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’ INTRODUCTION

Differences between individuals in a population are caused by
genetic and environmental factors. Determining the influence of
genomic variants on phenotypic traits in humans is challenging and
requires very large sample sizes due to genetic complexity and
environmental confounders. One alternative approach is to use
model organismswhere environment andbreeding canbe controlled.
Genetic research inmice began in 1902, and successive generations of
inbreeding have led to many genetically stable strains where tightly
controlled housing and diet conditions reduce environmental noise.

One way to identify genes of interest for a quantitative trait is to
cross two inbred strains that are widely divergent for the trait,
measure the trait in the F2 offspringmice, and genotype the F2mice
to determine which genomic regions are associated with the trait.
These regions are referred to as Quantitative Trait Loci (QTLs).
ThePortlandAlcoholResearchCenter (PARC) has identifiedmany
QTLs that are responsible for differences in alcohol-drinking-related
behaviors1 between the twomouse strains investigated in this study.

QTL regions are often very broad and contain many genes. It
is difficult to determine which gene, termed “quantitative trait
gene”, is actually influencing the trait. An approach that the

PARChas taken is tomeasuremRNA expression levels in regions
of the brain that are expected to participate in alcohol-related
decisions. Genes with coding regions that lie within the QTL
regions and that are differentially expressed between the strains
are suspect quantitative trait genes. However, searching for
differentially expressedmRNAs between twomouse strains using
microarrays is problematic. Genetic differences between the
strains cause many false positives and negatives when a probe
consistently hybridizes in one strain and does not in the other. In
these strains, 16% of the Affymetrix mouse array has affected
probes leading to a false positive rate of 22% and a false negative
rate of 12%.2 Similar issues have been found with human arrays.3

In this study, we compared these strains using quantitative
proteomics. To our knowledge, this is the first time these strains
have been compared using quantitative proteomics. Protein
expression is important in searches for quantitative trait genes
because studies have shown that protein levels generally do not
correlate well with mRNA levels.4�10 Proteins that have coding
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regions that lie within QTL regions and that are differentially
expressed between the strains would be putative “quantitative
trait proteins”. We also investigated the influence of genetic
differences on proteomic methodologies. If a genetic difference
changes a protein sequence, then the peptide containing
the substitutionwill likely not be identified. Using genome sequence
data, we built strain-specific protein databases to evaluate the
effect of genetic variants on peptide identification and protein
quantification. This necessitated the use of complete protein
databases constructed to contain all of the known gene duplica-
tion and alternative splicing isoforms for all of the proteins. We
evaluated several protein grouping approaches to reduce spectral
counting errors when proteins share large fractions of their
identified peptides. These cases occur more frequently in com-
plete databases with high levels of sequence similarity. We also
compared our approach to results obtained when searching a
database with little sequence redundancy.

’EXPERIMENTAL METHODS

Sample Collection and Processing
All animal handling procedures were done in accordance with

federal guidelines and approved by the OHSU IACUC. Adult 10-
week-old male ethanol-naïve mice (C57BL/6 (B6) and DBA/2

(D2)) were sacrificed and whole striata were immediately
dissected from their brains and snap frozen until further proces-
sing. Four biological replicates from each strain were analyzed
where each biological replicate consisted of a pool of tissue from
six mice to reduce within-strain variation and provide sufficient
protein (Figure 1). The experiments were performed in two
batches approximately seven months apart. Two replicates from
each strain were analyzed in each batch. A protocol developed by
Smit et al.11,12 was used to deplete mitochondrial and structural
proteins and to aid in the identification and quantification of less-
abundant synaptic proteins. Following suspension of the final
synaptosome pellet in 0.5 mL 5 mM Hepes (pH 7.4) buffer, a
protein assay was performed (BCA assay kit, Pierce, Rockville,
IL), and 500 μg portions of protein were dried by vacuum
centrifugation.

Protein Digestion, Peptide Separation, Mass Spectrometry
The 500 μg portions of synaptosome proteins were suspended

in 100 μL of 100 mM ammonium bicarbonate buffer containing
4mg/mLRapiGest SF detergent (Waters,Milford, MA), reduced
by addition of 10 μL of 100mMdithioerythritol, and incubated at
60 �C for 30 min. Alkylation of free cysteines was then performed
by addition of 30 μL of 100 mM iodoacetamide and incubation at
room temperature for 30 min. Sixty microliters of 0.3 mg/mL

Figure 1. Experimental Design and Spearman-Rank clustering of samples before normalization, after normalization, and after batch adjustment. Striata
from six mice were pooled for each sample to reduce within-strain variation and to obtain enough protein. Batch 1 contained samples B61, B62, D21, and
D22. Batch 2 contained samples B63, B64, D23, and D24. The strains formed B6 and D2 clusters only after applying batch corrections.
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trypsin (Proteomics grade, Sigma, St Louis, MO) was then added
and the samples digested overnight at 37 �C with shaking.
Detergent was then removed by addition of 200 μL of 2%
trifluoroacetic acid, incubation at 37 �C for 45 min, centrifugation
at 8000� g for 15 min, and removal of the supernatant. Digests
were then solid phase extracted (Sep Pak LightCartridges,Waters
Corp) and peptides were separated by cation exchange chroma-
tography into 35 fractions using a polysulfethyl A column
(PolyLC Inc., Columbia MD) as previously described.13 Of each
cation exchange fraction, 40% was then separated by reverse
phase chromatography and 100 min of tandem mass spectrom-
etry data was collected for each of the 35 fractions using an LTQ
linear ion trap (Thermo Scientific, San Jose, CA) as previously
described.14

Database Searches
Peptide identification was performed using SEQUEST

(Version 28, rev. 12, Thermo Fisher). Parent ion average mass
tolerance was 2.5 Da and monoisotopic fragment ion tolerance
was 1.0 Da. Tryptic cleavage was specified with a static modifica-
tion ofþ57Da on cysteine residues and a variable modification of
þ16 Da on methionines. A pipeline developed in-house was used
to identify peptides and proteins with carefully controlled false
discovery rates estimated using sequence-reversed databases.15

Protein identification criteria were two distinct, fully tryptic
peptides per protein per sample. All samples were searched against
three different protein databases: UniProtKB/Swiss-Prot (release
57.8; 16 191 entries; reviewed canonical sequences) and two
versions of the Ensembl protein database (release 57; 35 412
entries; ab initio predicted proteins were not included), one
representing the B6 strain and one representing the D2 strain.
Protein sequences that were exact duplicates or exact subsets of
another protein sequence from the same gene were removed from
the Ensembl databases before searching. The Ensembl genome is
based on the B6 strain, so the reference Mus musculus protein
database was used as the B6 database. To generate a D2-specific
database, the D2 pileup file (dated 12/9/2009) containing over
5 million genomic single nucleotide polymorphisms (SNPs) and
short insertions and deletions (InDels) was downloaded from the
WellcomeTrust Sanger InstituteMouseGenomes Project ftp site.
Using the Ensembl Perl API, the SNPs and InDels were inserted
into the correct locations in the transcripts and the proteins were
retranslated. Approximately 20% of the proteins had altered
sequences and 0.25% had premature stop codons. Unless other-
wise noted, the quantitative results in this paper were calculated
using counts from the B6 (reference) Ensembl database for the B6
samples and the D2 Ensembl database for the D2 samples.

Protein Group Summarization and Database Comparison
Sequence similarities in the Ensembl protein databases re-

sulted in large numbers of ambiguous (shared) peptides that
were assigned to multiple proteins. Methods for splitting shared
peptides using unique peptide information have been proposed
and have been shown to provide more accurate protein total
counts.16,17 Splitting peptides on the basis of relative unique
peptide counts, however, fails when unique counts are too low.
To avoid these errors, we evaluated two methods to identify and
group similar proteins before applying peptide splitting.

The first method grouped proteins that belong to the same
Ensembl protein family. Ensembl provides protein family anno-
tations for each of its proteins. Proteins were clustered into
protein families based on sequence similarity (for more details
see http://www.ensembl.org/info/docs/compara/family.html).

In the second grouping method, all pairwise comparisons of
proteins were performed, and proteins A and B were merged into
one group if both proteins had fewer than X exclusive peptides with
a total of Y exclusive peptide counts (spectra) to distinguish
between them. Several values of X and Y were evaluated to cover
the spectrum of stringency. The baseline (least aggressive) group-
ing approach (where X = 1 and Y = 1) merged two proteins unless
they each had at least one exclusive peptide. This is similar to
previously published parsimony methods that group proteins with
redundant peptide sets and remove proteins with subset peptide
sets.18,19 Our method was slightly more aggressive, however,
because if proteins A and B were grouped together and B and C
were grouped together, then A and C were also grouped together.
Increasing the values for X and Y made the algorithm group more
aggressively because more exclusive peptide data were required in
order for two proteins to remain independent. It should be noted
that many groups contained single proteins independent of group-
ing method or values of X and Y. After grouping the proteins, any
peptides that were found inmultiple groupswere split using protein
group unique peptide evidence similar to previous methods.16,17

For some species, such as mouse, curated databases are available
that have the advantages of smaller sizes, reduced instances of shared
peptides, and higher quality annotations. These advantages reduce
search times and reduce the risk of incorrectly counting shared
peptides.We compared searching the data using themore complete
Ensembl databases to the manually reviewed canonical Swiss-Prot
database (without expanded isoform entries) to see if increased
peptide identifications justified the increased difficulty in interpret-
ing protein results. To compare the databases, we mapped the
Ensembl families to the Swiss-Prot proteins by comparing the sets of
identified peptides. A Swiss-Prot protein mapped to an Ensembl
protein family if they shared one or more peptides. Swiss-Prot
proteins that mapped to multiple families and families that mapped
to multiple Swiss-Prot proteins were discarded for the analysis
comparing the two databases (see Supporting Information Part 1.)

Normalization and Differential Expression Analysis
We compared three normalization approaches (sum total, sum

total with protein length, and quantile20) and four differential
expression analysis approaches (ANOVA with factors for strain
and batch, Significance Analysis of Microarrays21 blocked on
batch, Quasi-Poisson Generalized Linear Model22 with factors
for strain and batch, and edgeR23) (see Supporting Information
Part 2 for a comparison of results). As this is a biological data set
rather than an experimental mixture with known amounts of
spiked-in proteins, an analysis of the sensitivity and specificity of
these methods could not be performed. Proteins having small
spectral count numbers and many missing observations across
replicates violate most expression analysis method assumptions,
so we imposed a minimum protein spectral count total sum of 10
across all samples for quantification. We chose to use a combina-
tion of quantile normalization, batch adjustment,24 and edgeR for
differential expression analysis. Batch adjustments were deemed
necessary as batch effects that changed protein ranks remained after
normalization (Figure 1, also see Supporting Information and
ref 25). To adjust for batch effects, we used nonparametric adjust-
ments in the ComBat package.24 The software package edgeR was
designed to analyze count data that measures expression across
many genes, such as SAGE, RNA-seq, and MS/MS spectral count-
ing. It uses shared information across genes to estimate dispersion,
and we used the common dispersion option. All packages are open
source and were used in the R statistical programming environment.
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Mapping to Portland Alcohol Research Center Quantitative
Trait Loci (QTL)

QTL genomic regions were obtained from the Portland
Alcohol Research Center (http://www.ohsu.edu/parc/by_
phen.shtml). Genome coordinates given in cM were converted
to bases using the Jackson Laboratory Mouse Map Converter
(http://cgd.jax.org/mousemapconverter). For QTLs that did
not have ranges given, the peak (20Mb (1/2 of the median of
the observed ranges) was used. A family mapped to a QTL if: 1. It
contained a protein that had a coding region within the QTL
range, and 2. There was peptide evidence that the protein within
the QTL was present in the samples. A list of which families
overlap with QTLs can be found in Supplemental Table 5
(Supporting Information).

’RESULTS AND DISCUSSION

Treatment of Shared Peptide Artifacts with Protein
Grouping

When we searched the 4 049 668 spectra data set against the
Ensembl protein databases, 423 376 MS2 spectra passed the
thresholds with 5650 reversed-sequence matches (1.33% peptide
FDR). We identified 33 297 unique peptides belonging to 6602
different proteins. When a standard peptide subset removal
parsimony analysis was performed (equivalent to DTASelect with
Occam’s razor filter26), the protein identificationswere reduced to
4593 redundant target matches (3284 nonredundant) with 98
decoy matches (2.1% protein FDR), excluding common con-
taminants (Supplemental Tables 1�4, Supporting Information).
To evaluate alternative grouping approaches and to avoid the loss
of annotation, we retained the redundant protein identifiers.

The algorithm we used to split shared peptide spectral counts
was based on the fraction of unique peptide counts found for
each protein containing the shared peptide.16,17 We determined
this approach to be problematic for some proteins when
GAPDH, a highly abundant housekeeping protein that is known
to vary little between samples, appeared to be highly differentially
expressed. The gene for GAPDH is duplicated many times in the
genome, which led to multiple similar GAPDH Ensembl entries.
A small number of unique peptides prevented the parsimony
analysis from collapsing all of the GAPDH entries into one
group. A single amino acid substitution in one of the protein
isoforms led to an increase in unique peptide counts which led
the splitting algorithm to assign many of the spectral counts to
this one isoform. However, this only occurred in two samples,

both of which belonged to the B6 strain. This led to the isoform
appearing to be differentially expressed between strains. Small
unique count numbers for protein families with high sequence
homology (e.g., GAPDH, actins, tubulins), where the bulk of
their spectral counts come from shared peptides, can produce
large fluctuations in protein total spectral counts after splitting.
This led us to investigate strategies for grouping such similar
proteins prior to the splitting algorithm.

Ensembl Family and Peptide-Based Grouping Strategies
In one approach, we grouped similar proteins into Ensembl-

defined protein families and then counted the spectral counts
found per family. After grouping similar proteins into families,
only 0.59% of the peptides were ambiguously assigned to multi-
ple families. After filtering out families with a sum of fewer than
10 counts across all 8 samples and 1 family with severe batch
effects, 1807 families remained for further analysis.

An alternative grouping approach was to group two similar
proteins if they each had fewer than X exclusive observed
peptides with a total of Y exclusive peptide counts (spectra) to
distinguish between them. We compared grouping by Ensembl
protein family to five versions of this peptide-based grouping
strategy: 1. No grouping, 2. Baseline grouping (requires each
protein to have at least one exclusive peptide), 3. Light grouping
(requires at least one exclusive peptide with a total of five
exclusive peptide counts), 4. Moderate grouping (requires at
least two exclusive peptides with a total of 10 exclusive peptide
counts), and 5. Aggressive grouping (proteins are grouped if they
share any peptides) (Table 1).

Due to the relatively low similarity threshold set by Ensembl
when they constructed the protein families, we found grouping by
Ensembl family to be on the aggressive end of the spectrum. We
mapped groups formed using Ensembl families to groups formed
using the moderate (2/10) grouping criteria. We found that only
3.7% of the groups formed using peptide-based criteria contained
proteins belonging to multiple Ensembl families. This indicated
that grouping using moderate peptide criteria rarely groups two
proteins that belong to different families and are therefore most
likely functionally distinct. Conversely, 19.0% of Ensembl families
mapped to multiple groups in the moderate grouping scheme.
This suggests that grouping by Ensembl family may be overly
aggressive in some cases because there may be sufficient peptide
data to quantify some members of the families individually. We
decided to use the Ensembl family grouping for further analyses
because of the family level annotation provided by Ensembl.

Table 1. Comparison of Strategies for Grouping Similar Proteinsa

grouping strategy

percent

of peptides

shared

total

number of

groups

number of

groups

with >10

counts

percent of groups

containing

any shared

peptides

percent of groups

containing

only

one protein

number of groups

differentially

expressed

(p < 0.05/q < 0.05)

No grouping 31.16% 4593b 2583 52.03% 100.00% 116/16

Baseline grouping (1/1) 11.94% 3264 2405 33.76% 77.51% 120/17

Light grouping (1/5) 6.84% 2998 2329 26.66% 70.92% 119/17

Swiss-Prot search with no grouping 4.78% 2976 2201 27.21% 100.00% 110/16

Moderate grouping (2/10) 4.62% 2885 2259 22.13% 69.06% 123/16

Ensembl family grouping 0.59% 2343 1808 4.54% 55.65% 101/19

Aggressive grouping 0.00% 2579 1958 0.00% 63.31% 111/14
aGrouping label (2/10) indicates that two proteins with any shared peptides are merged unless they each have 2 exclusive peptides with a total of 10
exclusive peptide counts to distinguish between them. bThe “no grouping” protein set includes redundant proteins.



2909 dx.doi.org/10.1021/pr200133p |J. Proteome Res. 2011, 10, 2905–2912

Journal of Proteome Research ARTICLE

Increase in Peptide and Spectral Counts When Using a
Complete vs a Nonredundant Database

To avoid the problems associated with shared peptides,
proteomics data can be searched against databases with minimal
sequence redundancy, such as Swiss-Prot. When a protein has
multiple isoforms, Swiss-Prot usually has one canonical sequence
to represent the set. Ensembl, as well as other more complete
databases, include separate entries for gene duplications and
splice isoforms, leading to higher sequence redundancy within
the databases. For our data set, 31.1% of Ensembl peptides were
ambiguous before protein grouping whereas only 4.8% of Swiss-
Prot peptides were. We searched our data set against both the
Ensembl (reference/B6) and Swiss-Prot databases so that we
could determine if the additional information content in a
complete database would significantly increase peptide identifi-
cations and spectral counts. Using Ensembl, we observed a 6.8%
increase in successful spectrum-to-peptide assignments. Using a
standard parsimony analysis, an average of 3336 (SD = 732)
additional peptides and 176 (SD = 22) proteins were identified
per sample when searching Ensembl compared to Swiss-Prot.
Complete results are in Supporting Information Part 1. A
comparison between other more complete databases (e.g., NCBI
RefSeq, UniProtKB/TrEMBL, and IPI) was not attempted but
similar increases in peptide identifications would be expected.

To make a fair protein-level comparison, we selected only the
749 cases where there were one-to-one matches between Swiss-
Prot proteins and Ensembl families that contained multiple
isoforms. In 376 of those cases, additional peptides were found
using Ensembl or Swiss-Prot (Figure 2). Of these, 296 (78.1%)
gained additional peptides when all of the isoforms in the
Ensembl family were considered. A total of 30 proteins gained
five or more additional distinct peptides. In all of these 30 cases,
there is peptide evidence that multiple isoforms are present in the
samples. Spectral counts increased dramatically in some cases.
Several specific examples are given in Supporting Information
Part 1.

Additional distinct peptides were also found using Swiss-Prot,
which suggests that either Ensembl does not contain all of the
sequences that are used in Swiss-Prot or that searching a larger
database reduces search sensitivity for low-scoring peptides. Of
the 30 539 Swiss-Prot peptides identified by SEQUEST, 620
(2.0%) were not found in the reference Ensembl database search.
Of these, 69 were found in the D2 Ensembl database search
because Swiss-Prot contained the D2 version of the peptide. This
could be because there are multiple versions of the peptide across
the strains and that Swiss-Prot contains the version found in the
D2 strain, or it could be due to an error in the Ensembl genome.
Of the remaining 551 peptides not found in either Ensembl
search, 341 were in fact present in the Ensembl database but were
not found in the SEQUEST search due to reduced sensitivity
when searching a larger database. The remaining 210 could not
be found at all in Ensembl, indicating missing sequence data or
annotation. (Additional details can be found in Supporting
Information Part 1.)

Differential Expression Results
Striatal protein expression was very similar between B6 and

D2 (Figure 3, Pearson r = 0.997, p < 2e-16). Of the 1,807 families
exceeding minimum count cutoffs that we were able to quantify,
101 were significantly different between strains (p < 0.05). After a
False Discovery Rate (FDR) adjustment for multiple compar-
isons, 19 remained significant (q < 0.05) (Figure 3). Ten of the

Figure 2. Histogram of the number of additional unique peptides
identified when using Ensembl vs Swiss-Prot. Only the cases where
one Swiss-Prot protein mapped to one Ensembl family that represented
two or more isoforms (and where additional peptides were found using
Ensembl or Swiss-Prot) are shown.

Figure 3. Protein families found to be significantly different between
strains. Gray circles represent all of the data. Black open circles represent
a p-value of less than 0.05. Black closed circles represent an FDR-
adjusted q-value of less than 0.05. Quantile normalized and batch
adjusted data is shown, but a plot of the raw data was similar.

Table 2. Number of Significantly Differentially Expressed Pro-
tein Families that have at least One Protein that was Identified in
the Data Set and that Lie within a Region of the Genome Found
to be Associated with the Given Phenotype

quantitative phenotype p < 0.05 q < 0.05

Acute Alcohol Withdrawal 13 3

Alcohol Acceptance 5 2

Alcohol Metabolism 14 3

Alcohol Preference Drinking 54 10

Alcohol Response Conditioning 21 1

Alcohol Stimulated Activity 65 13

Chronic Alcohol Withdrawal 24 3

Hypothermia 6 2

Loss of Righting Reflex 12 3
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19 had p-values of less than 0.05 even when no batch adjustment
was performed.

Eighty-four (83%) of the significantly differentially expressed
families had coding regions that fell within one of the genomic
regions of interest identified by the Portland Alcohol Research
Center (Table 2). This is significantly more than expected by
chance as these regions cover only 64% of the genome (p =
0.00002) and only 73% of all of the families identified overlapped
with these regions (p = 0.01). Differentially expressed proteins
that overlap with these regions are suspect “quantitative trait
proteins” and are listed in Supplemental Table 5 (Supporting
Information).

Influence of Strain-Specific Databases on Spectral Counts
and Differential Expression Analysis

We compared quantitative results obtained from searching the
D2 samples on the reference Ensembl database vs an Ensembl
database adapted to match the D2 genome sequence. On
average, we identified an additional 239 peptides per sample
when using the D2 database, which represents an increase of
0.44%. Only 62 (3.4%) of the protein families had spectral count
differences of greater than 5%. Of those 62, just 7 went from
differentially expressed to not or vice versa.

If we assume true counts are obtained using the D2 database
on the D2 samples, we obtained 91 true positives (the protein
family was determined to be significantly differentially expressed
using either database), 11 false positives, 10 false negatives, and
1695 true negatives. These led to a false positive rate of 0.64%
and a false negative rate of 9.9%. Six of the false positives and 7 of
the false negatives had only a small change in their p-value, which
led to a change in differential expression status due to the
arbitrary cutoff of 0.05. Five false positives and two false negatives
had significantly altered p-values due to low peptides counts for
the D2 strain when searched on the reference database. In these
cases, at least one D2 peptide was absent in the reference
database but was present in the D2 database. This led to an
increase in peptide counts in the D2 samples and a change in
differential expression status when the appropriate database was
used. An example peptide containing an amino acid substitution
is shown in Table 3. Spectra for the two peptide forms confirming
the amino acid substitution are provided in Supporting Informa-
tion Part 3.

The remaining false negative was a low count protein family
that appeared to have missing counts in both strains when the D2
database was used. This suggested an error in the D2 database.
Because we searched both strains on both Ensembl databases, we
were able to identify cases where discrepancies likely arose due to
sequence errors in the reference or D2 databases. For example,
we found 29 peptides that were present in both strains when
using the D2 database, but were absent when using the Ensembl
reference database. This suggests there is an error in the Ensembl

reference sequence. Conversely, there were 37 peptides that were
found in both strains when using the reference database and were
absent when using the D2 database. This suggests there is an
error in the D2 genome sequence or the Ensembl transcript
coordinates used to insert the polymorphism and retranslate the
protein.

’CONCLUSIONS

Managing Sequence Redundancy
We identified 6.8% more peptides (approximately 27 000

matches) when we used the complete Ensembl database with
explicit isoform entries rather than the nonredundant Swiss-Prot
database. This illustrates the value of using a complete database
that includes multiple isoforms as independent entries rather
than a nonredundant database that uses a canonical sequence to
represent a protein family. We found that 46% of the proteins
with multiple isoforms had increased counts when their isoforms
were considered. We chose the Ensembl database because of its
straightforward mapping onto the mouse genome so that we
could construct strain-specific databases. Although we did not
evaluate other frequently used examples of complete databases
such as UniProtKB/TrEMBL, NCBI RefSeq, and IPI (now
discontinued), many of which include even more isoforms than
Ensembl, we expect that utilizing these complete databases
would also increase peptide identifications by similar or more
amounts.

Although searching more complete databases increased pep-
tide counts, additional analysis steps were necessary to address
sequence redundancy in the databases. Extensive sequence
redundancy can lead to many peptides being shared. If these
shared peptides are not counted properly, inaccurate total
protein counts may result and lead to erroneous differential
expression candidates. Peptide splitting algorithms based on
unique peptide counts become unreliable when unique counts
are too small.

We explored two different ways to group similar proteins
before peptide splitting was performed. One approach for group-
ing similar proteins was to compare the sets of peptides found for
each protein. Most proteomics analysis pipelines group proteins
that have identical peptide sets (redundant proteins) and remove
peptide subsets (parsimony analysis).18,19 We extended these
concepts by grouping proteins that shared most of their peptides
and had few exclusive peptides to distinguish between them
before applying a shared-peptide splitting calculation. A single
unique peptide may suggest a protein’s presence in the sample,
but it may not provide sufficient data to quantify the protein
independent of its family members.27 Grouping similar proteins,
even if there was some limited unique peptide evidence, fixed the
unreliable quantitative results we observed without grouping.

Table 3. Effect of a Single Amino Acid Substitution on Protein Family ENSFM00250000001899a

protein ID: ENSMUSP00000068260 reference DB D2 DB

peptide sequence B6�1 B6�2 B6�3 B6�4 D2�1 D2�2 D2�3 D2�4

ELSGLPSGPSVGSGPPPPPPGPPPPPIPTSSGSDDSASR 0 0 0 0 10 6 10 6

ELSGLPSGPSVGSGPPPPPPGPPPPPISTSSGSDDSASR 5 8 8 10 0 0 0 0
aUsing the Ensembl reference database, this family was considered differentially expressed with a total of 185 counts in the B6 strain and 148 counts in
the D2 strain (edgeR, p = 0.0077). Using the D2 database on the D2 samples increased the D2 counts to 180, making the family no longer significant
(p = 0.20). This change is due to the single amino acid substitution S242P in protein ENSMUSP00000068260.
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In analogy to definitions of “minimal identifiable protein sets”,
we attempted to define the “minimal quantifiable protein set”.
For example, if at least two distinct peptides and at least ten
peptide counts were required to consider a protein quantifiable,
then should not it logically follow that at least two unique
peptides and at least ten unique peptide counts be required to
separately quantify two similar isoforms? The exact definition of
what is quantifiable depends onmany factors and our definition is
what made sense for our data and quantification technique. For
most experiments, the number of identifiable proteins will
exceed, sometimes greatly, the number of quantifiable proteins.

An alternative grouping approach was to use protein families
based on sequence similarity. This is algorithmically complex to
compute, but is conveniently provided for Ensembl proteins. We
chose to utilize this grouping because of the useful family
annotations provided by Ensembl. Managing annotations for
proteins grouped on a by-experiment basis is a challenge that
is typically overlooked. There is a downside to using Ensembl
protein families, however. If one member of the family is signi-
ficantly differentially expressed, and the others are not, that
difference may no longer appear significant when the counts
are summed into families. We observed this behavior for 25
proteins, 16 of which were confirmed using strictly unique
peptide counts (p<0.05). Grouping related proteins using protein
families may cause us to miss some significantly differentially
expressed proteins; however this is preferable to keeping related
proteins separate when there is insufficient unique peptide
information to reliably split their shared peptides.

Normalization and Batch Corrections
Large-scale technologies such as microarrays and mass spec-

trometry often involve multiple samples processed at different
times and require normalization to remove nonbiological
variability. We compared several normalization methods (see
Supporting Information Part 2) and found that quantile normal-
ization—a powerful, nonlinear normalization method frequently
used for microarrays20—performed the best. Quantile normal-
ization makes the distribution of spectral count values nearly
identical between samples, an assumption that is reasonable for
this comparison of the same tissue between very similar mouse
strains. There may be many other situations where quantile
normalization would not be appropriate. Our study involved two
different sample collections, striatum preparations, and sets of
mass spectrometry runs separated by several months, which can
be typical in experiments involving multiple biological replicates.
Using cluster analyses (see Figure 1) and principal component
analyses (Supporting Information Part 2), we found that sig-
nificant batch effects (additional sources of nonbiological
variability) that altered protein ranks were still present even after
quantile normalization. Our study design, where two pairs of
samples were run at each time point, allowed for correction of
batch effects using empirical Bayesian methods.24 Removal of
nonbiological variation resulted in lower p-values from statistical
tests and thresholds had to be adjusted accordingly. Batch
corrections can be aggressive and clear evidence that they are
necessary should be demonstrated. Quantitative proteomic
study designs must also be compatible with batch correction
assumptions.

Genome-Sequence Informed Databases
We identified 0.44% more peptides when we used a protein

database that took into account the strain’s genome sequence. As
these two strains of mice are roughly as similar to each other as

two humans are, we expect similar results would be obtained in
human data. Although the increase in spectral counts is low, most
of the observed differences are concentrated in only a handful of
families and may alter their differential expression status. When
we used the Ensembl reference database rather than the strain-
specific database in the analysis for differential expression, we
observed a false positive rate of 0.64% and a false negative rate of
9.9%. These values show that protein-based expression techni-
ques are more robust to underlying genomic sequence variation
than mRNA hybridization techniques.2 This was not too surpris-
ing as there are many more genomic polymorphisms than amino
acid substitutions due to codon redundancy in the genetic code.
We conclude that the vast majority of proteins do not have
quantitative estimates that are influenced by underlying sequence
differences, but in the few that do, the influence can be significant.

Annotation for known amino acid substitutions is growing in
databases such as Swiss-Prot. This will continue to improve as the
availability of genome sequence data increases exponentially. Search
algorithms that incorporate this annotation for known amino acid
substitutions will increase their spectrum-to-peptide assignments
and will avoid some false positive and negative conclusions.

Differential Expression in Mouse Strains
The number of protein families found to be differentially

expressed in striatum between strains B6 and D2 was only about
one-hundred. Of those that were, a large proportion (83%)
contained proteins that lie within previously identified genomic
regions of interest for alcohol-related behavioral traits. These
proteins will serve as good candidates for proteins that may
explain the vast behavioral differences between these strains.
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