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 Genetic and Epigenetic Regulation of Killer 

Immunoglobulin-Like Receptor Genes 

 Killer immunoglobulin-like receptor (KIR) messen-
ger RNAs, originally designated as ‘natural killer (NK)-
associated transcripts’, were discovered through subtrac-
tive hybridization in 1995  [1, 2] , and the sequences were 
subsequently mapped to human chromosome 19q13.4  [3] . 
Fourteen  KIR  genes and two pseudogenes have been 
identified, and it is now apparent that significant allelic 
and haplotypic variability has evolved within the  KIR  
 locus through a variety of genetic events including exten-
sive intergenic sequence exchange, deletion/duplication 
and unequal crossing over  [4, 5] .  KIR  genes with a varie-
gated expression pattern are  1 91% identical with respect 
to their core promoter regions, suggesting that a single 
mechanism controls the expression of the majority of  KIR  
genes  [6] . The remarkably high level of promoter se-
quence homology observed amongst individual genes 
within the  KIR  locus begs the question of how a complex, 
stochastic expression pattern is established. Although we 
are still far from answering this question, a few clues have 
been uncovered.
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 Abstract 

 Killer immunoglobulin-like receptors (KIRs) recognize class I 

major histocompatibility complex molecules and partici-

pate in the calibration of activation thresholds during hu-

man natural killer (NK) cell development. The stochastic ex-

pression pattern of the KIR repertoire follows the product 

rule, meaning that the probability of the coexpression of two 

or more different KIRs equals the product of the individual 

expression frequencies for those KIRs. The expression fre-

quencies of individual KIRs are independent of major histo-

compatibility complex class I and are instead established 

and maintained by a dynamic, yet ill-defined, transcriptional 

program. Here, we review recent advances in our under-

standing of the architecture of the regulatory regions within 

 KIR  genes and discuss a potential role for non-coding RNA in 

KIR transcriptional regulation during NK cell development. 

Understanding the molecular mechanisms that underlie KIR 

expression may help guide us in the design of novel, rational 

strategies for the use of NK cells in transplantation and im-

munotherapy.  Copyright © 2011 S. Karger AG, Basel 
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  One of the first significant clues related to the mecha-
nisms controlling  KIR  transcription was the discovery 
that non-expressed  KIR  alleles are methylated within a 
small cytosine-phospho-guanine island surrounding the 
transcriptional start site, while transcriptionally active 
 KIR  alleles lack these epigenetic marks  [7–9] . An analysis 
of peripheral blood NK cells also revealed that variegated 
KIRs, such as  KIR3DL1,  have a predominantly monoal-
lelic expression pattern  [8] . DNA methylation appears to 
be the central epigenetic regulator of  KIR  transcription, 
as N-terminal histone modifications are similar between 
active and repressed  KIR  genes  [9, 10] . A major question 
yet to be answered is whether specific  KIR  genes are tar-
geted for demethylation during NK cell development or 
whether demethylation occurs in a nonspecific manner 
across the  KIR  locus, and clonal expression patterns are 
subsequently established.

  Another major insight into how  KIR  transcription is 
regulated came from the identification of two variants 
of the  KIR2DL5  gene, now known as  KIR2DL5A  and 
 KIR2DL5B,  which were both identified in the genomic 
DNA of a single donor. Messenger RNA could only be 
detected for  KIR2DL5A,  and expression correlated with 
an intact acute myeloid leukemia gene 1 (AML1) binding 
site  [11] . Intriguingly, the  KIR2DL5B  promoter was active 
in reporter assays carried out in the NK3.3 cell line de-
spite its lack of a functional AML1 binding site, and DNA 
demethylation induced by pharmacological agents led to 
expression of the endogenous  KIR2DL5B  gene  [12] . To-
gether, these results suggest that AML1 plays a central 
role in establishing an open chromatin confirmation per-
missive to active  KIR  transcription during human NK 
cell development.

  Mechanistic insights into  KIR  transcriptional regula-
tion have also been inspired by the discovery of probabi-
listic transcriptional switches within the 5 �  regulatory re-
gions of murine  Ly49  genes, which are functionally ho-
mologous to KIR but evolutionarily distinct. The 5 �  
regulatory regions of  Ly49  genes include a distal promot-
er that is active in immature NK cells  [13]  and exhibits 
probabilistic, bidirectional transcriptional activity  [14] . 
Forward transcription from the distal promoter corre-
lates with stable Ly49 expression, while reverse transcrip-
tion leads to the production of non-coding antisense 
transcripts and the absence of Ly49 expression  [14] . Anal-
yses of the intergenic regions of  KIR  genes have also re-
vealed the presence of multiple promoters that coordinate 
probabilistic gene transcription, though the mechanism 
appears to be quite distinct.

  The  KIR  Distal Promoter 

 A novel distal promoter element was identified up-
stream of all  KIR  genes analyzed, and it was character-
ized in detail for  KIR3DL1  and  KIR2DL4   [15] .  KIR3DL1  
distal transcripts initiate at position –406 [ 16 ; unpubl. 
data], and promoter activity was detected in intergenic 
fragments extending up to position –1347 relative to the 
 KIR3DL1  start codon. The distal promoter is not tissue 
specific, as it is active in both NK cells and non-NK cell 
lines. Adjacent L1 and Alu elements within the distal pro-
moter harbor multiple putative transcription factor bind-
ing sites that are necessary for transcriptional activity 
 [15] .

  Transposable elements have a long evolutionary his-
tory and have played a substantial role in shaping the 
landscape of the human genome. A previous analysis of 
the apolipoprotein(a),  apo(a) , gene provides evidence for 
the ability of transposable elements to function as regula-
tory elements to control the expression of nearby genes. 
Like  KIR,  the  apo(a)  gene is part of a cluster of highly ho-
mologous genes and pseudogenes. The  apo(a)  gene con-
tains a 228-bp core promoter region and a 1.8-kb distal 
enhancer region approximately 20 kb upstream of the 
 apo(a)  transcription start site that is able to confer a  1 10-
fold activation of the  apo(a)  gene in in vitro assays. The 
distal enhancer region resides within a LINE element and 
contains binding sites for Sp1, CRE-BP, Ets-1 and several 
other transcription factors that are required for optimal 
activity of the enhancer  [17] . As is the case with  KIR  
genes, the  apo(a)  conventional core promoter is tissue 
specific, while the distal enhancer region is not  [15, 17] .

  One of the predicted transcription factor binding sites 
within the distal  KIR  promoter L1M5 element is c-Myc. 
The  KIR3DL1/S1,   KIR2DL1/S1,   KIR2DL1  and  KIR2DS3  
c-Myc sites are located approximately 1,150 bases up-
stream of their respective proximal translational start 
sites. Myc sites for  KIR2DL2/S2,   KIR2DL3  and  KIR3DL2  
also exist at position –1150. However, for this set of genes, 
a C ] T polymorphism at the first position of the site ab-
rogates c-Myc binding, rendering the site nonfunctional. 
Nevertheless, because of a 406-base deletion and a 317-
base insertion within the 5 �  intergenic region of the 
 KIR2DL2/S2,   KIR2DL3  and  KIR3DL2  genes, a function-
al, consensus c-Myc site exists within an Alu element at 
position –1190. Chromatin immunoprecipitation assays 
carried out with primary human NK cells revealed that 
interleukin (IL)-15 stimulation induces c-Myc binding to 
the  KIR  distal promoter and directly drives distal tran-
scription  [18] .
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  The acquisition of ‘IL-15 responsiveness’ is a key step 
during NK cell development, as IL-15 is necessary for 
both NK cell maturation and survival  [19] . CD122, which 
is the  � -chain for the IL-2/IL-15 receptor complex, is de-
tectable on the surface of CD56 bright  NK cells and mature 
CD56 dim  cells, but not on cells transitioning through ear-
lier stages of NK cell development  [20] . Therefore, it is 
likely that IL-15 induces c-Myc expression and drives 
transcription from  KIR  distal promoters once cells reach 
the CD56 bright  stage.  KIR  distal promoters in develop-
mental intermediates likely have some activity indepen-
dent of IL-15, as  KIR  distal transcripts were detected in 
CD34 – CD7 + CD56 –  NK cell precursors  [18] . Transcript 
levels from the  KIR3DL1  distal promoter are significant-
ly higher in CD56 dim  KIR3DL1 +  cells when compared 
with CD56 dim  KIR3DL1 –  cells, suggesting that the ‘open-
ing’ of the proximal promoter has a positive feedback ef-
fect on the activity of the distal promoter  [18, 21] . The 
mechanism by which distal promoters facilitate  KIR  
transcription is still open to speculation.

  One possibility is that distal  KIR  promoters participate 
in the establishment of active histone signatures across 
the  KIR  locus during NK cell development. A compara-
tive analysis of chromatin modifications within the  KIR  
locus demonstrated that while there is no discernable as-
sociation between KIR expression and ‘active’ chromatin 
modifications, there are lineage-specific differences 
between KIR-expressing and KIR-non-expressing cell 
types. Active histone signatures, defined as high levels of 
H4K8 acetylation and low levels of H3K9 dimethylation, 
were restricted to NK and CD8 +  T cells, which both ex-
press KIR. A pattern of histone modifications associated 
with inactive loci was observed within the  KIR  locus of 
CD34 +  hematopoietic progenitor cells and B and CD4 +  T 
cells, suggesting that a lineage-specific transition takes 
place and ‘primes’ the  KIR  locus for expression  [10] .

  One model for how distal  KIR  promoters may partici-
pate in the lineage-specific transition is through the re-
cruitment of transcriptional cofactors that possess his-
tone acetyltransferase activity. Intriguingly, a putative 
p300/CBP site exists within the distal promoters of all 
 KIR  genes. p300/CBP is a large protein known to interact 
with a variety of DNA-binding transcription factors and 
has the remarkable ability to acetylate all four core his-
tones in nucleosomes  [22] . Therefore, distal promoters 
could act as nucleation points where histone acetylation 
is initiated and subsequently spread across the  KIR  locus. 
Certain epigenetic marks, such as histone acetylation, 
can spread over great distances. The presence of the  � -
globin locus control region on stably maintained epi-

somes in cell lines results in histone hyperacetylation 
over the entire minichromosome  [23] . Once a permissive 
chromatin landscape is established, IL-15-induced c-Myc 
binding and transcription from the distal promoter may 
act to allow transcription from proximal  KIR  promoters 
that then become demethylated. It is interesting to note 
that although consensus c-Myc binding sites contain an 
internal cytosine-phospho-guanine site (CA CG TG), the 
c-Myc binding sites in the KIR distal promoters do not 
(CACATG), suggesting that distal transcription is not in-
fluenced by DNA methylation.

  The  KIR  Proximal Promoter 

 Core  KIR  proximal promoters span approximately 270 
bases and contain a multitude of overlapping transcrip-
tion factor binding sites  [24] . A comprehensive in vitro 
linker-scanning mutagenesis approach showed that a 
high degree of functional redundancy exists between 
binding sites, with multiple mutations needed to com-
pletely abrogate transcription  [25] . Peripheral blood NK 
cells exhibit a predominantly monoallelic KIR expression 
pattern, and DNA methylation within proximal promot-
ers strongly correlates with stable transcriptional silenc-
ing of individual alleles  [7–9] .

  The phenomenon of monoallelic gene expression is 
common in the immune system and likely evolved to en-
sure that most individual cells express only one member 
of a family of receptors encoded by highly homologous 
genes. This results in each cell possessing only one out of 
many possible specificities. This ability is clearly impor-
tant for NK cells, which utilize KIR to distinguish subtle 
differences in major histocompatibility complex expres-
sion on target cells. An important clue with respect to the 
mechanism by which stochastic and monoallelic expres-
sion patterns are established within the  KIR  locus was 
uncovered with the discovery of probabilistic, bidirec-
tional activity within the proximal promoter.

  Antisense transcripts were cloned from several  KIR  
genes by a modified 3 �  rapid amplification of cDNA ends. 
A canonical polyadenylation signal site 409 bases up-
stream of the start of translation is used for the majority 
of  KIR3DL1,   KIR2DL1,   KIR2DS1, KIR2DL2,   KIR2DS2,  
 KIR3DS1  and  KIR3DL2  antisense transcripts. This poly-
adenylation signal is absent from  KIR2DL2,  KIR2DS2  
 and  KIR3DL2.  Instead, antisense transcripts from these 
genes use a polyadenylation signal site 295 bases up-
stream of the translational start site. Antisense transcrip-
tion initiates between positions –149 to –175 relative to 
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the start of translation, and the proximal promoter is ac-
tive in both the forward and reverse orientations. Intrigu-
ingly,  KIR  antisense transcripts were only detected by RT-
PCR in cells that lack surface KIR expression  [21] . Proba-
bilistic expression from bidirectional proximal promoters 
is influenced by polymorphisms, particularly those with-
in putative binding sites for the Sp1 and YY1 transcrip-
tion factors. The ratio of forward to reverse promoter ac-
tivities for individual  KIR  alleles positively correlates 
with the frequency of gene expression, and antisense 
transcript levels negatively correlate with  KIR  transcrip-
tion  [26] .

  The observation that distal and antisense transcripts 
overlap across the proximal  KIR  promoters led to the hy-
pothesis that a small RNA might be processed in this re-
gion and might directly participate in transcriptional si-
lencing of individual  KIR  alleles  [27] . Examples of tran-
scriptional gene silencing by siRNAs and microRNAs 
have been reported previously  [28, 29] . Unexpectedly, 
when both antisense and sense transcripts spanning the 
 KIR3DL1  or  KIR2DL1  promoter were transfected togeth-
er into HEK293 cells, a single 28-base RNA processed 
from the antisense transcript was identified from three 
independent small RNA libraries. The sequence of the 
 KIR3DL1  28-base RNA corresponds to positions –173 to 
–201 within the proximal promoter relative to the start of 
translation. Notably, this 28-base product could not be 
detected if antisense transcripts were transfected alone, 
suggesting that the formation of double-stranded RNA 
(dsRNA) is necessary for processing the small RNA. The 
existence of dsRNA across  KIR  promoters in primary NK 
cells was confirmed by an S1 nuclease protection assay 
using RNA isolated from peripheral blood CD56 +  cells. 
The 28-base RNA could also be readily cloned from pri-
mary peripheral blood CD56 +  NK cells  [16] .

  The only known species of single-stranded RNA with 
a 24- to 30-base length is PIWI-interacting RNA 
(piRNAs), and a defining characteristic of mammalian 
piRNAs is the presence of a 2 � - O -methyl group at the 3 �  
terminal ribose in place of a hydroxyl group  [30, 31] . The 
28-base RNA from the  KIR  antisense transcript is resis-
tant to periodate oxidation and  � -elimination, strongly 
suggesting that it contains a protective group at its 3 �  ter-
minus and belongs to the PIWI or a PIWI-like family of 
small RNAs. The overexpression of either full-length 
 KIR3DL1  antisense transcripts or the 28-base RNA alone 
in developing human NK cells leads to a significant re-
duction in receptor expression, which correlates with 
promoter methylation  [16] .

  piRNAs were originally identified as critical media-
tors of transposon control in  Drosophila  germ cells  [32] , 
and piRNAs were once assumed to be restricted to the 
germ line. However, an Argonaute-3-independent path-
way that involves PIWI proteins appears to function in 
somatic cells, suggesting that piRNAs may have distinct 
roles outside of the germ line  [33] . Few studies of mam-
malian piRNAs or proteins belonging to the PIWI fam-
ily have been reported to date.

  Four members of the PIWI-like family, PIWIL1, 
PIWIL2, PIWIL3 and PIWIL4, have been identified in 
humans. PIWIL4 is the only family member that exhibits 
a ubiquitous expression pattern, and the overexpression 
of PIWIL4 in HEK293T cells causes a substantial in-
crease in the dimethylation states of multiple H3K9 sites 
within the p16 Ink4a  gene  [34] . PIWIL4 may modify his-
tones by recruiting heterochromatin protein 1A (HP1a) 
to specific chromosomal sites. The N-terminal chromo 
domain of HP1 binds to the N-terminal tail of histone H3 
when it is dimethylated on lysine 9. Once bound to chro-
matin, the shadow domain of HP1 can recruit histone 
methyl transferases, which propagates the H3K9me2 
mark to allow heterochromatin spreading and transcrip-
tional repression  [35] . HP1a has been identified as a bind-
ing partner of PIWI proteins through the use of yeast 
two-hybrid screens, and the introduction of a mutation 
that disrupts the PIWI-HP1a interaction negatively af-
fects the epigenetic silencing abilities of PIWI proteins in 
 Drosophila  somatic cells  [36] . PIWIL4 protein is ex-
pressed in human CD56 +  peripheral blood NK cells  [16] , 
and an intricate two-way relationship exists between his-
tone modifications and DNA methylation. For example, 
natural antisense transcripts across the promoter of the 
p15 tumor suppressor gene trigger transcriptional gene 
silencing through heterochromatin formation and DNA 
methylation  [37] . However, further investigation is re-
quired to determine whether the 28-base RNA associated 
with KIR represses transcription through this mecha-
nism.

  The  KIR  Intron 2 Promoter 

 An additional layer of complexity with regard to 
transcription within the  KIR  locus was recently uncov-
ered with the discovery of a promoter within intron 2 of 
many  KIR  genes that produces a spliced antisense tran-
script complementary to exons 1 and 2 as well as the 
proximal promoter. The expression of this antisense 
transcript is restricted to cells at early progenitor stages 
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of NK cell development and is not found in mature NK 
cell lines or in CD56 +  peripheral blood NK cells. The 
 KIR3DL1  and  KIR2DL1  intron 2 promoters contain 
functional binding sites for the myeloid zinc finger 1 
transcription factor, which may be involved in initiating 
transcription from the intron 2 promoters in NK cell 
progenitors. Remarkably, when intron 2 antisense tran-
scripts and corresponding sense transcripts were co-
transfected into HEK293 cells, a 28-base small RNA de-
rived from the sense strand was identified that corre-
sponds to exon 2 of the  KIR3DL1  gene. The functional 
significance of this small RNA remains to be tested 
[Sharma et al., in prep.].

  An Integrated Model for  KIR  Transcriptional 

Regulation 

 The transcriptional regulation of  KIR  genes appears to 
be much more complex than previously appreciated, and 
there is still much to learn. We propose the following 
model based on our studies of the dynamics of intergen-
ic transcription during human NK cell development and 
the work of other investigators in the field: the initial reg-
ulatory events within the  KIR  locus likely occur early in 
development, perhaps at the embryonic stem cell stage 
when antisense transcripts generated from the intron 2 
promoter can first be detected. These transcripts may be 
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 Fig. 1. We propose that transcriptional regulation of the  KIR  locus is a dynamic process that occurs throughout 
human NK cell development. Shown here are the stages of human NK cell development as previously reported 
 [19]  and our proposed model for sequential transcriptional events within the  KIR  locus. ES cell = Embryonic 
stem cell; HSC = hematopoietic stem cell; iNK cells = immature NK cells.   
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