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Abstract

Hormones play a major role in regulating behavior and phys-
iology, and their efficacy is often dependent on the temporal
pattern in which they are secreted. Significant insights into
the mechanisms underlying rhythmic hormone secretion
have been gained from transgenic rodent models, suggest-
ing that many of the body’s rhythmic functions are regulated
by a coordinated network of central and peripheral circadian
pacemakers. Some neuroendocrine rhythms are driven by
transcriptional-posttranslational feedback circuits compris-
ing ‘core clock genes’, while others represent a cyclic cascade
of neuroendocrine events. This review focuses on recent
data from the rhesus macaque, a non-human primate model
with high clinical translation potential. With primary empha-
sis on adrenal and gonadal steroids, it illustrates the rhyth-
mic nature of hormone secretion, and discusses the impact
that fluctuating hormone levels have on the accuracy of clin-
ical diagnoses and on the design of effective hormone re-
placement therapies in the elderly. In addition, this minire-
view raises awareness of the rhythmic expression patterns

shown by many genes, and discusses how this could impact
interpretation of data obtained from gene profiling studies,
especially from nocturnal rodents.

Copyright © 2011 S. Karger AG, Basel

Biological Clocks Play an Important Role in the
Regulation of Physiology

Most organisms live in an environment that changes
rhythmically. Some of these changes occur with a period
of approximately 1 day (circadian), while others (season-
al) are much slower and occur gradually. Examples in-
clude rhythmic alterations in available light, ambient
temperature and food availability, and to survive and re-
produce under such changing conditions organisms have
evolved various physiological adaptations that rely on in-
ternal clocks for their coordination. Furthermore, rhyth-
mic output from these biological clocks enables temporal
compartmentalization of biochemical processes, which
like spatial compartmentalization enables many proteins
to perform their cellular functions more effectively.

In mammals, the central circadian clock, located in
the suprachiasmatic nucleus (SCN) of the hypothalamus,
receives direct neuronal signals from photoreceptors lo-
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cated in the retina, and under normal conditions it is syn-
chronized to the light-dark cycle. GABA and vasoactive
intestinal peptide are thought to coordinate the synchro-
nized firing of SCN neurons, which are capable of re-
laying circadian signals to other tissues, either through
direct autonomic innervations or through humoral path-
ways involving vasopressin as an intermediary [1-5].
Although the SCN clearly serves as a master circadian
pacemaker, genetic components of the underlying clock
mechanism have been detected in other brain regions as
well as most peripheral organs. This raises the possibility
that circadian physiology is ultimately controlled by a hi-
erarchy of circadian oscillators synchronized by the SCN,
rather than by a single central circadian clock [4, 7].

Major advances in our knowledge about the circadian
clock mechanism have been made through the use of
transgenic knockout rodent models [7-11]. In its essence,
this central clock consists of autoregulatory transcrip-
tional-posttranslational feedback loops. Genes encoding
Period (Perl and Per2) and Cryptochrome (Cryl and
Cry2) are activated by a dimer comprising Bmall and
other PAS-domain proteins Clock or Npas2. In turn, Per
and Cry proteins enter the cell nucleus where they ulti-
mately inhibit activation of their own genes. Ancillary
feedback loops involving Rev-erba and Rora, as well as
casein kinases (CKIe and CKIS), serve to stabilize the
circadian rhythmicity.

In contrast to these well-documented advances in
basic chronobiology, clinical applications have been slow.
On the one hand, the existence of endogenous biological
clocks has been known for many centuries [12]. In addi-
tion, knowledge of circadian rhythms has been used to
develop therapies for jetlag and seasonal affective disor-
der [13-15]. On the other hand, because of difficulties in
maintaining human subjects under carefully controlled
environmental conditions and difficulty in performing
human gene expression studies, it is unclear if perturbed
biological rhythms have a much more widespread impact
on human physiology, especially during aging. Moreover,
general clinical practice rarely takes underlying biologi-
cal rhythms into consideration. For example, the diagno-
sis of hormone levels is often based on infrequent blood
samples collected at inappropriate times of day, and ther-
apeutic administration of hormones often follows non-
physiological paradigms.

Because endocrine rhythms play a major role in regu-
lating behavioral and physiological functions, it is likely
that their perturbation contributes to the etiology of var-
ious human pathologies [16-21]. However, progress in
understanding the underlying causal mechanisms has
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been hampered by the lack of suitable experimental ani-
mal models. On the one hand, rodents have proven to be
excellent models for systematically dissecting the bio-
chemical components that constitute the central circa-
dian clockand it primary outputs, but their clinical trans-
lational potential is limited. Not only are they nocturnal,
but they do not show consolidated sleep-wake patterns,
Furthermore, the patterns of hormone secretion from
their adrenal glands and gonads differ significantly from
those of humans. This review tries to fill the gap in our
knowledge by focusing on rhesus macaques (Macaca mu-
latta), which like humans are large, long-lived diurnal
species and show similar consolidated sleep-wake pat-
terns. Importantly from a women’s health perspective, fe-
male rhesus macaques have similar menstrual cycles and
show similar age-related changes in their reproductive
and adrenal neuroendocrine axes [22-25]. In this mini-
review, recent data from rhesus macaques are used to il-
lustrate the dynamic nature of hormone secretion, and
the implication of these findings for clinical and basic re-
search is discussed.

Circadian Hormone Rhythms Help with Adaptation
to Daily Environmental Change

Rhesus macaques can be readily maintained under a
tightly-controlled environment (e.g. photoperiod, tem-
perature, diet, and medication), thereby eliminating the
extraneous variables and selection bias that are unavoid-
able in human clinical trials. Furthermore, because they
are large, they readily lend themselves to serial blood col-
lection, using an implanted vascular catheter and a swiv-
el-based remote sampling system [26, 27]. Importantly,
this enables blood samples to be repeatedly collected
from minimally restrained, non-sedated animals across
the day and night, even when they are asleep; this can
then be used to establish detailed 24-hour plasma hor-
mone profiles. By simultaneously monitoring motor ac-
tivity in the animals (e.g. using Actiwatch recorders; Phil-
ips-Respironics, Bend, Oreg., USA), the phase of the un-
derlying hormone rhythms can be readily linked to the
animal’s circadian activity-rest cycle.

Circadian rhythms are defined as self-sustainable
cyclic events that have a periodicity of approximately
24 h. Overt examples include daily cycles of activity-rest,
alertness-sleep, and body temperature. Although these
rhythms are usually entrained to an environmental cue
(Zeitgeber), such as the daily light-dark cycle, many of
them continue to be expressed even when environmental
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conditions are held constant [28, 29]. In the rhesus ma-
caque, like other mammals, many hormones have a 24-
hour rhythm. However, not all of these rhythms are self-
sustaining. For example, in humans, circulating growth
hormone levels show a daily nocturnal peak, but this is
not a true circadian rhythm because the peak stems
directly from being asleep [30]. Similarly, the 24-hour
prolactin rhythm is generally coupled to the sleep-wake
cycle, although there is evidence for an underlying cir-
cadian rhythm component [30-32]. In contrast, adrenal
steroids such as cortisol, dehydropiandrosterone (DHEA)
and DHEA sulfate (DHEAS) not only have robust 24-
hour patterns of release in rhesus macaques, but also they
are self-sustaining, that is they continue to be clearly ex-
pressed even when the animals are maintained under
continuous dim illumination. An example of this self-
sustained rhythmicity is illustrated in figure 1. The motor
activity data depicted in figure la were obtained from an
adult rhesus macaque using an Actiwatch, and emphasize
the highly entrained diurnal pattern of activity that oc-
curs under fixed 12L:12D photoperiods [33-36]. In addi-
tion, the data show how the activity rhythm becomes
free-running, with slight phase advancement, when the
animal is exposed to continuous dim illumination (30 Ix).
Serial blood samples were remotely collected while the
animals were maintained under the continuous dim il-
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lumination [26, 27] and the plasma was assayed for corti-
soland DHEAS; in both cases, 24-hour circadian rhythms
were evident despite the absence of photoperiodic cues.
Importantly, both of these hormones showed a peak that
was associated with the onset of activity and a nadir that
was associated with the onset of rest. The significance of
the distinction between 24-hour and circadian hormone
rhythms is that the latter are more likely to be regulated
by a circadian molecular clock mechanisms and may act
as auxiliary circadian pacemakers, helping to synchro-
nize various physiological functions [37].

DHEAS and cortisol are both produced by the adrenal
cortex and are two of the most abundant steroids in the
circulation of adult humans and non-human primates.
In both species, circulating DHEAS shows a profound
age-related decrease [38-42]; this dramatic change is il-
lustrated in figure 2, with respect to male rhesus ma-
caques. In contrast, plasma cortisol levels do not show a
decline and a clear 24-hour rhythm is still evident well
into old age (fig. 2). Importantly, the age-related elevation
of the cortisol baseline means that brain and peripheral
organs, such as the liver, do not get a complete break from
exposure to cortisol, which may predispose the elderly to
insomnia and as well as to metabolic disorders. The exact
physiological significance of an age-associated decrease
in plasma DHEA and DHEAS levels is unclear. However,
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Fig. 2. Effect of age on circulating 24-hour hormone patterns in
male rhesus macaques. Left panels: Mean 24-hour plasma cortisol
and DHEAS profiles from young (~10 years old, n = 5) and old
(~26 years old, n = 6) males. Although the blood samples were col-
lected over 24 h, from 19:00 to 19:00 h, the data have been double
plotted (indicated by a vertical dashed line) to aid in the visualiza-
tion of the night and day variations in hormone concentrations.

these steroids can attenuate the deleterious effects of cor-
tisol and so the age-associated decline in DHEA:cortisol
ratio is thought to underlie cognitive decline [43, 44]. Ad-
ditionally, lower levels of DHEA and DHEAS have been
associated with cognitive disorders with a higher preva-
lence in the elderly, such as Alzheimer’s disease [45] and
depression [46]. In healthy old men [43] and postmeno-
pausal women [47], elevated endogenous DHEAS levels
have been linked to better cognitive performance. While
studies of the frail elderly showed an inverse relationship
between DHEAS and cognitive ability [48, 49], a compa-
rable study in non-human primates failed to disclose a
similar association [50]. This difference in response could
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The horizontal white and black bars on the abscissas correspond
to the 12L:12D lighting schedule. Center panels: Analyses of age-
related differences in mean, maximum, and minimum hormone
values. Right panels: Analyses of age-related differences in the
mean 24-hour area under the curve (AUC) of cortisol and DHEAS
concentrations. Values are expressed as mean * SEM. * p < 0.05,
** p <0.01 [from 42, with permission].

be due to the fact that frail non-human primates are usu-
ally not included in experiments, or that the timing of
the single daily blood samples did not correspond to the
animals’ circadian hormonal peak. In addition to direct
actions within the central nervous system, DHEA and
DHEAS may exert some of their beneficial effects indi-
rectly, via intracrine conversion to sex steroids [51, 52].
Many organs, including the brain, appear to express the
enzymes necessary for this conversion, and it is well es-
tablished that sex steroids can exert neuroprotective ef-
fects in brain areas such as the hippocampus [53]. Be-
cause estrogen can improve cognitive function and influ-
ence gene expression in various regions of the macaque
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Fig. 3. Characteristic plasma testosterone rhythm in adult male
rhesus macaques, revealed by remote serial blood sampling every
30 min for 24 h. a Double-plotted actogram from a representative
male rhesus macaque, showing diurnal activity that is entrained
to the 12L:12D light cycle (indicated by the white and black hori-
zontal bars). b Double-plotted mean plasma testosterone levels
from 10 animals (£ SEM). Note that the 24-hour rhythm is super-
imposed on ultradian testosterone level fluctuations that stem
from an underlying pulsatile pattern of LH release. Note also that
in contrast to the plasma cortisol and DHEAS rhythms, which
show a peak in the early morning (cf. fig. 1), the testosterone peak
occurs during the night when the animals are asleep.

brain [54-58], it is plausible that DHEA and DHEAS me-
diate some of their central actions via conversion to es-
trogen. It is also plausible that the age-related loss of hu-
moral circadian signaling due to attenuated DHEA and
DHEAS levels contributes to age-related desynchroniza-
tion of peripheral oscillators and exacerbation of circa-
dian dissonance in the elderly.

The adipocyte-derived hormone, leptin, has been
shown to have a 24-hour rhythm, with a nocturnal peak,
in both lean and obese humans, as well as in individuals
with type 2 diabetes [59-61]. Recent studies using rhesus
macaques have shown that this rhythm is circadian, be-
cause it persists even under continuous dim illumination
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[62]. Interestingly, the rhythm is still evident in old male
macaques but in peri- and postmenopausal females the
difference between day- and nighttime plasma leptin
levels becomes minimal. Because leptin is generally as-
sociated with suppression of appetite it makes biological
sense for its peak to occur at night, which is when hu-
mans and rhesus macaques usually sleep. On the other
hand, the physiological relevance of an age-related de-
cline is unclear. One possibility is that disruption of the
circadian leptin rhythm contributes to the development
of metabolic disorders and obesity [63-66] and inter-
feres with the maintenance of bone mass [67, 68].

Another hormone that shows a pronounced 24-hour
rhythm in both men [69-71] and adult male rhesus ma-
caques [72-74] is testosterone. Like leptin, the plasma tes-
tosterone rhythm shows a nocturnal peak and is associ-
ated with sleep (fig. 3a, b); this contrasts with the timing
of the daily cortisol and DHEAS peaks, which occur in
the morning in association with onset of activity (fig. 1,
2). In this particular study the blood samples were re-
motely collected at 30-min intervals for 24 h, and the tes-
tosterone profiles depict mean values from 10 animals.
Although the 24-hour rhythm is clearly evident there is
much underlying fluctuation in the testosterone levels
because this steroid is released in an episodic manner that
corresponds to the underlying ultradian pattern of LH
release [24]. Consequently, it is extremely difficult to ac-
curately assess testicular endocrine function, or diagnose
age-related changes, in individuals based on single time
point testosterone measurements. Instead, multiple sam-
ples need to be collected, and ideally as close to the noc-
turnal peak as possible [72-75].

Circadian Hormone Rhythms Are Influenced by
Photoperiod and Season

In humans, seasonal variations have been reported for
blood pressure, immune response, birth rate, and sleep
duration, as well as for behavioral traits associated with
seasonal affective disorders, bulimia nervosa, anorexia,
and suicide [76-80]. Although the underlying neuroen-
docrine mechanisms are unclear they are thought to be
linked to seasonal circadian neuroendocrine changes. In
this context, the pineal hormone, melatonin, has been
the most widely studied, because its circadian pattern of
release is markedly affected by the photoperiod [13]. As
winter approaches, the duration of the night period be-
comes longer, causing more melatonin to be secreted.
This provides a useful neuroendocrine cue that environ-
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mental conditions are changing, and this is exploited by
temperate zone mammals to initiate various physiologi-
cal adaptations. For example, long-day breeding species,
such as hamsters and voles, rely on the short-day melato-
nin profile to terminate their breeding season. In con-
trast, larger species with a gestation periods of 5-6
months, such as sheep and deer, use it to initiate their
breeding season. When maintained under natural photo-
periods, rhesus macaques also show seasonal reproduc-
tive cycles with breeding confined to the autumn and
winter [81-83]. In the males, testicular size and serum
testosterone levels are markedly lower during the non-
breeding season (fig. 4). Importantly, however, if the ani-
mals are housed indoors under fixed 12L:12D photoperi-
ods they do not show an annual decrease in these repro-
ductive parameters, instead they maintain large testes
and elevated testosterone throughout the year, like men
[84-88]. This suggests that some seasonal neuroendo-
crine rhythms might simply represent direct responses to
changing environmental cues, or to a chain of neuroen-
docrine events that are analogous to those comprising the
menstrual cycle, rather than being driven by a circan-
nual intracellular molecular clock mechanism.

Because adrenal steroids play a major role in regulat-
ing behavior and physiology, their seasonal profiles have
received much attention. However, the human data for
cortisol are largely inconclusive. Some studies have re-
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ported seasonal differences [89-93], whereas others have
failed to do so [94-97]. Similarly, some studies have re-
ported seasonal differences in DHEAS levels [98-100],
whereas one study found none [101]. In a recent examina-
tion of 24-hour plasma cortisol or DHEAS profiles of
ovariectomized rhesus macaques, no effect of photope-
riod was found on the mean or peak hormone levels.
However, there was a marked phase advancement of both
hormonal rhythms in short days, reflecting a similar
phase advancement of the daily motor activity rhythm
[35]. Furthermore, significant differences were detected
in the gene expression profiles of the adrenal gland under
different photoperiodic conditions. Together, these data
reinforce the view that normal behavior and physiology
is dependent on the maintenance of specific phase rela-
tionships between different neuroendocrine rhythms
[20], and that these relationships may change under dif-
ferent environmental conditions, as well as during aging.

Many Genes Exhibit a 24-Hour Expression Pattern

Gene expression profiling in the rhesus macaque ad-
renal gland, using Affymetrix GeneChip arrays, has
shown that many of the genes associated with rhythmic
production of adrenal steroids have a rhythmic 24-hour
expression profile, and that the adrenal gland itself ex-
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Lemos etal. [33], with permission, The En-
docrine Society®, 2006.

presses a circadian core-clock mechanism similar to that
expressed in the SCN [33]. Equally important, a signifi-
cant number of the genes showed a 24-hour expression
pattern; some of these genes showed a peak of expression
in the middle of the night while others showed a peak in
the middle of the day (fig. 5). Subsequent studies showed
that day length can also influence the expression of a
wide variety of genes in the rhesus macaque adrenal
gland [35] (fig. 6). Some of the main genes affected by a
4-hour photoperiodic change included those associated
with development, metabolism and immune function
(fig. 6, lower panels). Other rhesus macaque studies have
shown that gene expression within the rhesus macaque
brain can be significantly affected by ovarian steroids,
and hence by the phase of the menstrual cycle [102]. To-
gether, these findings emphasize the importance of col-
lecting terminal tissue samples at the most appropriate
time of the day, month, or season. This, however, can be
problematic as some genes of interest may show a peak of
expression in the middle of the night while others may
show a peak in the middle of the day. Consequently, if
necropsies are performed on experimental animals ex-
clusively during the daytime, when some genes are ex-
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hibiting a nadir in their expression rhythm, important
changes could be missed [102]. Furthermore, the situa-
tion is compounded when making inferences from ro-
dent studies to those of humans, because daytime nec-
ropsies correspond to the subjective night of nocturnal
rodents but to the subjective day of rhesus macaques and
humans. Awareness of neuroendocrine rhythms, and the
underlying rhythmic expression of many genes, repre-
sents a key aspect of effective experimental design.

Clinical Implications and Future Perspectives

In humans, almost all behavioral and physiological
functions occur on a rhythmic basis [103]. Given that hor-
mones play a key role in the cross-talk between different
systems, it is likely that perturbation of their rhythmic
release contributes to the pathophysiology of a wide range
of human disorders, especially during aging [40, 103-
106]. Before appropriate hormone supplementation or
pharmaceutical intervention is prescribed, it is impera-
tive that the underlying perturbed hormone levels are
correctly identified. This may require collection of serial
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Fig. 6. Effect of day length on adrenal gland gene expression in the
rhesus macaque. Ovariectomized animals were maintained un-
der short winter photoperiods (8L:16D), spring/summer photope-
riods (12L:12D), or long summer photoperiods (16L:8D), for 10
weeks. Adrenal gland RNA was hybridized to the Affymetrix hu-
man HG_U133A GeneChip®, and the data were analyzed using
the algorithm MAS 5.0. Upper panels: Functional clustering of

blood samples at specific times of the day, phase of men-
strual cycle as well as time of year.

For example, with reference to testosterone rhythm de-
picted in figure 3, if blood samples are collected in the late
afternoon they are likely to show lower testosterone con-
centrations than samples collected in the early morning.
Furthermore, unless several blood samples are collected
there is a high risk of missing one of the underlying ultra-
dian testosterone pulses, thereby leading to further un-
derestimation of testosterone production and release. The
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genes found to be differentially expressed between a 8L:16D and
12L:12D and between b 12L:12D and 16L:8D photoperiodic expo-
sures. Lower panels: Examples of genes involved in development,
lipid synthesis and metabolism, and immune response that
showed significant (p < 0.05) photoperiod-induced expression
changes. Data adapted from Lemos et al. [35], with permission.

situation can be even more complicated if the individual
has just returned from a long trip and is suffering from
lag, or if he is a nightshift worker; in both cases the indi-
vidual’s testosterone rhythm could be significantly phase
shifted and so the early morning may no longer be the
most appropriate time of day for the collection of serial
blood samples. This has important clinical implications,
because in male rhesus macaques [72, 73] and men [107-
112] circulating testosterone levels decline during aging.
Whether this decline represents a male andropause [113]
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is questionable because the age-related decline in testos-
terone levels is less abrupt or severe than the decline in
ovarian steroids that occurs during female menopause
[23, 25], also the functional significance of a moderate
age-related testosterone decline remains to be elucidated.
Nevertheless, it is plausible that a well-defined nocturnal
testosterone peak contributes to the overall maintenance
of circadian physiology, including sleep patterns. Conse-
quently, clinical treatment of low testosterone levels
through androgen supplementation should ideally follow
the underlying physiological 24-hour profile. For practi-
cal reasons, this is rarely the case, however. Common an-
drogen supplementation paradigms typically involve
long-term continuous release capsules, which have the
advantage of low maintenance but which completely
obliterate the 24-hour rhythm. Other paradigms involve
cyclic transdermal delivery of testosterone, via the daily
application of gels. However, these are generally applied
in the morning rather than at night, to avoid accidental
transfer of the steroid to a sleeping partner; unfortunate-
ly, this means that the daily plasma testosterone peak gen-
erated by the gel can be markedly out of phase with the
endogenous testosterone rhythm. The long-term impact
of these non-physiological androgen supplementation
paradigms is unclear, and alternative approaches may
prove to be more beneficial to overall physiology. An in-
teresting novel approach has recently been demonstrated
in men [114, 115], which involves oral administration of
micronized testosterone in sesame oil. Normally, orally
administered testosterone has little physiological potency
because after being taken up by the gut it is immediately
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