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Investigating population stratification and admixture
using eigenanalysis of dense genotypes

D Shriner
Center for Research on Genomics and Global Health, National Human Genome Research Institute, Bethesda, MD, USA

Principal components analysis of genetic data is used to avoid
inflation in type I error rates in association testing due to
population stratification by covariate adjustment using the top
eigenvectors and to estimate cluster or group membership
independent of self-reported or ethnic identities. Eigendecom-
position transforms correlated variables into an equal number
of uncorrelated variables. Numerous stopping rules have been
developed to identify which principal components should be
retained. Recent developments in random matrix theory have
led to a formal hypothesis test of the top eigenvalue, providing
another way to achieve dimension reduction. In this study, I
compare Velicer’s minimum average partial test to a test on
the basis of Tracy–Widom distribution as implemented in
EIGENSOFT, the most widely used implementation of
principal components analysis in genome-wide association
analysis. By computer simulation of vicariance on the basis of

coalescent theory, EIGENSOFT systematically overestimates
the number of significant principal components. Furthermore,
this overestimation is larger for samples of admixed individuals
than for samples of unadmixed individuals. Overestimating the
number of significant principal components can potentially lead
to a loss of power in association testing by adjusting for
unnecessary covariates and may lead to incorrect inferences
about group differentiation. Velicer’s minimum average partial
test is shown to have both smaller bias and smaller variance,
often with a mean squared error of 0, in estimating the number
of principal components to retain. Velicer’s minimum average
partial test is implemented in R code and is suitable
for genome-wide genotype data with or without population
labels.
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Introduction

An active area of research for the past decade has been
the exploration of evidence for population structure
from genome-wide genetic data. Accounting for popula-
tion structure is critical in association studies, in which
population stratification or cryptic relatedness can lead
to inferential errors. Inferences about population struc-
ture are also critical in understanding group differences
in studies of evolutionary and demographic histories.

Principal components analysis is widely used for
identifying population structure in genetic data. EIGEN-
SOFT implements principal components analysis for the
purposes of detecting and correcting for population
stratification in genome-wide association studies (Price
et al., 2006) and detecting structure in population genetic
studies (Patterson et al., 2006). EIGENSOFT is based on
principal components analysis of the normalized sample
covariance matrix, in which the normalization assumes
Hardy–Weinberg equilibrium (Price et al., 2006). Formal
hypothesis testing for significance of eigenvalues using
Tracy–Widom statistics permits a determination of the
number of significant principal components, or, equiva-

lently, the number of covariates necessary to control for
population stratification (Patterson et al., 2006).

Many stopping rules have been developed to deter-
mine the number of significant principal components (for
a comparative study of 20 stopping rules, see Peres-Neto
et al. (2005)). In this study, I explore Velicer’s minimum
average partial test (Velicer, 1976; O’Connor, 2000) as an
alternative to Tracy–Widom statistics. Rather than per-
forming formal hypothesis testing using an external
reference distribution and subjective significance thresh-
olds, Velicer’s minimum average partial test is based on
an objective minimization function of partial correlations
(Velicer, 1976).

The motivations of this study are twofold. One, in their
original description of EIGENSOFT, Patterson et al.
(2006) noted an overestimation of significant principal
components for admixed data. Two, analysis of an
empirical admixed African-American data set by EI-
GENSOFT yielded 16 significant principal components,
whereas the expectation for a two-way admixed sample
was one significant principal component. Herein, by
computer simulation, Velicer’s minimum average partial
test estimated the number of principal components to
retain with a smaller mean squared error than EIGEN-
SOFT, with EIGENSOFT’s estimates being biased up-
ward. Computer simulation also revealed that
EIGENSOFT yielded even more highly upwardly biased
estimates for admixed samples than for unadmixed
samples, whereas Velicer’s minimum average partial test
yielded a low mean squared error for both unadmixed
and admixed samples. For the empirical data, Velicer’s
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minimum average partial test indicated retention of only
one principal component, matching the expectation for a
two-way admixed sample.

Materials and methods

Simulations
All work was performed in R (R Development Core
Team, 2009). R code is available upon request.

Two populations: Under a coalescent model of
vicariance (McVean, 2009), suppose A and B represent
two populations that diverged at some time t in the past.
To mimic an admixed African-American population,
suppose A represents individuals of West African
ancestry and suppose B represents individuals of
Western European ancestry. A sample of 216 haplotypes
(108 diploid individuals, see real data analysis below)
from population A and 218 haplotypes (109 diploid
individuals) from population B were simulated with
divergence times t¼ {0, 0.001, 0.01, 0.1, 1.0} in units of
2Ne generations (Figure 1a). Each data set consisted of
10 000 unlinked sites, that is, each site had an indepen-
dently realized coalescent genealogy. As a result, there
was neither background linkage disequilibrium nor
extended linkage disequilibrium due to admixture.
Mutations were placed on a genealogy proportional to
branch lengths; the effective population size Ne canceled
out in this step. As a consequence of this mutational
scheme, sites were ascertained to be polymorphic, but
were not ascertained to be ancestrally informative.
Haplotypes were randomly paired within each popula-
tion to generate diploid individuals. These data sets were
used to test population stratification.

I extended this model of vicariance to include
admixture. A sample of 1018 admixed individuals was
generated instantaneously using parental populations
A and B. For each admixed individual, the average
genome-wide admixture proportion p was determined
by drawing a random deviate from the beta-distribution
b(10.18508,2.837815), yielding an expected genome-
wide admixture proportion �p ¼ 0:782 . The parameters
of the beta-distribution were chosen such that the first
two moments matched the first two moments of the
empirical distribution of individual admixture propor-
tions for the African-American data set described below
in the real data analysis subsection. For each site
independently, the individual was assigned the state of

a randomly selected haplotype from population A if a
random deviate from the uniform distribution U(0,1) pp
and assigned the state of a randomly selected haplotype
from population B otherwise. For each divergence time t,
1000 independent replicate data sets were generated.

Three populations: I also extended the model of
vicariance to three populations. In the same coalescent
framework, suppose A, B and C represent three ancestral
populations that diverged at two times in the past.
Populations B and C diverged t1¼ {0.0001, 0.001, 0.01,
0.1, 1.0} in units of 2Ne generations ago, and population
A diverged t2¼ 10t1 in units of 2Ne generations ago
(Figure 1b). Samples of 200 haplotypes from each of the
three populations were simulated. Each data set con-
sisted of 10 000 unlinked sites. Haplotypes were ran-
domly paired within each population to generate diploid
individuals. These data sets were used to test population
stratification.

A sample of 1018 admixed individuals was generated
instantaneously using parental populations A, B and C.
For each admixed individual, p1 was a random deviate
from b(0.8,7.2) and p2 was a random deviate from
b(12,12). For each site independently, the individual
was assigned the state of a randomly selected haplotype
from population A if a random deviate from U(0,1) pp1.
If the random uniform deviate 4p1, then the individual
was assigned the state of a randomly selected haplo-
type from population B if a random deviate from U(0,1)
pp2 and assigned the state of a randomly selected
haplotype from population C otherwise. The expected
genome-wide proportion of haplotypes from popula-
tions A, B and C were pA¼ p1¼ 0.10, pB¼ (1�p1)p2¼ 0.45
and pC¼ 1�p1�(1�p1)p2¼ 0.45, respectively, intended to
mimic African, European and Native American admix-
ture proportions in Latino populations (Martinez-Mar-
ignac et al., 2007; Price et al., 2007). For each divergence
time t1, 1000 independent replicate data sets were
generated.

EIGENSOFT
Let G be the M�N matrix of genotypes for i¼ 1 to M
SNPs and j¼ 1 to N individuals, with genotypes coded as
0, 1 or 2 copies of the minor allele. The rows of G were
centered by subtracting

mi ¼
XN

j¼1

gij

,
N

from each entry in row i (Price et al., 2006). Eigende-
composition was performed on the standardized
N�N sample covariance matrix. Significance of the
leading eigenvalue was determined by a formal hypo-
thesis test on the basis of the Tracy–Widom distribution
(Johnstone, 2001; Patterson et al., 2006). The rank of
the sample covariance matrix was one less than the
number of individuals due to centering. The number
of eigenvalues/eigenvectors equaled the rank of the
covariance matrix. Given orthogonality of eigenvectors,
P-values were Bonferroni corrected for the number
of eigenvectors. Thus, the significance level was
0.05/(N�1).

Velicer’s minimum average partial test
Let G be the M�N matrix of genotypes for i¼ 1 to M
SNPs and j¼ 1 to N individuals, with genotypes coded as

Figure 1 Genealogical representation of the coalescent simula-
tions. (a) Two populations with a single divergence event 2tNe

generations ago. (b) Three populations with the first divergence
event 2t1Ne generations ago and the second divergence event 2t2Ne

generations ago.
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0, 1 or 2 copies of the minor allele. First, center the rows
of G by subtracting

mi ¼
XN

j¼1

gij

,
N

from each entry in row i (Price et al., 2006). Next, compute
the N�N sample correlation matrix R, in which the
elements are Pearson product-moment correlation coeffi-
cients. Let R(m)* be the N�N matrix of partial correlations
after the first m principal components have been
partialed out. Let rkl* be the element in the kth row and
lth column of R(m)* . Velicer (1976) proposed the summary

statistic fm ¼
P

k6¼l

P ðr�
kl
Þ2

NðN�1Þ. The summary statistic fm is

the average of the squared partial correlations after the
first m components are partialed out, with m¼ 0 to N�1
(see the Appendix for computer code) (Velicer, 1976). The
stopping point is the value of m for which fm is minimum
(Velicer, 1976).

Real data analysis
To illustrate application to real world data, the number of
significant principal components was estimated using
both EIGENSOFT and Velicer’s minimum average partial
test for a previously described sample of 1018 unrelated
African Americans, genotyped as part of the Howard
University Family Study (Adeyemo et al., 2009). The
808 465 autosomal SNPs that passed quality control were
pruned for linkage disequilibrium at r2

X0.3 using
PLINK, version 1.06 (Purcell et al., 2007). Of the SNPs
that remained after pruning, 10 000 were randomly
selected. HapMap phase III CEU and YRI samples were
used to represent the presumed parental populations
(The International HapMap 3 Consortium, 2010). After
quality control, 108 YRI and 109 CEU individuals
remained (Chen et al., 2010).

Results

Simulations
For the simulation of two populations separated by one
divergence event (Figure 1a), the expected number of
significant principal components was one if the diver-
gence event occurred in the distant past, or zero if the
divergence event occurred in the recent past (Figure 2).
These expectations also hold for analysis of admixed
individuals, because the expected allele frequencies
for an admixed individual are linear mixes of the
parental allele frequencies (Patterson et al., 2006; McVean,
2009). Consequently, admixed individuals will have
coordinates along the axis defined by the two parental
populations. This behavior holds regardless of whether
the parental populations are included in the projection,
which is important because sizes of proxy or reference
samples are typically much smaller than sizes of
admixed samples, and unequal sample sizes can severely
distort the projection (Novembre et al., 2008; McVean,
2009).

EIGENSOFT with Tracy–Widom statistics consistently
overestimated the number of significant principal com-
ponents in analysis of the two populations and
performed worse in analysis of admixed individuals
(Table 1). Velicer’s minimum average partial test showed
neither bias nor variance (Table 1). Both methods were

more sensitive to lower levels of divergence in analysis of
stratified populations than in the analysis of admixed
individuals, despite the former analysis consisting of
102 individuals and the latter analysis consisting
of 103 individuals (Table 1).

For the simulation of three populations separated by
two divergence events (Figure 1b), the expected number
of significant principal components was 0, 1 or 2,
depending on the time since the divergence events
(Figure 3). EIGENSOFT with Tracy–Widom statistics
showed a larger upward bias for analysis of three
populations (Table 2) than for analysis of two popula-
tions (Table 1), and again performed worse in analysis of
admixed individuals (Table 2). Velicer’s minimum
average partial test yielded no to very small biases and
variances in both the analysis of three populations and
the analysis of admixed individuals.

Real data analysis
In analysis of 1018 unrelated African Americans,
Adeyemo et al. (2009) retained two principal components
on the basis of visual inspection of the scree plot (that is,
eigenvalues sorted in descending order as a function of
the eigenvalue index) from EIGENSOFT. Using Tracy–
Widom statistics, EIGENSOFT claimed 16 significant
principal components (Figure 4). Using Velicer’s mini-
mum average partial test, only one principal component
should be retained (Figure 5), the minimal number of
principal components necessary to explain admixture
between two ancestral parental populations in the
absence of residual substructure.

Discussion

Detecting population structure is important in both
medical genetics and population genetics. EIGENSOFT
is a widely used implementation of principal compo-
nents analysis supplemented with statistics for formal
hypothesis testing on the basis of the expected distribu-
tion of the largest eigenvalue (Johnstone, 2001; Patterson
et al., 2006). In this study, I compared the test based on
the Tracy–Widom distribution in EIGENSOFT to Veli-
cer’s minimum average partial test (Velicer, 1976) for
determining the number of principal components to
retain. Computer simulation under a coalescent model of
vicariance (that is, divergence with no subsequent gene
flow) revealed three trends regarding the estimation of
the number of principal components to retain. One,
EIGENSOFT increasingly overestimated the number of
significant principal components for increasingly distant
divergence events in unadmixed samples. Two, EIGEN-
SOFT overestimated the number of significant principal
components even more for samples of admixed indivi-
duals than for samples of unadmixed individuals. Three,
EIGENSOFT increasingly overestimated the number
of significant principal components as the number of
populations increased. In contrast, Velicer’s minimum
average partial test showed almost no tendency
to overestimate the number of principal components to
retain in any of these scenarios.

Velicer’s minimum average partial test is one of many
possible stopping rules for determining the number of
principal components to retain (Peres-Neto et al., 2005).
Another possibility is sparse factor analysis (Engelhardt
and Stephens, 2010), in which constraints encourage
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Figure 2 Representative projections of simulated data for two populations. (a–c) The divergence event between populations A (red circles)
and B (blue circles) occurred 0 generations ago. (d–f) The divergence event occurred 2Ne generations ago. (a, d) Analysis of populations A
and B. (b, e) Analysis of admixed individuals (gray circles) with average individual admixture proportions 78.2% population A and 21.8%
population B. (c, f) Combined analysis of admixed individuals, population A and population B.

Table 1 Number of significant principal components in the simulation of two populations

ta FST EIGENSOFT Minimum average partial test

Population stratification Admixture Population stratification Admixture

Mean (s.d.) Mean (s.d.) Range Mean (s.d.) Range Mean (s.d.) Range Mean (s.d.) Range

1 0.115 (0.003) 1.37 (0.62) (1, 4) 3.23 (1.19) (1, 7) 1.00 (0.00) (1, 1) 1.00 (0.00) (1, 1)
0.1 0.025 (0.001) 1.30 (0.54) (1, 4) 2.42 (1.28) (1, 7) 1.00 (0.00) (1, 1) 1.00 (0.00) (1, 1)
0.01 0.006 (0.000) 1.08 (0.28) (1, 3) 0.12 (0.32) (0, 1) 1.00 (0.00) (1, 1) 0.00 (0.00) (0, 0)
0.001 0.003 (0.000) 0.11 (0.33) (0, 2) 0.01 (0.07) (0, 1) 0.00 (0.00) (0, 0) 0.00 (0.00) (0, 0)
0 NA 0.06 (0.24) (0, 1) 0.00 (0.03) (0, 1) 0.00 (0.00) (0, 0) 0.00 (0.00) (0, 0)

Abbreviation: NA, not applicable.
aThe time since divergence is given in units of 2Ne generations.

Figure 3 Representative projections of simulated data for three populations. (a–c) The divergence event between populations B (blue circles)
and C (black circles) occurred 0.0002Ne generations ago and the divergence of population A (red circles) occurred 0.002Ne generations ago.
(d–f) The divergence event between populations B and C occurred 2Ne generations ago and the divergence of population A occurred 20Ne

generations ago. (a, d) Analysis of populations A, B and C. (b, e) Analysis of admixed individuals (gray circles) with average individual
admixture proportions 10% population A, 45% population B and 45% population C. (c, f) Combined analysis of admixed individuals,
population A, population B and population C.
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loadings to shrink toward zero. Whereas sparse factor
analysis involves numerical optimization, which is
stochastic, and can therefore yield different results from
run to run, Velicer’s minimum average partial test is
deterministic and need only be run once. Also, sparse
factor analysis does not provide a rule for determining
the number of principal components to retain, whereas
both Velicer’s minimum average partial test and EIGEN-
SOFT implement stopping rules.

EIGENSOFT was designed to work with genome-wide
genotype data while accounting for linkage disequili-
brium. The model of admixture used in the simulations
assumes free recombination. Furthermore, the model
assumes that haplotypes in the admixed individuals are
inherited identical by descent from the parental popula-
tions, regardless of the number of generations since
admixture. Taken together, these modeling assumptions
eliminate the possibility that the observed overestima-

Table 2 Number of significant principal components in the simulation of three populations

t1
a t2

a FST (AC) FST (BC) EIGENSOFT Minimum average partial test

Population stratification Admixture Population stratification Admixture

Mean (s.d.) Mean (s.d.) Mean (s.d.) Range Mean (s.d.) Range Mean (s.d.) Range Mean (s.d.) Range

1 10 0.341 (0.006) 0.218 (0.005) 4.39 (1.25) (2, 8) 15.64 (2.69) (8, 27) 2.01 (0.07) (2, 3) 2.00 (0.00) (2, 2)
0.1 1 0.050 (0.001) 0.029 (0.001) 2.90 (0.84) (2, 6) 6.23 (1.72) (2, 12) 2.00 (0.05) (2, 3) 2.00 (0.00) (2, 2)
0.01 0.1 0.010 (0.000) 0.007 (0.000) 3.36 (0.96) (2, 7) 1.98 (0.91) (1, 5) 2.01 (0.09) (2, 3) 0.56 (0.50) (0, 1)
0.001 0.01 0.005 (0.000) 0.003 (0.000) 1.51 (0.66) (1, 5) 0.27 (0.51) (0, 3) 1.00 (0.03) (1, 2) 0.00 (0.00) (0, 0)
0.0001 0.001 0.003 (0.000) 0.003 (0.000) 0.28 (0.49) (0, 2) 0.00 (0.06) (0, 1) 0.00 (0.00) (0, 0) 0.00 (0.00) (0, 0)

aTimes since divergence are given in units of 2Ne generations.

Figure 4 Top 16 principal components for the Howard University Family Study data using EIGENSOFT. All 16 principal components are
statistically significant according to Tracy–Widom statistics. The bottom right panel shows the scree plot.

Eigenanalysis of genome-wide genotypes
D Shriner

417

Heredity



tion of significant principal components by EIGENSOFT
resulted from a failure to properly account for linkage
disequilibrium. My procedure works well with 10 000
unlinked random markers (Gao and Martin, 2009;
McVean, 2009), so that researchers can afford to aggres-
sively prune genome-wide data sets to obtain a set of
markers in linkage equilibrium and not have to account
further for linkage disequilibrium (either background
linkage disequilibrium or extended linkage disequili-
brium due to admixture, both of which can induce
spurious clustering (Falush et al., 2003; Kaeuffer et al.,
2007)). At the same time, this number of markers is much
greater than the number of individuals in the vast
majority of genome-wide studies, such that sensitivity to
detect population structure is limited by sample size
(Patterson et al., 2006).

Unequal sample sizes can severely distort projections
in principal component analysis (Novembre et al., 2008;
McVean, 2009). This is a problem for analysis of admixed
individuals if smaller reference samples of parental
populations are included in the data set. On the one
hand, this problem can be circumvented because analysis
of admixed individuals does not require reference
samples of parental populations (see Figures 2e and
3e). On the other hand, my procedure is less sensitive for
detecting admixture without reference samples of par-
ental populations than it is for detecting population
stratification in samples of unadmixed individuals.

EIGENSOFT is known to overestimate the number of
significant principal components for samples of admixed
individuals (Patterson et al., 2006). This overestimation is
not solely due to the use of ancestrally informative
markers nor to extended linkage disequilibrium induced
by admixture as previously suggested (Patterson et al.,
2006), since a similar overestimation was observed in this
study using random, unlinked markers. There are three
major differences between EIGENSOFT and my proce-
dure that might explain this problem. One, EIGENSOFT
standardizes the sample covariance matrix, estimated
from the genotype matrix, using the binomial variance of
estimated allele frequencies, whereas Velicer’s minimum
average partial test uses the correlation matrix estimated
from the genotype matrix. Thus, EIGENSOFT assumes
Hardy–Weinberg equilibrium whereas my procedure
does not. The assumption of Hardy–Weinberg equili-
brium does not hold under either population stratifica-
tion or admixture. Violation of Hardy–Weinberg
equilibrium may partially explain why EIGENSOFT
systematically overestimates the number of significant
principal components.

Two, EIGENSOFT and my procedure use the results of
eigendecomposition differently. EIGENSOFT performs
formal hypothesis testing to determine the number
of significant principal components by testing each
eigenvalue using approximations to an external
reference distribution, viz. the Tracy–Widom distribution

Figure 5 Top 16 principal components for the Howard University Family Study data using Velicer’s minimum average partial test. Only the
top principal component is statistically significant. The bottom right panel shows the scree plot.
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(Patterson et al., 2006). When assessing a given eigenvalue
for significance, EIGENSOFT discards all leading eigenva-
lues; consequently, EIGENSOFT systematically overesti-
mates the proportion of variance explained for every
eigenvalue after the first one. In contrast, Velicer’s
minimum average partial test does not rely on any external
reference distribution. Rather, it determines the number of
principal components to retain using an objective mini-
mization function, in which the stopping point is on the
basis of data-dependent estimation of systematic noise
(Velicer, 1976). Also, Velicer’s minimum average partial test
is based on partialing out the cumulative effect of all
leading eigenvalues and eigenvectors from the original
correlation matrix when it assesses a given eigenvalue and
eigenvector for retention.

Three, EIGENSOFT estimates the effective number of
markers on the basis of the empirical distribution of
eigenvalues (Patterson et al., 2006). This value is used as a
plug-in when estimating the mean and s.d. for the Tracy–
Widom test statistic (Patterson et al., 2006). This moment
estimator was derived under the null hypothesis of no
structure (Patterson et al., 2006); its validity under the
alternative hypothesis is unknown. These three differ-
ences may contribute to EIGENSOFT’s overestimation of
significance. Regardless, the principal components that
are retained by Velicer’s minimum average test can be
used in the same way as those deemed significant by
EIGENSOFT, for example, as covariates in association
testing (Price et al., 2006).
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Appendix

Let dat be the M�N matrix of genotypes for i¼ 1 to M SNPs and j¼ 1 to N individuals, with genotypes coded as 0, 1 or
2 copies of the minor allele. The following R function returns the number of principal components that minimizes the
average squared partial correlation (O’Connor, 2000; R Development Core Team, 2009).

maptest o- function(dat) {
mu o- apply(dat, 1, mean, na.rm¼TRUE)
dat o- dat - mu
dat2 o- cor(dat, use¼ ‘‘complete.obs’’)
a o- eigen(dat2)
a$values[a$valueso0] o- 0
b o- diag(a$values, nrow¼ length(a$values))
loadings o- a$vectors %*% sqrt(b)
partial o- function(x) {

c o- loadings[,1:x]
partcov o- dat2 - (c %*% t(c))
d o- diag(partcov)

if (any(is.element(NaN,d), is.element(0,d), length(d[do0])!¼ 0)) {
map o- 1

} else {
d o- 1/(sqrt(d))
e o- diag(d, nrow¼ length(d))
pr o- e %*% partcov %*% e

map o- (sum(pr^2) - ncol(dat2))/(ncol(dat2) * (ncol(dat2) - 1))
}
return(map)

}
fm o- sapply(1:(ncol(dat2) - 1), partial)

fm o- c((sum(dat2^2) - ncol(dat2))/(ncol(dat2) * (ncol(dat2) - 1)), fm)
return(max(1, which.min(fm) - 1))

}
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