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Abstract

The integrated analysis of omics datasets covering different levels of molecular organization has become a central
task of systems biology. We investigated the transcriptional and metabolic response of yeast exposed to increased
(378C) and lowered (108C) temperatures relative to optimal reference conditions (288C) in the context of known
metabolic pathways. Pairwise metabolite correlation levels were found to carry more pathway-related informa-
tion and to extend to farther distances within the metabolic pathway network than associated transcript level
correlations. Metabolites were detected to correlate stronger to their cognate transcripts (metabolite is reactant of
the enzyme encoded by the transcript) than to more remote or randomly chosen transcripts reflecting their close
metabolic relationship. We observed a pronounced temporal hierarchy between metabolic and transcriptional
molecular responses under heat and cold stress. Changes of metabolites were most significantly correlated to
transcripts encoding metabolic enzymes, when metabolites were considered leading in time-lagged correlation
analyses. By applying the concept of Granger causality, we detected directed relationships between metabolites
and their cognate transcripts. When interpreted as substrate-to-product directions, most of these directed Granger
causality pairs agreed with the KEGG-annotated preferred reaction direction. Thus, the introduced Granger cau-
sality approach may prove useful for determining the preferred direction of metabolic reactions in cellular sys-
tems. The metabolites glutamic acid and serine were identified as central causative metabolites influencing
transcript levels at later time points. Selected examples are presented illustrating the intertwined relationships
between metabolites and transcripts in the yeast temperature stress adaptation process.

Introduction

Driven by technological advances and falling costs,
the parallel profiling of cellular systems responding to

external perturbations across multiple levels of molecular
organization including transcriptomics, proteomics, and
metabolomics is increasingly becoming common practice. The
resulting multisystems-level datasets call for an integrated
analysis, which has emerged as a central task of systems
biology (Herrgard et al., 2006; Zhu et al., 2008). A natural
framework for a meaningful integration of the different sys-
tems levels is provided by the inherent relationships between
the different molecular domains as dictated by the underlying
metabolic, transcriptional, and regulatory pathways. When
time-resolved information on the dynamics of molecular
processes is available by way of time-series data, this frame-

work should also be ideally suited for the investigation of
temporal hierarchies with the aim to better unravel cause–
effect relationships via the temporal order of molecular events
and to identify critical events in the response cascade.

Omics-profiling data sets have also been investigated to
discern this very framework of metabolic, transcriptional,
regulatory pathways, or networks in general based on the
data themselves, in particular based on large-scale transcript
expression profile data ever since technologies have become
available to measure transcription levels of many genes and
even entire genomes in parallel (D’Haeseleer et al., 2000; Zhu
et al., 2008). Pairwise linear correlation analysis as a means
to quantify relationships between molecules has been fre-
quently used to infer functional as well as signaling and
metabolic pathway relationships between genes and metabo-
lites. Intuitively, genes or metabolites participating in the
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same metabolic pathway and separated by only few reaction
steps can be expected to correlate. Indeed, when studying the
dynamics of cellular metabolic networks, Kharchenko and
coworkers (2005) reported monotonously decreasing positive
correlations of expression levels between metabolic genes
with increasing metabolic pathway distance with most pro-
nounced correlations observed between genes, whose enzyme
protein products catalyze successive metabolic reactions, such
as correlations between genes Ga and Gb involved in the re-
action scheme Ga¼>M¼>Gb, where M is the metabolite
product of the first and the substrate of the second reaction.
Negative correlations were found strongest at intermediate
pathway distances. Furthermore, the authors reported sys-
tematic trends of the magnitude of correlated expression
levels between genes and the topological associations be-
tween them in metabolic pathway maps. Thus, pairwise cor-
relation-based deduction of pathways from data appears
supported by transcriptomics data on known pathways.

Advances in analytical technologies to quantify metabolites
in biological samples have led to an increased use of metab-
olite profiling to characterize biological processes (Takahashi
et al., 2008) and have prompted attempts to infer metabolic
pathways directly from metabolite data as well (Weckwerth
and Fiehn, 2002). In a seminal, pioneering study, Arkin
and coworkers (Arkin et al., 1997) introduced the correla-
tion metric construction (CMC) method to infer relevant
interactions between glycolytic metabolites based on time-
lagged correlation functions and demonstrated the princi-
pal feasibility of reverse engineering metabolic pathways and
associated relevant interactions between metabolites from
metabolite level data.

Previous studies on the subjects of pathway-centric data
analysis and reconstruction of biochemical networks from
molecular profiling data sets have mostly focused on indi-
vidual domains of molecular organization, such as transcript
level data or metabolite level data. However, it is obvious that
all levels of molecular organization are tightly interconnected
with changes in transcript levels causing subsequent changes
of protein and metabolic enzyme followed by changes in
metabolite levels (Yeang and Vingron, 2006). Other causal
relationships are equally conceivable; for example, changes in
metabolite levels may trigger responses at the transcript level
or may induce modification of the enzymatic properties of
enzymes via protein phosphorylation pathways or other
molecular processes. Thus, an integrated approach including
several levels of molecular organizations in a time-resolved
fashion appears indicated.

In an attempt to obtain an integral understanding of tran-
scriptional and metabolic changes in response to a metabolic
perturbation of yeast cells exposed to glucose limitation and
readdition, Kresnowati and coworkers (2006) reported a tight
interrelation between both organizational levels. Focusing on
the fast responses within the first 5min after readdition of
glucose, significant responses were first evident within sec-
onds for metabolites followed by transcriptional changes
operating rather on a minute time scale. Furthermore, the
authors showed that changes of specific metabolites were met
by corresponding changes of transcript levels. For example,
decreased adenosine nucleotide (AXP) pool levels were found
to be associated with upregulation of AXP synthesis genes.

In this study, we analyzed transcriptomics and metabo-
lomics time-series data obtained from yeast responding to

heat and cold temperature stress (Strassburg et al., 2010).
Specifically, we wished to assess the information contents of
the two different molecular systems levels with regard to
pathway relationship inference. Based on the time course data
for both transcripts and metabolites in response to an external
perturbation, our goal was to investigate the temporal hier-
archy and mutual relationships between the different levels of
molecular organization with the objective to possibly reveal
causal functional relationships. By employing time-lagged
correlation analyses and analyzing the results in the context
of metabolic pathways, we demonstrate that, indeed, such
a temporal response sequence can be discerned. Under the
gradual temperature stress regimes applied in the experiment
analyzed here, changes of metabolite levels were found to
generally precede changes of transcript levels of enzymes
linked to the corresponding metabolite via substrate or prod-
uct relationships. Furthermore, by applying the concept of
Granger causality, directed metabolite-transcript temporal
associations indicative of potential cause–effect relationships
may become identifiable. Granger causality was shown in the
past to yield meaningful directed relationships between
transcripts when applied to gene expression time series (Lo-
zano et al., 2009; Mukhopadhyay and Chatterjee, 2007). Here,
we aim to identify candidate pairs for directed cause–effect
relationships across different levels of molecular organization
and to test whether these directed relationships relate to the
preferred directions of metabolic reactions as currently un-
derstood. We illustrate our findings by discussing selected
specific examples.

Materials and Methods

Transcript expression and metabolite profiling data

Transcript and metabolite profiling data were taken from a
series of temperature-stress response experiments in Sacchar-
omyces cerevisiae exposed to gradually introduced heat (378C)
or cold (108C) conditions relative to optimal-growth control
conditions (288C) (Strassburg et al., 2010). Time series data
covering 7 time points (0 min, 15 min, 30 min, 1 h, 2 h, 4 h, and
8 h) corresponding to the three different conditions (heat,
cold, and control) were available for analysis. The 24-h time
point was not considered in the analysis as it was determined
to correspond to a different growth phase and not associated
directly with the immediate stress response (Strassburg et al.,
2010).

The time-series datasets comprised information on 5,716
Saccharomyces cerevisiae transcripts present on the Affymetrix
Yeast 2.0 microarray, and a total of 50 metabolites of which
33 could be annotated as compounds associated primarily
with central metabolism. Thirty-six metabolites were detected
under all experimental conditions (26 of those annotated). A
total of 42 metabolites were detected in the heat stress (28
annotated), and 44 were found in cold stressed samples
(31 annotated) (Strassburg et al., 2010). In all analyses re-
quiring metabolic pathway information (see below) and thus
a mapping of metabolites to metabolic pathway maps, all
nonannotated metabolites have been ignored.

Metabolite level quantification was done using the in vivo
13C stable isotope labeling approach. Detailed information on
metabolite data generation and processing can be found in
Strassburg et al. (2010). The Affymetrix probeset data as
provided in CEL file format and was subjected to quantile
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normalization using the ‘‘quantile probeset normalization’’
function of the affyPLM Bioconductor package (Bolstad et al.,
2005). Transcript and metabolite level data sets were nor-
malized to the respective 288C control measurements at each
time point and further normalized to t0. To render the obtained
ratios symmetric with regard to up- and downregulation, all
ratios were used as log2-transformed values. Transcript data
are available from the GEO repository (GEO, n.d.) under
ID GSE15352. All metabolite data can be obtained from
http:==bioinformatics.mpimp-golm.mpg.de=resources=files=
supplementary-material=omics=.

Metabolic pathway networks

Metabolic pathway maps were constructed as described in
Durek and Walther (2008). The enzyme metabolic network
used in this study corresponded to the network referred to as
the ‘‘mapEIN’’ (Enzyme Interaction Networks derived from
pathway maps) in Durek and Walther (2008). The mapEIN
was derived from curated KEGG (Kanehisa et al., 2002)
pathway maps. Relations between enzymes were extracted
directly from the xml-description files of the pathway maps
from the KEGG database, thereby reflecting the comprehen-
sive biological knowledge and understanding of enzymatic
relationships and avoiding artificial, empirically not observ-
able connections. Two enzyme nodes in this network were
considered connected if both are associated with at least one
common metabolite node in the map. The mapEIN was used
to relate transcript levels to metabolic pathway maps via
mapping of Affymetrix probe IDs to yeast genes and their
annotated enzyme-catalyzed reactions according to the EC
number system.

A metabolite-centric pathway network (metNET) was
constructed utilizing the reaction lists from KEGG. Two
metabolites were considered connected if both are related
by at least one reaction as annotated by the atom tracing
based algorithm ‘‘RPAIRS’’ in KEGG (Kotera et al., 2004).
Ubiquitously occurring metabolites acting as so-called cur-
rency metabolites, such as ATP, water and others, were
removed from the metNET (Durek and Walther, 2008).
Metabolites were mapped onto the metNET via their KEGG
identifiers.

Directions of metabolic reactions were taken as indicated
by the reaction arrows in the respective KEGG metabolic
pathway maps.

Network distance

In the investigated molecular networks, the network dis-
tance between two nodes was defined as the shortest path
(number of network nodes traversed) between them in
the given network graph. Distances between enzymes in the
enzyme-centric pathway network (mapEIN) are referred to as
‘‘enzyme pathway distances,’’ and ‘‘met–met pathway dis-
tances’’ for distances in the metabolites centered metabolic
pathway networks (metNET).

Correlation analysis

Computed correlation coefficients were defined as the
Pearson correlation coefficient of pairwise gene expression
levels (transcript data) or metabolite pools size changes (cor-
rected mass isotopomer ratios) across all considered time
points (temporal profiles).

Time-lagged correlations

Two time series data sets, for example, the temporal profile
of a particular metabolite, M, and a particular transcript, T,
can be correlated concurrently, thus pairing up all available
time points, t, directly to compute the pairwise Pearson cor-
relation coefficient between all [M(t), T(t)]. Then, high corre-
lation would be an indication of coordinated and concurrent
behavior given the temporal resolution of the experiment.
However, it is possible that one of the two variables precedes
the other and may cause a response in the respective other. If
the temporal resolution is appropriate, such behavior can be
tested for by applying time-lagged correlations. Instead of
pairing up data for the same time point, profile data are paired
up with a time-lag or time-delay, such that, for example, a
metabolite is correlated with a transcript, but at a later time
point, tþ i, forming [M(t), T(tþ i)] pairs or vice versa. It is
clear, that upon introducing a time lag, the available time
series are shortened as the (tþ i)th data point is not avail-
able at the end of the time series and no valid data pair can be
formed. The larger the time delay, the fewer the remaining
pairs. As a consequence, the statistical power decreases and a
bias toward increased correlation values is introduced caused
by the lower numbers of available data pairs. Because our
available time series consisted of seven data points only, we
restricted our analyses on a time shift of one time point only,
i¼ 1, that is, transcript or metabolite data were associated
with the respective other variable (metabolite or transcript) at
the next, successive time point. All three relative time shifts
were tested, metabolites preceding [M(t), T(tþ 1) pairings] or
trailing [M(tþ 1), T pairings] transcripts, or their concurrent
correlation [M(t), T(t) pairings, no time lag].

Granger causality

Bivariate Granger causality testing (Granger, 1980) was
applied to detect significant and directed (cause–effect) asso-
ciations between metabolites and enzymes. Granger causality
tests whether past values of a time series associated with a
variable (e.g., a particular metabolite) contain information
that significantly improve the prediction of a future value of
another variable (e.g., expression level of a particular tran-
script) above and beyond the past values for this variable
alone that is, past values of the transcript. Significance is es-
tablished by applying a series of F-tests on the crossterm co-
efficients for a linear regression model [Eq. (1)] and computing
associated p-values.

T(t)¼
Xd

i¼1

AT, iT(t� i)þ
Xd

i¼1

AMT, iM(t� i)þET(t);

M(t)¼
Xd

i¼1

ATM, iT(t� i)þ
Xd

i¼1

AM, iM(t� i)þEM(t) (1)

where T=M(t) denote transcript=metabolite levels at time
point t, the matrix A contains the linear regression coefficients,
E the resulting residual error, and d is the maximal time lag
(number of considered past values in the time series). In the
model, if either one of the crossterm coefficients (AMT or ATM)
is significantly different from zero as tested by the F-test, past
values of this variable improve the prediction of future values
of the respective other variable. The variable is said to be
Granger-caused by the respective other.
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Granger causality computations were performed using the
MSBVAR-R package (Brandt, n.d.). The applied time lag was
set to d¼ 1, that is, only the immediately preceding data point
was considered for the prediction of the value at the next time
point. Choosing larger lag values was impossible as no mean-
ingful statistical computation would have been possible then
as dictated by the number of available time series data points.

Results

First, we examine the concurrent pairwise correlation be-
tween transcripts and metabolites as a function of metabolic
pathway distance between them, that is, without introducing
a time lag. Specifically, we wish to investigate which of the two
levels of molecular organization bears more pathway-relevant
information, as this may inform on their respective utility
for pathway reconstruction efforts. Subsequently, we probe
pairwise correlation levels between transcripts and metabo-
lites with an introduced time lag between them to reveal the
temporal order in the molecular response patterns such that
one of the two systems levels is considered leading or trailing,
or occurring synchronously. Finally, we apply the concept of
Granger causality as a more sensitive alternative to straight-
forward time-lagged correlation measures to identify potential
cause–effect pairs between metabolites and transcripts.

Pairwise correlation as a function of metabolic
pathway distance

Intuitively, the magnitude of pairwise correlations between
enzyme transcript levels as well as metabolites can be ex-

pected to decrease with increasing metabolic pathway dis-
tance (Kharchenko et al., 2005). Both transcript–transcript
(Fig. 1A) and metabolite–metabolite correlations (Fig. 1B)
follow this expected trend. At close pathway distances, a
significant net positive correlation coefficient was observed.
Thus, pairwise correlations at close pathway distances are
dominated by positive correlations. As expected, at larger dis-
tances, the net-pairwise correlation between enzyme tran-
script levels and metabolites approaches zero. Importantly,
the magnitude of net-positive correlations at short pathway
distances is significantly larger for metabolites than for tran-
script levels. Although statistically significant, net-correlation
levels reached at most r¼ 0.15 for pairwise transcript data,
whereas mean correlation levels were as high as r¼ 0.8 for
heat and r¼ 0.5 for cold stress data, when metabolites were
correlated in a pairwise fashion. With increasing pathway
distance, pairwise correlation levels approch zero for both
transcripts and metabolites. However, for metabolites, sig-
nificant correlations extend further into the network. It should
be borne in mind that, for correlation to be an informative
measure of pathway proximity, decreasing correlation
strengths at increased distance is as necessary as significant
correlations at short distances. Thus, if correlations are con-
sidered as a means to deduce pathway relationships from
molecular profile data, metabolites were found to carry more
relevant information than the associated enzyme transcript
levels.

The reported mean correlation levels may obscure any
separate trends for positive and negative correlation levels
(Kharchenko et al., 2005). When separated into the individual

FIG. 1. Transcript–transcript level (A) and metabolite–metabolite level correlations (B) as a function of metabolic pathway
distance of (A) the enzymes encoded by correlated transcripts and (B) the metabolites within the metabolic pathway network
for the heat (red) and cold stress (blue) time series, respectively. Shown are mean Pearson correlation coefficients and
associated standard errors of the mean. Pathway distances (reaction steps or nodes traversed in the pathway map) were
computed from KEGG pathway maps (see Materials and Methods).
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components, positive pairwise transcript correlations are mo-
notonously decreasing with increasing metabolic pathway
distance. By contrast, correlation is increased at intermediate
pathway distances, when only negative correlations are con-
sidered (Fig. 2). Furthermore, both positive and negative
correlation levels are larger for the cold series data than the
heat transcript time series data. In comparison to mean posi-
tive or negative correlations of shuffled data, that is, pairwise
correlations using the same values but with individually
randomized order as a Null-model reference, all temperature
induced correlations were found to be significantly above
random levels, suggesting the presence of a residual overall
pairwise correlation between transcripts even at larger path-
way distances.

A similar picture emerges from the analysis of metabolite
data (Fig. 3). Positive correlations were observed to decrease
with increasing pathway distance and reach random levels at
larger distances, while negative correlations remain at rather
constant levels near random correlation levels. In the heat as
well as in the cold treatment series, significantly fewer pair-
wise negative than positive correlations were observed (74
negative correlations vs. 787 positive correlations), whereas
in the cold series, this ratio was 207 versus 739. Here, all
metabolite pairs were considered, including pairs with—
due to the presence of as of yet unidentified metabolites—
undetermined metabolic pathway distance. In particular, at
pathway distances of 1, that is, direct metabolic neighbors,
only very few negative correlations were detected. The most
significant negative correlations were observed between the
amino acids leucine and glutamate during cold treatment and

between the organic acids succinate and fumarate during heat
stress.

Metabolites associated via substrate–product relationships
can be negatively correlated if the activity of the catalyzing
enzyme is downregulated. We investigated the case of the
negative leucine–glutamate correlation according to this hy-
pothesis. Branched chain amino acid transaminases (BCAAT)
are the key enzymes of L-leucine degradation and biosyn-
thesis. The genome of Saccharomyces cerevisiae contains two
highly homologous isoforms, BAT1 and BAT2. BAT1 encodes
the isoform located in the mitochondrial matrix, the en-
zyme of BAT2 is found in the cytosol. Previous studies indi-
cated that the L-leucine transamination predominently takes
place in the cytosol (Schoondermark-Stolk et al., 2005). This
agrees with the level of BAT2 transcript and of the involved
metabolites that were measured in this study. The enzyme
encoded by the BAT2 gene catalyzes the transfer-reaction: a-
ketoisocaproateþL-glutamate¼ 2-oxoglutarateþL-leucine.
During the low-temperature treatment condition, the tran-
script level of BAT2 decreases. Accordingly, although the
level of leucine decreases, glutamate accumulates over the
period of stress treatment (Fig. 4A). The second significant
correlation was detected between succinate and fumarate
under heat stress. Yeast fumarate reductase irreversibly ca-
talyses the reduction of fumarate to succinate in the reaction:
succinateþ FAD¼ fumarateþ FADH2. There are two en-
zymes encoded in the yeast genome, a mitochondrial enzyme
(OSM1) and a cytoplasmic isoform (FRDS1). In contrast to
membrane bound fumarate reductase in Escherichia coli and
other organisms, the isoforms found in yeast are soluble and

FIG. 2. Transcript–transcript level correlation as a function of metabolic pathway distance for the heat and cold stress time
series, respectively, divided into a positive and negative correlation set. Dashed lines correspond to mean correlation values
for randomized (shuffled) data. Shown are mean Pearson correlation coefficients and associated standard errors of the mean.
(B) and (C) show zoomed-in views of the mean positive and negative correlation data depicted in A, respectively.
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bind the electron donors FADH2 or FMNH2 noncovalently
(Enomoto et al., 1996; Muratsubaki and Enomoto, 1998).
Fumarate reductase is known to be highly expressed during
fermentative growth. It was found that producing succinate
via reduction of fumarate in the TCA cycle is the only way to
balance the FAD=FADH2 pool during fermentative growth of
yeast. The cytoplasmic form accounts for the largest contri-
bution to the total enzyme activity and is considered to be the
main isoform to regenerate the flavin cofactors (Camarasa
et al., 2007). In the experiments analyzed here, after 2 h of heat
treatment, the expression level of FRDS1 decreased signifi-
cantly followed by an immediate decrease of succinate and
increased levels of fumarate (Fig. 4B). These examples illus-
trate how correlation analysis of neighboring metabolites and
comparison to gene expression can be used to infer possible
sites of regulation.

Temporal hierarchy of the metabolic
and transcriptomic response to changing temperature

The available time course data for two distant yet intimately
connected levels of molecular organization—metabolites
and transcripts encoding enzymes that act on metabolites—
allowed us to investigate the temporal hierarchy of tempera-
ture adaptation, that is, the temporal sequence or order of
molecular events. Molecular responses may first become ev-
ident at one or the other level of molecular organization and
may subsequently trigger responses in the respective other
molecular domain. In other words, we ask whether metabo-
lites or transcripts are responding first given the temporal
resolution of the available experimental data. Furthermore,
do we observe evidence for significant correlations of early
responses in the molecular domain that responds first (me-

tabolites or transcripts) with responses following later in the
respective other molecular class possibly pointing to causal
relationships? Thus, we wish to reveal the temporal sequence
of stress response events and determine whether metabolites
generally act as signals or responders relative to transcripts.
Such temporal hierarchy would manifest itself as pairwise
correlations across molecule types, that is, transcripts associ-
ated with metabolites, with an introduced forward or reverse
time-lag between transcripts and metabolite levels (see Mate-
rials and Methods). It should be borne in mind that the timing
of the experimental design followed an exponential scheme,
that is, nonequidistant time intervals, assuming fast initial
responses and a gradual slowing of adaptation responses.

All three possible temporal orders were analyzed (see
Materials and Methods): metabolites leading or trailing rela-
tive to transcript responses or concurrent correlations (no time
lag). Initially, only correlations between immediate metabolic
pathway neighbors were considered such that the metabolite
correlated with a transcript was associated via substrate=
product relationships with the enzyme encoded by the re-
spective transcript, in the following referred to as ‘‘cognate
pairs’’ (Fig. 5, filled circles). The results of the time-lagged
correlation analyses of cognate pairs are consistent with the
scenario that changes in metabolite levels precede changes
of transcript levels within the covered time intervals. Sig-
nificantly increased absolute correlation levels between cog-
nate pairs were observed, when metabolites were considered
leading both for the heat and the cold response compared to
the other two alternatives (Fig. 5). However, it is known that
metabolites operate on a faster time scale compared tran-
scripts (Kresnowati et al., 2006). Therefore, the observation of
higher correlations of time-shifted cognate pairs with me-
tabolites leading may simply be a consequence of the different

FIG. 3. Metabolite–metabolite level correlation as a function of metabolic pathway distance for the heat and cold stress time
series, respectively, divided into a positive and negative correlation set. Dashed lines correspond to mean correlation values
for randomized (shuffled) data. Shown are mean Pearson correlation coefficients and associated standard errors of the mean.
At least three data values or more per mean value were required, otherwise, no value is shown as in the case of pathway
distance 1, negative correlation, heat dataset.
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characteristic response times. Metabolites are naturally func-
tionally related—and therefore likely correlated—to their
cognate transcripts as they are the respective reactants of the
enzymes encoded by the transcript, whereas pairs between
metabolites and transcripts at larger pathway distance or
nonenzyme-encoding transcripts can be expected to be gen-
erally less functionally related, and thus, should correlate
less. Therefore, computing such distant or even random
metabolite–transcript pair correlations provide an appropri-
ate reference to test whether the above described result that
metabolites play a leading role is merely a consequence of
characteristic time scale differences. In the later case, the same
pattern of higher correlation levels for leading metabolites
should be observed. If, however, a functional significance is
associated with leading metabolites, cognate metabolite–
transcript pairs should exhibit even more pronounced corre-

lations, when metabolites are considered leading compared to
random, more distant pairs with the same applied time shift.

From the comparison of cognate to random metabolite-
transcript pairs (Fig. 5), we conclude that indeed metabolites
are generally correlated more strongly to their cognate tran-
scripts than to randomly selected transcripts confirming their
functional (metabolic pathway mediated) relatedness. Al-
though this may be expected, it is not obvious as transcript
levels do not have to go in lockstep with metabolite levels.
Here, we show that from a statistical perspective, paired me-
tabolite, and transcript levels also correlate. Thus, high corre-
lation between a metabolite and a transcript may be taken as
an indication (but not proof) of their metabolic relationship. In
the heat experiment, correlations between random metabolite–
transcript pairs are stronger, when metabolites are considered
leading compared to the other two scenarios indicating a

FIG. 4. Examples illustrating transcript-mediated negative correlations between metabolic pathway neighboring metabo-
lites. (A) Expression profile of the gene BAT2 (YJR148W) during cold stress conditions and metabolite levels of associated
reactants glutamate (substrate) and leucine (product). While leucine decreases, glutamate accumulates during the low
temperature stress treatment. (B) Corresponding data under heat stress for the FRDS1 (YEL047C) -mediated reaction from
fumarate to succinate. A decreased transcript level after 2 h of heat exposure results in accumulation of substrate and
depletion of product. ‘‘Relative expression’’ refers to transcript, and ‘‘Relative response’’ to metabolite levels.
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contribution of the different time scales of metabolic versus
transcriptional responses described above. In the cold experi-
ment, however, the functional lead of metabolites for cognate
pairs compared to remote (random) pairs appeared not to be
caused by the difference of characteristic time scale and in-
dicative of truly leading roles of metabolites. The effect of more
pronounced cognate pair correlations, when metabolites were
considered leading was particularly apparent, when only
positive correlations were investigated (not shown).

The metabolites glucose-6-phosphate (G6P) and serine (Ser)
were significantly overrepresented in the set of metabolites
with significant positive leading correlations to their cognate
transcripts with associated Fisher Exact test p-values (and
multiple-testing corrected Benjamini-Hochberg False Dis-
covery Rate p-values ( pFDR) (Benjamini and Hochberg, 1995),
of p¼ 0.0016 ( pFDR¼ 0.032) and p¼ 0.0049 ( pFDR¼ 0.049), re-
spectively. Thus, both metabolites may play an important
signaling role within their metabolic network context such as
the glycolytic pathway (G6P) or amino acid metabolism (Ser).
A list of all significant correlation pairs of metabolites and
cognate transcripts is provided in Supplementary File 1.

Detection of potential cause–effect
metabolite–transcript relationships using the concept
of Granger causality

We applied Granger causality testing (see Materials and
Methods) to identify directed, and thus, potential cause–effect
relationships between metabolites and transcripts. We fo-

cused on analyzing metabolite–transcripts pairs in which the
metabolite is a reactant of the enzyme encoded by the tran-
script as determined by existing pathway knowledge (‘‘cog-
nate pairs’’). Granger causality specifically identifies pairs in
which one variable (metabolite or transcript) carries signifi-
cant additional information on the future values of the re-
spective other variable compared to the past values of this
variable alone. Although for two monotonously increasing
profiles, high Pearson correlation would be computed for any
applied time lag (forward, synchronous, reverse), its associ-
ated Granger causality would be low, thereby eliminating
these less informative relationships.

As many metabolite–transcript pairs need to be tested for
significance, the required multiple testing correction may lead
to a substantial loss of truly correlated pairs. As done similarly
in Mukhopadhyay and Chatterjee (2007), we reduced the
number of tested pairs by only considering one of the two
possible directions, the direction associated with the lower
p-value. We believe, this pair reduction provides a reasonable
starting point, because any cause–effect relationship generally
has only one direction from cause to effect. Evidently, in the
case of feedback cycles, where the effect in turn acts as a cause
on the previous cause variable, which now becomes the effect
variable, the relationship is bidirectional.

Table 1 lists the 10 statistically most significantly Granger
causality-associated metabolite–cognate transcript pairs
detected under heat and cold stress conditions (Table 1, for a
complete list with Granger causality statistics presented in
both directions, refer to Supplementary File 2). Under

FIG. 5. Time-lagged correlations between metabolite and transcript levels in heat and cold time series data. Metabolite–
transcript correlations for immediate network neighbors, that is, metabolite is substrate or product of the enzyme encoded by
the transcript (designated as ‘‘cognate enzyme transcripts’’ in the legend) and 400 metabolite-transcript pairs in which
metabolite levels were correlated with expression levels associated with randomly selected noncognate transcripts. Time
offset was 1, that is, correlations of metabolites at time point ti with transcripts at time point ti�1 (metabolites are trailing
transcript levels), ti (concurrent transcript and metabolite level data), or tiþ1(metabolites are leading transcript levels). Shown
are the mean absolute Pearson correlation coefficients and associated standard errors of the mean.
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heat stress, the Granger causality associations were found
to be statistically more significant, as reflected by the lower
p-values, than under cold conditions.

In the considered cognate metabolite-transcript pairs, the
metabolites either serve as the substrate or are the products of
the reaction catalyzed by the respective enzymes encoded by
the cognate transcripts. Under the nonequilibrium conditions
in living systems, many metabolic reactions have a preferred
direction; some are even considered irreversible. If a metab-
olite is found to function as a Granger-cause, it is reasonable
to assume that this may be a reflection of it being the substrate
of the respective reaction influencing the enzyme–transcript
at later time points, whereas it might be the product of the
reaction if detected as the Granger-effect responding to the
enzymatic changes brought about by altered transcript levels.
For the top-ranking cognate metabolite–transcript pairs, we
compared the Granger causality-predicted directions to the
KEGG-based annotations of reaction directions (Kanehisa and
Goto, 2000). Indeed, for 9 out of 12 reactions annotated to oc-
cur in a preferred direction, the cause¼> effect directionality
based on Granger causality was in agreement with KEGG-
annotations. Three reaction directions [two Phenylalanine–
tRNA ligase reactions (both corresponding to EC number
6.1.1.20), and the glutamine-dependent NADþ synthetase re-
action, EC 6.3.5.1] reactions were predicted incorrectly, but the
statistical significance of the prediction based on Granger
causality was low. The remaining reactions were annotated as
bidirectional in KEGG. Thus, for the majority of metabolite–
transcript pairs, especially for the pairs with high statistical

significance detected under heat, Granger causality correctly
predicted the preferred enzymatic reaction direction ( p¼ 0.07,
based on binomial distribution for 9 (or greater) out of 12).

Two selected metabolites shall serve as examples to illus-
trate the nature of the temporal metabolite and transcript
profiles as detected by Granger causality. Under heat stress,
serine was identified as a metabolite acting as a Granger-cause
of subsequent transcriptional changes of its cognate enzymes
(Supplementary File 2). Figure 6 illustrates this finding by
plotting the associated time profiles of serine and its cognate
transcripts on the map of known reactions involving serine.
The general pattern of trailing transcriptional changes in re-
sponse to serine is evident from the graph. Similarly, phe-
nylalanine changes were observed to result of preceding
transcriptional changes of its cognate enzymes (Fig. 7). In both
examples, the nonmonotonic—and thus more informative—
nature of time profiles is clearly evident.

Regardless of significance, when retaining only the direc-
tion between a metabolite and its cognate transcripts associ-
ated with the lower Granger causality p-value, we noted that a
set of selected metabolites were more frequently observed to
act as a cause (in a Ganger-causality sense), whereas others
were preferentially identified as an effect of transcriptional
changes. Table 2 lists all metabolites and their associate
preference to either function as either cause or effect, when
both temperature treatments were combined. In particular,
serine was determined as a major causative metabolite (con-
sistent with the time-lagged Pearson correlation analysis), as
well as glutamate as a highly connected, that is, involved in

Table 1. Most Significant Directed Granger Causality Relationships between Metabolites

and Cognate Transcripts under Heat and Cold Stress Conditions

Cause Effect p-Value
BH-corrected

p-value
Agreement with KEGG

annotated preferred direction

Heat
Phenylalanine -> YPR047W, 6.1.1.20, 1773228_at 3.38E-04 4.07E-02 yes
YLR155C, 3.5.1.1, 1777566_s_at -> Aspartic acid 3.49E-04 4.07E-02 yes
Adenosine.5.monophosphate -> YBR115C, 1.2.1.31, 1775044_at 1.46E-03 1.14E-01 yes
Serine -> YGL026C, 4.2.1.20, 1779478_at 2.37E-03 1.38E-01 yes
Glutamic acid -> YHR037W, 1.5.1.12, 1773117_at 4.09E-03 1.56E-01 bidirectional
Valine -> YHR208W, 2.6.1.41, 1779000_at 5.80E-03 1.56E-01 bidirectional
Glutamic acid -> YJR148W, 2.6.1.42, 1777344_at 6.57E-03 1.56E-01 bidirectional
Glutamic acid -> YOL140W, 2.6.1.11, 1772375_at 6.64E-03 1.56E-01 yes
Glutamic acid -> YPR145W, 6.3.5.4, 1772615_at 7.43E-03 1.56E-01 bidirectional
Succinic acid -> YJL045W, 1.3.5.1, 1774888_at 7.65E-03 1.56E-01 bidirectional
Cold
YKL106W, 2.6.1.1, 1776650_at -> Phenylalanine 1.99E-03 2.26E-01 bidirectional
YBR299W, 3.2.1.20, 1774491_s_at -> Fructose 3.23E-03 2.26E-01 yes
Arginine -> YDR341C, 6.1.1.19, 1773272_at 3.38E-03 2.26E-01 yes
YFL022C, 6.1.1.20, 1779336_at -> Phenylalanine 3.95E-03 2.26E-01 no
Malic acid -> YOL126C, 1.1.1.37, 1774081_at 8.07E-03 3.02E-01 bidirectional
YIL172C, 3.2.1.20, 1775391_s_at -> Fructose 8.23E-03 3.02E-01 yes
YLR060W, 6.1.1.20, 1777242_at -> Phenylalanine 1.17E-02 3.02E-01 no
Glutamic acid -> YHR074W, 6.3.5.1, 1775518_at 1.22E-02 3.02E-01 no
YJL200C, 4.2.1.3, 1769943_at -> Citric acid 1.29E-02 3.02E-01 bidirectional
Fructose -> YGL253W, 2.7.1.1, 1770167_at 1.32E-02 3.02E-01 yes

The top-10 metabolite-transcript pairs pairs for both conditions ranked by Benjamini-Hochberg (BH) corrected (Benjamini, 1995) raw
p-values are reported. Of the two possible directions between a transcript and a metabolite, only the one with the smaller p-value was
considered in the total list of interactions. The smaller p-value direction was interpreted as the predicted preferred reaction direction, where
the involved metabolite was considered the substrate of the enzyme encoded by the cognate transcript if found to be the Granger-cause, and
the product otherwise (metabolite is Granger-effect). Annotated preferred directions from taken from KEGG (Kanehisa and Goto, 2000) as
signified by the reaction arrows. A complete list is provided in Supplementary 2. Transcripts are listed by their gene ID, EC number, and
associated Affymetrix chip ID.
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many metabolic reactions, metabolite (Table 2). (The respec-
tive tables for the heat and cold individually are provided as
Supplementary File 2).

Notably, when sorted by significance, metabolites were
most frequently identified as a potential cause of later tran-
scriptional changes rather than transcripts influencing metab-
olite levels (Table 2), suggesting again that these metabolites
may have a leading role in shaping the molecular response of
yeast to changing temperatures within the measured time
interval and sampling protocol.

Discussion

We investigated the relationships between metabolic and
transcriptional responses to external perturbations using an-

notated metabolic pathways as the natural framework for an
integrative data analysis. Our results suggest that metabolite
level data may provide significantly more information than
transcript data alone, and demonstrate that metabolite cor-
relations extend deeper into the neighboring metabolic net-
work (Fig. 1). This significant difference may reflect the
naturally closer association of metabolites to metabolic pro-
cesses and pathways than the more indirect relationship of
transcript levels as an indication of metabolic activities.
Transcript changes are an intensively investigated surrogate
for enzyme–protein levels. Transcript levels may not neces-
sarily reflect changed enzymatic activities as posttranscrip-
tional processes such as phosphorylation, influence catalytic
activities of enzymes. Second, the regulation of transcript
levels is only indirectly linked to metabolism via signal

FIG. 6. Serine levels and expression levels of serine-metabolizing enzymes under heat stress. Serine was detected as a major
Granger-cause of changes in cognate transcript levels. The pathway and reaction directions were taken from KEGG (Kanehisa
and Goto, 2000) and BRENDA (Schomburg et al., 2004). ‘‘Relative expression’’ refers to transcript, and ‘‘Relative response’’ to
metabolite levels.
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transduction events that are only incompletely understood.
Nevertheless, the partial validity of the assumption that the
expression of neighboring enzymes is typically under com-
mon control has been convincingly demonstrated here for the
investigated temperature stress responses (Fig. 1A). Evi-
dently, strong pairwise correlation does not prove pathway
proximity as high correlations are possible over larger dis-
tances as well. However, as a statistical trend, in this work,
proximity and correlation have been shown to be related. The
demonstrated larger information contents carried by metab-
olites highlights the potential gain for pathway elucidation
from future metabolite profiling studies at increasing cover-
age allowing to monitor many more metabolites and at in-
creased accuracy than currently possible.

The experimental data used here reflected the dynamic,
nonsteady-state response of the yeast system to external
perturbations. As yeast cells adapt by reaching a new tem-
perature dependent steady-state, we demonstrated that more

direct pathway-relevant information can be gleaned from
the resulting data set than was accessible by studying the
range of static steady-state data reported by Müller-Linow
and coworkers (2007). Dynamically perturbed metabolic and
transcriptional networks may provide more and different
information and, hence, may open new avenues for unravel-
ing metabolic pathways of less studied metabolic intercon-
versions, as are associated, for example, with the secondary
metabolism of many species.

As discussed in Strassburg et al. (2010), current metabo-
lomic and transcriptomic technologies provide information at
different degrees of completeness with transcriptional profil-
ing close to being comprehensive, whereas metabolite pro-
filing covers only a small portion of the entire metabolome.
Thus, the results of this report should be generalized with
caution and, in a strict sense, apply only to the set of metab-
olites included in this study (Strassburg et al., 2010). As we
took great care to establish best possible precision of meta-
bolic profiling and imposed strict statistical significance cri-
teria, we expect the validity of our results to hold regardless of
the restricted metabolic sample size. As the set of metabolites
in this study has a strong bias toward primary metabolism
with typically highly interconnected, and in part cyclic, met-
abolic pathways, the transferability of our findings to sec-
ondary metabolites and terminal metabolic products will
have to be tested as corresponding data may become available
from similar future analyses.

The experiment studied here used temperature cues to
perturb the yeast cellular system. As changing temperatures
influence the reaction kinetics and steady states of all meta-
bolic reactions and affects the dynamics of all molecular
processes, many of the observed effects, specifically the meta-
bolic level changes, may be influenced by unavoidable
changes imposed by thermodynamics alone. As both synthesis
and degradation processes are either accelerated or deceler-
ated with increased or lowered temperature, the net influence
of changing temperature on metabolite levels is not immedi-
ately apparent. Furthermore, transcripts and metabolites can
be expected to be sensitive toward temperature on different
time scales as metabolic reactions are much faster than tran-
scriptional changes.

Relative to control temperature conditions (288C), the ap-
plied elevated (378C) and lowered temperature (108C) cannot
be considered symmetric. However, for the purpose of this
investigation, the magnitude of introduced perturbation is of
secondary importance provided that the biological system is
perturbed sufficiently to respond measurably, but remains
viable. As shown in Strassburg et al. (2010), both temperature
regimes triggered broad and significant transcriptional and
metabolic responses, while at the same time leaving the yeast
cultures largely viable (>95% cellular viability after 8 h ex-
posure to all three applied temperatures conditions).

The employed correlation analyses relied on the assump-
tion of linear correlation representing the simplest correlation
measure. However, transcript–metabolite relationships as well
as relationships between different transcripts or metabolites
may follow more complex nonlinear patterns. Especially
pairwise metabolite level data may be characterized by non-
linear relationships according to their nonlinear metabolic
reaction kinetics. Thus, the results are qualitative and aimed to
detect monotonic relationships. Alternative measures of pair-
wise correlation other than Pearson correlation coefficients

FIG. 7. Phenylalanine levels and expression levels of asso-
ciated cognate transcripts under cold stress conditions. Un-
der cold stress, phenylalanine was found to largely be a
result Granger-caused by preceding transcript changes. The
schematic pathway and directions of reactions were taken
from KEGG (Kanehisa and Goto, 2000) and BRENDA
(Schomburg et al., 2004). Note that enzyme E.C. 6.1.1.20 is
composed of several subunits. ‘‘Relative expression’’ refers to
transcript, and ‘‘Relative response’’ to metabolite levels.
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such as mutual information (Steuer et al., 2003) may prove
useful to expand the scope and sensitivity of the correlation
analysis once time course data with enhanced temporal reso-
lution may become available. Further increased sensitivity and
specificity can be expected from employing partial correla-
tion measures that better eliminate indirect correlations (de la
Fuente et al., 2004).

Pairwise distance as a network property is not the only
conceivable measure for explaining relevant associations be-
tween metabolic reaction networks and transcriptional regu-
lation. Indeed, it was shown that flux coupling measures that
utilize stoichiometric and topological information better re-
flect functional modes of transcriptional regulation than the
simple distance metric (Notebaart et al., 2008). However,
using distance as a network measure still yields useful infor-
mation for reverse-engineering applications, for example, by

progressing from observed correlations between molecules to
the underlying potential functional interactions, as was ex-
emplified the analysis of the negative metabolite correlation
between leucine and glutamate as well as succinate and fu-
marate (Fig. 4).

We employed Granger causality testing to identify directed
relationships between metabolites and transcripts that may
constitute cause–effect pairs. Because Granger causality spe-
cifically looks for the mutual predictive value above and be-
yond the predictive power resulting from past values of the
single variable alone, it may be the more appropriate choice
to identify cause–effect pairs than Pearson correlation. How-
ever, establishing significant Granger causality is no proof
of an actual cause–effect relationship between the corre-
sponding variables (molecules), but is only an indication of a
temporal behavior that is consistent with such cause–effect

Table 2. Frequency for Metabolites Identified as Either Being the Cause

or the Effect in Granger Causality Relationships in the Heat and Cold Experiment Series

for All Pathway Annotated Metabolites in Either One or Both Datasets

Metabolite Is cause Is effect p-Value BH-corrected p-value

Glutamic acid 59 19 6.42E-06 1.99E-04
Serine 23 3 8.80E-05 1.36E-03
Adenosine-5-monophosphate 18 5 1.06E-02 9.08E-02
Fructose-6-phosphate 10 1 1.17E-02 9.08E-02
Threonine 10 2 3.86E-02 2.39E-01
Glucose-6-phosphate 8 2 1.09E-01 5.65E-01
Glucose 16 8 1.52E-01 6.53E-01
Aspartic acid 17 9 1.69E-01 6.53E-01
Lysine 5 1 2.19E-01 6.78E-01
Valine 5 1 2.19E-01 6.78E-01
Proline 6 2 2.89E-01 6.89E-01
Isoleucine 6 2 2.89E-01 6.89E-01
Leucine 6 2 2.89E-01 6.89E-01
Alanine 7 3 3.44E-01 7.61E-01
Phenylalanine 5 9 4.24E-01 8.76E-01
Glyceric-acid-3-phosphate 2 0 5.00E-01 9.69E-01
Glutamine 9 6 6.07E-01 9.74E-01
Citric acid 2 4 6.88E-01 9.74E-01
Glyceric acid 4 2 6.88E-01 9.74E-01
Glycerol 2 4 6.88E-01 9.74E-01
Homoserine 4 2 6.88E-01 9.74E-01
Trehalose 5 3 7.27E-01 9.74E-01
Asparagine 4 6 7.54E-01 9.74E-01
Malic acid 6 4 7.54E-01 9.74E-01
Fumaric_acid 11 13 8.39E-01 1.00Eþ 00
Ribose-5-phosphate 11 13 8.39E-01 1.00Eþ 00
Tyrosine 2 3 1.00Eþ 00 1.00Eþ 00
Arginine 4 4 1.00Eþ 00 1.00Eþ 00
Succinic acid 16 16 1.00Eþ 00 1.00Eþ 00
Glycine 7 7 1.00Eþ 00 1.00Eþ 00
Fructose 8 8 1.00Eþ 00 1.00Eþ 00

The direction associated with the smaller p-value was defined as the directionality between transcript and metabolite pairs. The counts
reflect how often a particular metabolite was found to be the effect or cause when paired up and Granger causality tested with transcripts
associated with their cognate enzymes. Note that depending upon the number of different reactions metabolites are involved in, metabolites
have varying numbers of cognate enzyme transcripts. For example, glutamate is involved in many different reactions and, thus, has many
associated cognate enzymes, whereas tyrosine is only processed by few enzymes according to the KEGG yeast pathway map. Reported
p-values were obtained from a cumulative (i.e., this or more extreme values) binomial distribution with peffect¼ pcause¼ 0.5 as null-hypotheses
and two-sided testing. Benjamini-Hochberg (BH) (Benjamini, 1995) corrections was applied to corrected for multiple testing. Cell coloring is
based on larger of the two counts for ‘‘Is Cause,’’ colored magenta, or ‘‘Is Effect,’’ colored green, or no color if counts are equal. Individual lists
for both the heat and cold datasets are provided in Supplemenary File 2.

Is cause.
Is effect.
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associations. Furthermore, Granger causality assumes co-
variance stationarity, which in cases of perturbed systems
may not be fulfilled. Nonetheless, Granger causality was re-
ported to be robust with regard to this assumption as rea-
sonable results were reported when testing nonstationary
conditions (Mukhopadhyay and Chatterjee, 2007). Therefore,
we believe the reported results to be valid and entry points for
further experimental investigations.

By interpreting metabolites determined as Granger-causes
relative to their cognate transcripts as substrates of their cog-
nate transcript-encoded enzymes and as products when de-
tected as Granger-effects, and thus, associating a designated
direction to the respective enzymatic reaction, we found good
agreement with the KEGG-annotations of reaction dynamics
(Table 1). Determining the preferred direction under the
nonequilibrium conditions in living systems is a challenging
task as either large-scale flux data need to be available or free-
energy measures under the respective experimental conditions
including absolute metabolite concentrations are needed,
when the direction is to be determined theoretically based on
thermodynamic principles. The issue of directionality is fur-
ther complicated by thermodynamic coupling in which
downhill processes may provide the necessary energy to drive
other, uphill reactions. In this regard, the KEGG annotations
used here can themselves only be regarded as an estimate of
the real, in vivo direction based on conventional thermody-
namics and literature annotations. Remarkably, however, the
Granger causality inferred directions determined here ap-
peared to agree well with theses KEGG annotations (Table 1).
In light of the possible thermodynamic coupling under in vivo
conditions, even the apparently incorrectly predicted direc-
tions may actually be correct under the conditions investigated
here. Thus, and notwithstanding the caveats, Granger cau-
sality-based direction prediction from metabolomic and tran-
scriptomic or proteomic time series data may prove useful in
determining the preferred reaction direction in vivo.

In this work, we investigated bivariate Granger causality re-
lationships. As a possible extension, it appears worthwhile to
explore multivariate relationships between metabolites and
transcripts by employing the concept of conditional Granger
causality (Chen et al., 2006). Inevitably, however, testing more
than bivariate relationships also increases the demand for more
data considerably,asmanymore combinations needtobe tested.

To reduce the multiple testing problem, we focused on
unidirectional cause–effect associations between metabolites
and transcripts (Table 1) as done similarly by other re-
searchers investigating Granger causality relationships from
molecular profiling data (Mukhopadhyay and Chatterjee,
2007). Evidently, feedback cycles violate this assumption. To
properly account for bidirectional cause–effect relationships
in a statistical sense and to apply it to more distant pairs in the
metabolic pathway map, where feedback cycles inevitably
occur, long time series will be needed that cover the relevant
time interval with sufficient temporal resolution.

Testing for Granger causality identified two metabolites
(serine and glutamate) as playing an important and primarily
leading role. Both metabolites are central metabolites and
involved in many biosynthetic pathways. Serine participates
in several amino acid as well as purine and pyrimidine syn-
thesis pathways as well as acting as a precursor for sphingo-
lipids, thus providing a link to lipid metabolism. The
involvement of sphingolipds in heat stress response has been

shown before (Dickson, 2008). Changed glutamate levels may
be associated with the response of the TCA cycle genes to
temperature stress as demonstrated in Sakaki et al. (2003).
Furthermore, glutamate was identified as a central metabolic
hub metabolite (Arita, 2004). Our finding of leading patterns
associated with glutamate further highlights its importance as
a central signal integrator relaying the perceived stress con-
ditions to other metabolic pathways and processes, in par-
ticular, energy metabolism-associated pathways. The exact
nature of the leading role of both metabolites needs to be
explored further by dedicated experiments. As a further note
of caution, ranking metabolite–cognate transcript pairs by
statistical significance introduces a certain bias to hub metab-
olites that engage in many reactions, as only then, statistical
significance can be established. Thus, the results presented in
Table 2 should also be viewed qualitatively.

We revealed a temporal succession between metabolite and
transcript level changes such that metabolite response pat-
terns were found to be associated with changed transcript
levels at later time points. Although the observation of lead-
ing metabolites may be consistent with a scenario, in which
metabolites serve as signals for the modulation of gene ex-
pression, causality and relevance cannot yet be considered
proven. First, our observation applies only for the monitored
time scale and temporal resolution of minutes to hours. As
indicated by the rate and number of early transcriptional
changes, the phase of early signal perception and responses is
not adequately covered. We conclude that the interpretation
of metabolites serving as signals for transcriptional changes
may apply to the second phase of adaptive responses
(Strassburg et al., 2010). To truly establish evidence of causal
relationships, other types of experiments need to be conducted
such as systematically employing yeast gene deletion mutants
to dissect the relevance of particular metabolites or genes, an
effort beyond the scope of this study.

Conclusions

Metabolic pathways were demonstrated to constitute an
appropriate framework for the integrative data analysis of the
transcript and metabolomics systems level. By applying sta-
tistical concepts of time-lagged correlation and—as a novel
application for integrative metabolomic studies—Granger
causality, potentially central system elements that trigger re-
sponses across molecular organization levels and metabolic
pathway relationships have been identified. The results il-
lustrate that the metabolome constitutes a crucial and indis-
pensible layer of molecular adaptive mechanisms and
demonstrate the potential of further expanded research into
metabolomic and integrative technologies.

Data Availabililty

All Supplementary Data (including all data tables in Mi-
crosoft Excel format) can be found at http:==bioinformatics
.mpimp-golm.mpg.de=resources=files=supplementary-material=
omics=.
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