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ABSTRACT
Objective Predicting patient outcomes from
genome-wide measurements holds significant promise
for improving clinical care. The large number of
measurements (eg, single nucleotide polymorphisms
(SNPs)), however, makes this task computationally
challenging. This paper evaluates the performance of an
algorithm that predicts patient outcomes from
genome-wide data by efficiently model averaging over an
exponential number of naive Bayes (NB) models.
Design This model-averaged naive Bayes (MANB)
method was applied to predict late onset Alzheimer’s
disease in 1411 individuals who each had 312 318 SNP
measurements available as genome-wide predictive
features. Its performance was compared to that of
a naive Bayes algorithm without feature selection (NB)
and with feature selection (FSNB).
Measurement Performance of each algorithm was
measured in terms of area under the ROC curve (AUC),
calibration, and run time.
Results The training time of MANB (16.1 s) was fast like
NB (15.6 s), while FSNB (1684.2 s) was considerably
slower. Each of the three algorithms required less than
0.1 s to predict the outcome of a test case. MANB had
an AUC of 0.72, which is significantly better than the AUC
of 0.59 by NB (p<0.00001), but not significantly different
from the AUC of 0.71 by FSNB. MANB was better
calibrated than NB, and FSNB was even better in
calibration. A limitation was that only one dataset and
two comparison algorithms were included in this study.
Conclusion MANB performed comparatively well in
predicting a clinical outcome from a high-dimensional
genome-wide dataset. These results provide support for
including MANB in the methods used to predict outcomes
from large, genome-wide datasets.

INTRODUCTION
Predicting clinical and biological outcomes from
available evidence is an important task. Clinical
examples include prognosis, diagnosis, and predic-
tion of response to therapy. Biological applications
include many areas of molecular biology where we
wish to understand the influence of one set of
biological variables on another set, such as genetics
on gene expression.
Increasingly, data are becoming available in the

form of high-throughput, molecular biological
measurements. Examples include microarray
expression data, proteomic data, and genome-wide
single nucleotide polymorphism (SNP) data. These
data may contain measurements on hundreds of
thousands or even millions of features, such as SNP
measurements. It is computationally challenging to
develop machine-learning methods for predicting
outcomes well, using such large sets of features.

Naives Bayes (NB) is a machine-learning method
that has been used for over 50 years in biomedical
informatics.1 It is very efficient computationally
and has often been shown to perform classification
surprisingly well, even when compared to much
more complex methods.2 3 However, NB is known
to be miscalibrated and this problem is generally
accentuated when there are large numbers of
features; it tends to make predictions with poste-
rior probabilities that are too close to 0 and 1.4 5

One way to cope with a large number of features
is to perform feature selection, which remains an
open and important area of research.6 7 If a subset
of features is strongly predictive of the target
outcome and it can be located, then selecting those
features may result in excellent classification.
When there are no strongly predictive features,
however, combining the effects of moderately
predictive features may perform classification best.
The approach described in this paper can adapt to
both of these scenarios, as well as other scenarios,
such as when some predictors are strong and
others are moderate or even weak. In particular,
the approach averages over the predictions of
models that contain different sets of features,
weighted by the posterior probability of each
model. When there are only a few strong predic-
tors, model averaging is similar to feature selec-
tion; in other less extreme scenarios, model
averaging will average over the predictive effects of
many features. Model averaging has a sound
theoretical basis, and moreover, it has been shown
to work well in practice.8 However, in general it is
computationally expensive.
This paper describes a model-averaged naive

Bayes (MANB) method that was previously
developed, is highly efficient, and has been shown
to work well empirically.9 10 However, to our
knowledge the method has not been applied to
datasets with a very large number of features (eg,
>100 000 features). MANB is suitable not only for
predicting outcomes, but also for ranking features,
although the main focus of this paper is the former.
We apply the MANB method to a genome-wide
dataset with a large number of features to predict
a clinical outcome. We conjectured that it would be
efficient and perform well. A positive result would
support using the method in analyzing other
genome-wide datasets, including next-generation
genome-wide datasets that contain a very large
number of features.

BACKGROUND
This section provides background information
about genome-wide association studies, NB models,
Bayesian model averaging (BMA), and Alzheimer ’s
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disease, because we apply an NB model averaging algorithm to
predict Alzheimer ’s disease using genome-wide data.

Genome-wide association studies
Genome-wide association studies (GWASs) use high-throughput
genotyping technologies to assay hundreds of thousands or even
millions of SNPs, with the goal typically being to identify SNPs
that are predictive of a disease or a trait. The degree to which
GWASs are expected to be successful in identifying genes
associated with a disease is based in large part on the common
diseaseecommon variant hypothesis. This hypothesis posits that
(a) common diseases are due to relatively common genetic vari-
ants that occur in individuals who manifest the disease,11 and (b)
individually many of these variants have low penetrance and
hence have small to moderate influence in causing the disease.11 A
competing hypothesis is the common diseaseerare variant
hypothesis, which posits that many rare variants underlie
common diseases and each variant causes disease in relatively few
individuals with high penetrance.11 However, it is likely that
common diseaseecommon variant and common diseaseerare
variant hypotheses both play a role in common diseases in which
underlying genetic variants may range from rare to the common
SNPs.12 Though GWASs were originally developed to detect
common variants, larger sample sizes and new analytical methods
will likely make them useful for detecting rare variants as well.13

GWASs have been widely utilized for identifying the genetic
variations underlying common diseases such as Alzheimer ’s
disease, type 2 diabetes, and coronary artery disease. Since the
first GWAS was published 5 years ago, more than 450 GWASs
and the associations of more than 2000 SNPs have been
reported.14

The naive Bayes model
The NB model assumes that predictive features X1, X2, ., Xn are
independent of each other conditioned on the state of a target
(class) variable T. That is, for all values of X1, X2,., Xn, and Twe
assume that:

P
�
X1;X2;.;XnjT

� ¼
Yn

i¼1

PðXijTÞ

We then assess the prior probability distribution P(T) and apply
Bayes’ theorem to derive P(T | X1, X2,., Xn). Figure 1A shows an
example of a small NB model with two features. In this paper, we
will assume the features and target are discrete variables.

NB models have been used widely for classification and
prediction in many domains, including bioinformatics, because
they (1) can be constructed quickly and easily from data, (2) are
compact in terms of space complexity, (3) allow rapid inference,
and (4) often perform well in practice, even when compared
with more complex learning algorithms.2 3

A feature-selection naive Bayes algorithm
In the experiments reported below, we also applied a version of
NB that selects the features to include in the model (FSNB). In

particular, we started with the model with no features. We then
used a forward stepping greedy search that added the feature to
the current model that most increased the score. If no additional
feature increased the score, the search stopped. We scored models
using the conditional marginal likelihood method described in
Kontkanen et al,15 combined with a binomial structure prior,
which is described below. This method tries to locate the smallest
set of features that predict the target variable well.

Bayesian model averaging
Often in statistical modeling and in machine-learning a single
model is learned from data and then applied to make a predic-
tion. Such an approach is called model selection. Often search is
performed using training data D to select a good model M
(according to some score) to use in predicting a targeted
outcome Tof interest based on patient features X, namely, P(T |
X,M). In doing so, an assumption is being made that modelM is
correct, that is, P(M | D)¼1. However, we usually do not have
such total confidence in the correctness of any given model.
BMA is based on the notion of averaging over a set of possible
models and weighting the prediction of each model according to
its probability given training data D,16 as shown in equation 1.

P
�
TjX� ¼ +

M
PðTjX;MÞPðMjDÞ (1)

As an example, consider the four NB models on two features X1

and X2 in figure 1 and suppose that given D the models a, b, c,
and d are assigned probabilities of 0.5, 0.1, 0.3, and 0.1, respec-
tively. Suppose further that for the current case in which
X1¼true and X2¼false, the models a, b, c, and d predict T¼true as
0.9, 0.5, 0.8, and 0.7, respectively. Then, according to equation 1,
the model averaged estimate of P(T¼true | X1¼true, X2¼false) is
0.530.9+0.130.5+0.330.8+0.130.7¼0.81.
Madigan and Raftery show that BMA is expected to give

better predictive performance on a test case than any single
model.17 This theoretical result is supported by a wide variety of
case studies in practice.18 Yeung et al applied BMA to predict
breast cancer from DNA microarray data and showed that the
method performed comparably to other methods in the litera-
ture, but required many fewer gene expression levels to do so.19

They obtained similar results in predicting leukemia. However,
for computational reasons, their method is limited to consid-
ering the interactions among only 30 genes at a time. Hoeting
et al provide a good overview of BMA, including its desirable
theoretical properties, as well as several clinical case studies in
which BMA performed better than various types of model
selection.8 They highlight that ‘the development of more effi-
cient computational approaches’ is an important problem
needing further research. Koller and Friedman provide a good
introduction to BMA in the context of Bayesian network
models.16

Model-averaged naive Bayes algorithm
We have applied BMA to the NB model. In particular, the model-
averaged naive Bayes (MANB) algorithm derives P(T | X) by
model averaging over all 2n NB models, where n is the total
number of features in the dataset. In the example in figure 1, n is
2 and there are 22¼4 NB models over which we average. As n
increases, the number of NB models soon becomes enormous.
For n¼100, 2100$1030, which is far too many models to average
over in an exhaustive way. For current genome-wide datasets, n
is now often 500 000 or more features that represent, for
example, SNP measurements.

Figure 1 Four naive Bayes models. T is the target node, and X1 and X2
are feature nodes.
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As it turns out, the independence relationships inherent in NB
models enable dramatically more efficient model averaging. For
Bayesian networks, Buntine describes how to use a single
conditional probability distribution to compactly represent the
model-averaged relationship between a child node and a set of its
parents.20 Dash and Cooper investigate how such a compact
representation can be used to efficiently perform model aver-
aging over all NB models on a set of features.9 10 Remarkably, by
using this method, MANB inference becomes linear in the
number of features, and it is almost as efficient as NB inference.
Thus, rather than requiring O(2n) time to perform inference
using model averaging, it only requires O(n) time. Details about
how to implement the MANB algorithm are given in the online
appendix and in Dash and Cooper.9

Key assumptions needed to obtain such efficiency are global
parameter independence and parameter modularity.21 The first
assumption holds that belief about the conditional probability
of a feature given its parents is independent of belief about any
other feature given its parents. The second assumption holds
that belief about the conditional probability of a feature given its
parents is independent of the structure of network that involves
other features. It is also assumed that the prior probability of an
arc from target T to a feature Xi is independent of the presence or
absence of other arcs in the network model.

Dash and Cooper present the results of experiments with
simulated and real datasets which support that MANB often has
classification performance that is as good as or better than that
of NB in terms of the area under the receiver operating charac-
teristic (ROC) curve (AUC).9 10 Those positive results and the
efficiency of training a MANB model led us to apply the MANB
algorithm to predict a clinical outcome, namely Alzheimer ’s
disease, from genome-wide data.

Alzheimer’s disease
Alzheimer ’s disease (AD) is a neurodegenerative disease and is
the most common cause of dementia associated with aging.22 It
is characterized by slowly progressing memory failure, language
disturbance, and poor judgment.23 Genetically, AD is divided
into two forms.24 The early-onset familial AD typically begins
before 65 years of age. This form of AD is rare and exhibits an
autosomal dominant mode of inheritance. The genetic basis of
early-onset AD is well established, and mutations in one of three
genes (amyloid precursor protein gene, presenelin 1, or prese-
nelin 2) account for most cases of familial AD.

The more common form of AD, accounting for approximately
95% of all AD, is called late-onset AD (LOAD) since the age of
onset of symptoms is typically after 65 years. LOAD is heritable
but has a more genetically complex mechanism compared to
familial AD. One genetic risk factor for LOAD that has been
consistently replicated is the apolipoprotein E (APOE) locus. The
APOE gene has three common alleles, 32, 33, and 34, determined
by the combined genotypes at the loci rs429358 and rs7412. The
34 APOE allele increases the risk of development of LOAD, while
the 32 allele may have a protective effect.25

In the past few years, GWASs have identified several addi-
tional genetic loci associated with LOAD. The AlzGene database
lists over 40 candidate LOAD risk modifiers obtained from
systematic meta-analyses of 15 AD GWASs.26

METHODS
Dataset
The LOAD GWAS data we used were collected and analyzed
originally by Reiman et al.27 The genotype data were collected
on 1411 individuals, of which 861 had LOAD and 550 did not;

644 were APOE 34 carriers (one or more copies of the 34 allele)
and 767 were non-carriers. Of the 1411 individuals, 1047 are
brain donors in whom the status of LOAD or control was
neuropathologically determined, and 364 are living individuals in
whom the status was clinically determined. The average age of
the brain donors at death was 73.5 years for LOAD and
75.8 years for controls. The average age of the living individuals
is 78.9 years for LOAD and 81.7 years for controls. The target
outcome we predicted is the binary LOAD variable. In this
dataset, 61% (861 of 1411) had LOAD. For each individual, the
genotype data consists of 502 627 SNPs that were measured on
an Affymetrix chip; the original investigators analyzed 312 316
SNPs after applying quality controls. We used those 312 316
SNPs, plus two additional APOE SNPs from the same study
namely, rs429358 and rs7412.

Experimental methods
We applied the NB, FSNB, and MANB algorithms to predict
LOAD from the genome-wide SNP data. In all three
algorithms, we used Laplace parameter priors, which assume
that for P(Xi | T) every distribution is equally likely a priori. For
FSNB and MANB, we used binomial structure priors, which
assume that the probability of a given model structure (in terms
of the arcs present) is pm (1ep)n�m, where n is the total number
of features in the dataset, m is the number of features with arcs
from T, and p is the probability of an arc from T being present.
For the LOAD dataset, we have n¼312 318. We assumed p¼
20/312 318, which implies an expectation of 20 SNPs that are
predictive of LOAD. The value 20 was set subjectively, informed
by the number and strength of the SNP predictors of LOAD that
have been reported in the literature.
We evaluated the algorithms using fivefold cross-validation.

The dataset was randomly partitioned into five approximately
equal sets such that each set had a similar proportion of indi-
viduals who developed LOAD. For each algorithm, we trained
a model on four sets and evaluated it on the remaining test set,
and we repeated this process once for each possible test set. We
thus obtained a LOAD prediction for each of the 1411 cases in
the data. The AUC and calibration results reported below are
based on these 1411 predictions. This fivefold cross-validation
process generated five models for each of the algorithms. For
a given algorithm, the training time results reported below are
the average training times over the five models learned by the
algorithm.
We ran all three algorithms on a PC with a 2.33 GHz Intel

processor and 2 GB of RAM.
We used two performance measures: one measures discrimi-

nation and the other measures calibration. For discrimination we
used the AUC. For calibration we used calibration plots and the
HosmereLemeshow goodness-of-fit statistic, for which small
p-values support that the calibration curve is not along the 458
line as desired (shown as a dotted line in the results section). For
each machine-learning method, we also recorded the time
required for model construction on the training cases and for
model inference on the test cases.

RESULTS
Table 1 shows that NB and MANB required only about 16 s to
train a model (not including about 27 s to load the data into the
main memory), while FSNB required about 1684 s. For all three
algorithms, the time required to predict each test case was less
than 0.1 s.
FSNB and MANB had AUCs of about 0.71 and 0.72, respec-

tively, and they are statistically close in performance (the 95%
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CI of their AUC difference is �0.008 to 0.029). Figure 2 shows
that NB has an AUC of about 0.59, which is statistically
significantly different than the AUC of MANB (p<0.00001).

NB predicted almost all the test cases as having a posterior
probability for LOAD of w0 or w1; such extreme predictions
tend to occur with NB when there are a large number of features
in the model. Figure 3 shows that NB (the squares) is very poorly
calibrated. MANB is better calibrated (triangles) than NB. The
only decile bin in which both NB and MANB predicted more
than one case is the bin representing predictions of 0.9 or greater.
In that bin, we removed cases that were predicted by both
MANB and NB and on the remaining cases we compared the
proportion of LOAD cases that were predicted only by MANB to
the proportion of LOAD cases that were predicted only by NB.
The proportion for MANB was 0.85, which is statistically
significantly different than the proportion for NB which was 0.63
(p¼0.0401), indicating that MANB is significantly better cali-
brated than NB in this bin. FSNB is even better calibrated. FSNB
constructed models with no more than 4 features (mean 2.4).

A side-effect of applying the MANB algorithm is the genera-
tion of a rank order of all 312 318 SNPs according to their
posterior probability of having an association with LOAD. We
applied MANB to all the 1411 cases, following the same
procedure that was used in training the MANB model, as
described above. We tallied the posterior probability of there
being an arc (association) from LOAD to every SNP. Table 2
shows the 10 SNPs that had the highest posterior probabilities.
The first three SNPs (rs429358, rs4420638, and rs7412) have

been identified previously in the literature as strongly associated
with LOAD.28 SNPs rs429358 and rs7412 are located in the
APOE gene and their combined genotypes determine the APOE
allelic status. In this study, we assessed SNPs rs429358 and
rs7412 independently and not jointly; hence we did not directly
assess the association of the APOE genotype to LOAD. A recent
study estimated the OR to be 4.4 for individuals who have the
rs429358(T) allele for developing LOAD.30 SNP rs4420638 is
located on the APOC1 gene which is close to the APOE gene on
chromosome 19. This SNP is in linkage disequilibrium (LD) with
the APOE gene and is known to be associated with increased risk
for LOAD.26 Using the D’ measure of LD, we obtained an LD
value between rs429358 and rs4420638 of 0.843 for the dataset
we analyzed in this paper, which is close to the value of 0.86
reported in Coon et al.31

The SNPs ranked 4 through 9 in table 2 are not on chromo-
some 19 and to our knowledge have not been associated with
known genes. However, the 10th SNP rs10824310, which is on

Table 1 Mean model training time in seconds

NB FSNB MANB

15.6 s 1684.2 s 16.1 s

FSNB, naive Bayes algorithm with feature selection; MANB, model-averaged naive Bayes;
NB, naive Bayes.

Figure 2 ROC curves and areas. FSNB (naive Bayes algorithm with
feature selection) and MANB (model-averaged naive Bayes) are at the
top and overlap. Naive Bayes (NB) is the solid line below.

Figure 3 Calibration curves with 95% CIs around the mean calibration.
The p-values are for the HosmereLemeshow goodness-of-fit statistic;
a higher value indicates better calibration.

Table 2 The 10 single nucleotide polymorphisms (SNPs) that were
found to have the highest posterior probability of an association with
late-onset Alzheimer’s disease

Rank
SNP rs
identifier

Probability of
association Physical location of the SNP

Related
gene

1 rs429358 1 Chr 19 Pos: 45411941 APOE28

2 rs4420638 1 Chr 19 Pos: 42227269 APOC128

3 rs7412 0.88734 Chr 19 Pos: 45412079 APOE28

4 rs3732443 0.16331 Chr 3 Pos: 72950735 Unknown

5 rs16974268 0.08957 Chr 15 Pos: 69070827 Unknown

6 rs13414200 0.07169 Chr 2 Pos: 13431146 Unknown

7 rs3905173 0.0682 Chr 1 Pos: 33223772 Unknown

8 rs16939136 0.06635 Chr 8 Pos: 72612135 Unknown

9 rs9453276 0.04112 Chr 6 Pos: 64239921 Unknown

10 rs10824310 0.03579 Chr 10 Pos: 47291511 PRKG129
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chromosome 10, was reported to have a strong association with
LOAD in one study,29 but not in another study.32

DISCUSSION
The results show that MANB performed significantly better
than NB, in terms of both AUC and calibration. MANB and
FSNB had similar AUCs, but MANB performed model training
more than 100 times faster than FSNB. The predictive perfor-
mance of all the models was strongly influenced by a single
APOE SNP (rs429358) that is highly predictive of LOAD.

FSNB was better calibrated than MANB, which is likely due
to FSNB including a small number of features in its models.
Calibration analysis is best applicable to data obtained from
cross-sectional or prospective cohort studies in which prevalence
can be estimated reliably. The dataset that we used is obtained
from a convenience sample of brain donors and living individ-
uals. However, the prevalence of 61% LOAD in this dataset is
not far from what may be expected for individuals whose mean
ages range from early 70s to early 80s. AD afflicts about 10% of
persons over 65 years of age and almost 50% of those over
85 years of age.27 Thus, the analysis of calibration is a reasonable
thing to do for this dataset, even though it is a convenience
sample.

In an earlier paper, we and our colleagues applied logistic
regression, support vector machines, and a Bayesian network
method to these same LOAD training and test datasets.33 The
training time for logistic regression and support vector
machines, for example, was about 4400 s, almost all of which
was devoted to feature selection by the ReliefF algorithm. No
method had an AUC greater than 0.73, even when we performed
a sensitivity analysis over the number of features to include in
training. For example, logistic regression had an AUC that varied
between 0.613 (when using the top 500 features, according to
ReliefF) and 0.732 (when using the top 10 features).

Limitations
A main limitation of the current paper is the use of only one
genome-wide dataset, although it is an interesting dataset on an
important disease. In future research, we plan to investigate the
performance of MANB on additional genome-wide datasets to
predict both clinical and biological outcomes. Based on the results
obtained in the current paper, we estimate that given a genome-
wide training dataset consisting of 10 million predictors and 1000
cases, MANB could construct a model in less than 8 min on
a standard desktop PC. Another limitation is that we did not use
informative prior probabilities for encoding prior knowledge/
belief from the literature about the associations between LOAD
and individual SNPs; the MANB algorithm allows informative
priors and including them in the analysis is an interesting area for
study. In future research, we also plan to include additional
prediction algorithms with which to compare MANB.

Future considerations
Other future research includes investigating the use of infor-
mative structure priors that are based on the literature. We also
plan to explore the use of algorithms that perform efficient
model averaging on Bayesian network models that are more
general than NB models, as described in Dash and Cooper.10

CONCLUSION
MANB had excellent comparative performance among the three
algorithms we applied in this paper, based on the results of AUC,
calibration, and training time. Using only about 16 s of training

time on a dataset consisting of hundreds of thousands SNP
measurements, MANB was able to predict LOAD patients with
an AUC of 0.72. At the same time, it identified SNPs that were
the most predictive of LOAD, according to its measure of
association. These results provide support for including MANB
in the methods used to predict clinical outcomes from high-
dimensional genome-wide datasets.
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