ). Some of the main genes affected by a 
4-hour photoperiodic change included those associated 
with development, metabolism and immune function 
( fig. 6 , lower panels). Other rhesus macaque studies have 
shown that gene expression within the rhesus macaque 
brain can be significantly affected by ovarian steroids, 
and hence by the phase of the menstrual cycle  [102] . To-
gether, these findings emphasize the importance of col-
lecting terminal tissue samples at the most appropriate 
time of the day, month, or season. This, however, can be 
problematic as some genes of interest may show a peak of 
expression in the middle of the night while others may 
show a peak in the middle of the day. Consequently, if 
necropsies are performed on experimental animals ex-
clusively during the daytime, when some genes are ex-

hibiting a nadir in their expression rhythm, important 
changes could be missed  [102] . Furthermore, the situa-
tion is compounded when making inferences from ro-
dent studies to those of humans, because daytime nec-
ropsies correspond to the subjective night of nocturnal 
rodents but to the subjective day of rhesus macaques and 
humans. Awareness of neuroendocrine rhythms, and the 
underlying rhythmic expression of many genes, repre-
sents a key aspect of effective experimental design.

  Clinical Implications and Future Perspectives 

 In humans, almost all behavioral and physiological 
functions occur on a rhythmic basis  [103] . Given that hor-
mones play a key role in the cross-talk between different 
systems, it is likely that perturbation of their rhythmic 
release contributes to the pathophysiology of a wide range 
of human disorders, especially during aging  [40, 103–
106] . Before appropriate hormone supplementation or 
pharmaceutical intervention is prescribed, it is impera-
tive that the underlying perturbed hormone levels are 
correctly identified. This may require collection of serial 
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  Fig. 5.  Temporal gene expression profiles 
in the rhesus macaque adrenal gland, em-
phasizing marked 24-hour differences.
 a  Hierarchical clustering of the 335 oscil-
lating transcripts. Each column represents 
a time point and each row represents a 
gene. Relationships between genes are de-
picted as a tree, with branch length reflect-
ing the degree of similarity in time courses 
between the genes.  b  Gene expression pro-
files showing different phases across 24 h; 
the data have been normalized such that 
the medial signal intensity for each gene 
across all time points is 0.  c  Distribution of 
cycling transcripts across 24 h. In all pan-
els the white and black bars represent day- 
and nighttime, respectively. Figure from 
Lemos et al.                            [33] , with permission, The En-
docrine Society © , 2006. 



 Urbanski

 

Neuroendocrinology 2011;93:211–222218

blood samples at specific times of the day, phase of men-
strual cycle as well as time of year.

  For example, with reference to testosterone rhythm de-
picted in  figure 3 , if blood samples are collected in the late 
afternoon they are likely to show lower testosterone con-
centrations than samples collected in the early morning. 
Furthermore, unless several blood samples are collected 
there is a high risk of missing one of the underlying ultra-
dian testosterone pulses, thereby leading to further un-
derestimation of testosterone production and release. The 

situation can be even more complicated if the individual 
has just returned from a long trip and is suffering from 
lag, or if he is a nightshift worker; in both cases the indi-
vidual’s testosterone rhythm could be significantly phase 
shifted and so the early morning may no longer be the 
most appropriate time of day for the collection of serial 
blood samples. This has important clinical implications, 
because in male rhesus macaques  [72, 73]  and men  [107–
112]  circulating testosterone levels decline during aging. 
Whether this decline represents a male andropause  [113]  
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  Fig. 6.  Effect of day length on adrenal gland gene expression in the 
rhesus macaque. Ovariectomized animals were maintained un-
der short winter photoperiods (8L:16D), spring/summer photope-
riods (12L:12D), or long summer photoperiods (16L:8D), for 10 
weeks. Adrenal gland RNA was hybridized to the Affymetrix hu-
man HG_U133A GeneChip � , and the data were analyzed using 
the algorithm MAS 5.0.       Upper panels: Functional clustering of 

genes found to be differentially expressed between  a  8L:16D and 
12L:12D and between  b  12L:12D and 16L:8D photoperiodic expo-
sures.         Lower panels: Examples of genes involved in development, 
lipid synthesis and metabolism, and immune response that 
showed significant (p        !  0.05) photoperiod-induced expression 
changes. Data adapted from Lemos et al.        [35] , with permission.   
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is questionable because the age-related decline in testos-
terone levels is less abrupt or severe than the decline in 
ovarian steroids that occurs during female menopause 
 [23, 25] , also the functional significance of a moderate 
age-related testosterone decline remains to be elucidated. 
Nevertheless, it is plausible that a well-defined nocturnal 
testosterone peak contributes to the overall maintenance 
of circadian physiology, including sleep patterns. Conse-
quently, clinical treatment of low testosterone levels 
through androgen supplementation should ideally follow 
the underlying physiological 24-hour profile. For practi-
cal reasons, this is rarely the case, however. Common an-
drogen supplementation paradigms typically involve 
long-term continuous release capsules, which have the 
advantage of low maintenance but which completely 
obliterate the 24-hour rhythm. Other paradigms involve 
cyclic transdermal delivery of testosterone, via the daily 
application of gels. However, these are generally applied 
in the morning rather than at night, to avoid accidental 
transfer of the steroid to a sleeping partner; unfortunate-
ly, this means that the daily plasma testosterone peak gen-
erated by the gel can be markedly out of phase with the 
endogenous testosterone rhythm. The long-term impact 
of these non-physiological androgen supplementation 
paradigms is unclear, and alternative approaches may 
prove to be more beneficial to overall physiology. An in-
teresting novel approach has recently been demonstrated 
in men  [114, 115] , which involves oral administration of 
micronized testosterone in sesame oil. Normally, orally 
administered testosterone has little physiological potency 
because after being taken up by the gut it is immediately 

transported to the liver via the hepatic portal vein and 
then passes back into the gut rather than into the general 
circulation. It appears that much of this enterohepatic cir-
culation of testosterone can be bypassed if the steroid is 
mixed  with  sesame  oil. Although the exact mechanism is 
unclear, it may involve preferential absorption by the lym-
phatics, bypassing the liver and reaching the circulation 
via the thoracic duct. Studies have shown that this admin-
istration paradigm can more closely mimic the natural 
24-hour plasma testosterone rhythm  [114, 115] .

  Similarly, for DHEAS one would expect there to be an 
optimal time of day for supplementation of this hormone 
in the elderly. In the USA, DHEA is widely available to 
the public without prescription as a dietary supplement. 
DHEA is readily converted to DHEAS and vice versa by 
sulfyl transferase and steroid sulfatase enzymes, respec-
tively, and because it has a much shorter half-life than 
DHEAS it shows a more pronounced 24-hour rhythm 
 [116] . With reference to the DHEAS rhythm depicted in 
 figures 1  and  2 , it is clear that early morning supplemen-
tation with exogenous DHEA represents a more physio-
logical paradigm than a similar DHEA dose in the early 
evening, and consequently morning DHEA supplemen-
tation is more likely to harmonize with the body’s circa-
dian physiology.
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