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Gene expression analysis is a valuable tool for deter-
mining the risk of disease recurrence and overall sur-
vival of an individual patient with breast cancer. The
purpose of this study was to create and validate a
robust prognostic algorithm and implement it within
an online analysis environment. Genomic and clini-
cal data from 477 clinically diverse patients with
breast cancer were analyzed with Cox regression
models to identify genes associated with outcome,
independent of standard prognostic factors. Percen-
tile-ranked expression data were used to train a “met-
agene” algorithm to stratify patients as having a high
or low risk of recurrence. The classifier was applied
to 1016 patients from five independent series. The
200-gene algorithm stratifies patients into risk groups
with statistically and clinically significant differences
in recurrence-free and overall survival. Multivariate
analysis revealed the classifier to be the strongest
predictor of outcome in each validation series. In un-
treated node-negative patients, 88% sensitivity and
44% specificity for 10-year recurrence-free survival was
observed, with positive and negative predictive values
of 32% and 92%, respectively. High-risk patients appear
to significantly benefit from systemic adjuvant therapy.
A 200-gene prognosis signature has been developed and
validated using genomic and clinical data representing a
range of breast cancer clinicopathological subtypes. It is
a strong independent predictor of patient outcome and
is available for research use. (J Mol Diagn 2011, 13:

297–304; DOI: 10.1016/j.jmoldx.2010.12.003)

Genomic profiling is increasingly being incorporated into
the clinical management of patients with breast cancer,
specifically the use of multigene algorithms to predict an
individual patient’s risk of disease recurrence, overall
survival (OS), and potential benefit from adjuvant ther-
apy.1 Since the advent of high-throughput genomics,
multiple gene “signatures” associated with disease pro-
gression have been identified, several of which are
sold as commercially available diagnostic tests [eg,

MammaPrint (Agendia BV, Amsterdam, The Nether-
lands), OncoType DX (Genomic Health, Redwood City,
CA), and MapQuant DX (Ipsogen, Marseille, France)].2–5

Although there is minimal overlap between the underlying
gene sets used,6,7 the clinical significance of each is
similar.8 For a patient predicted to be at low risk of recur-
rence, the risks and adverse effects of chemotherapy
negate the small potential increase in recurrence-free
survival (RFS) probability.8 Prospective clinical trials9 are
under way to further test this hypothesis.

In addition to the clinical significance of the available
assays, another similarity is their mode of delivery: a
centralized sample processing and gene expression
analysis laboratory. This format requires the shipping of
tumor tissue and a wait of up to 2 weeks for the genera-
tion of a result. The hypothesis behind this study was that
a prognostic breast cancer signature could be devel-
oped using publicly available data sets and ultimately
made available to appropriately equipped and experi-
enced diagnostic laboratories, via the Internet. Although
this model would require the treating hospital to generate
the gene expression profile, the potential cost and time
savings would be substantial. In addition, this model
would allow the clinician to remain in control of the biopsy
material, all data generated, and the overall diagnostic
process. A similar approach has been taken to develop a
prognostic signature for patients with stage II or III colon
cancer.10

A training series of genomic data from patients with
breast cancer with diverse clinicopathological variables
was compiled from public data repositories. This infor-
mation was analyzed using a statistical approach de-
signed to identify individual genes associated with recur-
rence, independent of other prognostic factors. A
predictive algorithm was formed on the gene set identi-
fied by this strategy and then applied to multiple inde-
pendent breast cancer series, representing a range of
clinicopathological variables. The resulting algorithm out-
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puts a robust easily interpretable prognostic index and
risk group assignment. Prognostic indexes and risk
group assignments for all patients were evaluated in
the context of the available clinical and survival data to
assess clinical utility. The algorithm is implemented in an
online diagnostic environment (ChipDX), available
for evaluation (http://www.ChipDX.com, last accessed
March 3, 2011; free registration is required).

Materials and Methods

Patients and Clinical Data

Gene expression and clinical data from two previously
described cohorts were compiled to form a gene-selec-
tion and algorithm training series of 477 patients [National
Center for Biotechnology Information (NCBI) Gene Ex-
pression Omnibus (GEO) GSE492211 and GSE653212].
Of the patients, 164 (34%) did not receive adjuvant treat-
ment of any kind, whereas 205 (43%) received endocrine
therapy only. Local or distant recurrence was defined as
the clinical end point. The institutional ethics board of each
hospital approved the use of the tissue material, and written
informed consent was obtained. Relevant molecular and
clinical variables for the training series are shown in Table 1.

To test the performance of the classifier on patients
who were not involved in gene selection and the algo-

Table 1. Details of the 477-Patient Training Series Used for
Gene Selection and Algorithm Training

Characteristic
No. of

patients
% of

Series

Tumor size (cm)
�2 182 38
2–5 232 49
�5 9 2
NA 4 11

Age (years)
�50 97 20
�50 331 69
NA 49 10

ER status
Positive 358 75
Negative 119 25

Nodal involvement
Positive 128 27
Negative 349 73

Tumor grade
1 (low) 93 19
2 (moderate) 234 49
3 (high) 72 15
NA 78 16

10-year disease recurrence
No 327 69
Yes 150 31

Adjuvant therapy
None 164 34
Endocrine only 205 43
Systemic treatment 108 23

The clinicopathological characteristics of the five independent validation
series can be found in the referenced publications and in Supplemental
Tables S1-S5 (available at http://jmd.amjpathol.org).

NA, not available.
rithm training process, five additional series11,13–16 of
genomic profiles were obtained, totaling 1016 patients.
Selection criteria for each series are summarized in
Table 2 and described in detail in the original publica-
tions associated with each series. Patients from validation
series 1, 2, and 5 did not receive adjuvant therapy. Of
159 patients, 126 (79%) in validation series 3 received
adjuvant systemic therapy, although patient-level treat-
ment data for this series were not available. All patients in
validation series 4 were estrogen receptor (ER) positive
and received adjuvant hormonal therapy. Clinicopatho-
logical tables for each of the five validation series are
provided in Supplemental Tables S1-S5 (available at
http://jmd.amjpathol.org).

Gene Expression Data Processing and Quality
Control

Training and validation series 1 through 4 were gener-
ated using a platform (Affymetrix GeneChip) with a
chip (U133a or U133 Plus 2.0). Sample processing and
hybridization (GeneChip) was performed according to
manufacturer recommendations, as reported by the
respective original publications.11–14,17 Raw GeneChip
output files (CEL files) were processed with the MAS5
method and median centered using the housekeeping/
reference gene set (Affymetrix) value, defined by de-
termining the median.

Validation series 5 was generated using a custom two-
channel oligonucleotide microarray, described by van’t
Veer et al3 and van de Vijver et al.16 Data from this validation
series were downloaded in a normalized log-ratio format.

Prognostic Gene Selection and Algorithm
Training

A modified version of the method described by Bair
and Tibshirani,18 implemented in a package (BRB Ar-
rayTools),19 was used to develop and train a predictive
algorithm to stratify patients into categories corre-
sponding to a high or low risk of disease recurrence.
This method uses Cox proportional hazards (CPH)
models to relate RFS to a specified number of “met-
agene” expression levels (ie, principal component lin-
ear combinations of expression data). To identify a
predictive set of genes for use with the classification
algorithm, tenfold cross validation (CV) was performed
on the training series. At each iteration of the CV pro-
cess, those genes significantly associated with RFS
(P � 0.001) in nine tenths of the training series, inde-
pendent of age, tumor size, ER status, nodal involve-
ment, and tumor grade, were identified. These genes
were used to predict the RFS risk status of the “held-
out” one tenth of the training series. An example of the
CPH method of gene selection is provided in Supple-
mental Table S6 (available at http://jmd.amjpathol.org).

Genes selected in two or more of the CV rounds
were selected for inclusion in the final predictive gene
set. To minimize the impact of inter-laboratory “batch

effects” on the performance of the classifier, a data
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standardization method was developed. This involved
converting the log 2 intensity values for the final gene
set to percentile rank values (ie, 0.00 to 100.00) using
the “percentrank” function in Microsoft Excel or the
“ecdf” function in R. The metagene classifier was then
retrained on the percentile rank values to generate the
final classification algorithm.

The prognostic index can be computed by the follow-
ing formula: �iwixi � C, where wi and xi are the weight and
logged gene expression, respectively, for the i gene and
C is an adjustment factor calculated during algorithm
training to center the distribution of indexes at approxi-
mately 0. A high value of the prognostic index corre-
sponds to a high value of hazard of developing distant
metastases. The classification threshold was set based
on the 33rd percentile of training series prognostic
indexes.

Because a subset of the training series (164 patients)
did not receive any form of adjuvant therapy, the entire
gene selection and algorithm training process was re-
peated using data corresponding to the untreated pa-
tients alone. Cross-validated risk-group predictions from

Table 2. Training and Validation Series Details, Group Size, Dem
Analysis Output (DMFS and OS)

Series Description Covariate

Training: GSE4922,
Ivshina et al,12;
GSE6532, Loi
et al11 (N � 477)

ER�/ER-, N0/N1,
systemic
therapy,
tamoxifen only,
or no adjuvant
therapy

Age
ER�

Grade
Size
Node�

Endocrine therap
Chemotherapy
200-Gene signatu

Validation 1:
GSE7390,
Desmedt et al13

(N � 198)

ER�/–, N0, �61
years,
untreated,
�5 cm

Age
ER�

Grade
Size
200-Gene signatu

Validation 2:
GSE11121,
Schmidt et al14

(N � 200)

ER�/–, untreated,
population
based, N0

Grade
Size
200-Gene signatu

Validation 3:
GSE1456,
Pawitan et al15

(N � 159)

ER�/–, population
based, 126
received
adjuvant
therapy

Grade
200-Gene signatu

Validation 4:
GSE9195 and
GSE6532, Loi
et al11 (N � 128)

ER�, adjuvant
tamoxifen
treated, N0/N1,
�5 cm

Age
Grade
Nodes
Size
200-Gene signatu

Validation 5: NKI
295, Van De
Vijver et al16

(N � 295)§

ER�/–, untreated,
stage I/ II,
�53 years;
N0/N1

ER�

Node�

99-Gene signatur

GSE numbers are the National Center for Biotechnology Information G
GSE, GEO Series; N0, lymph node negative; N1, lymph node positive
*Value for RFS in the training series and for DMFS in the validation 1,
†Value for OS in the validation 1 and 5 series and DSS in the validati
‡Statistically significant variables within each CPH model.
§Validation series 5 was generated using a custom oligonucleotide mic

from Rosetta Inpharmatics, Seattle, WA (http://www.rii.com/publications/2
the model developed were compared with those gener-
ated using the complete series; however, a reduction in
cross-validated algorithm performance was observed
(data not shown). Thus, the signature generated from
analysis of the complete 477-patient series was retained
as the final model.

Statistical Analysis

Kaplan-Meier analysis and log-rank testing were used to
evaluate the RFS, distant metastases–free survival
(DMFS), OS, or disease-specific survival (DSS) of pre-
dicted risk groups identified within each series. All fol-
low-up data were censored at 10 years. Multivariate CPH
analysis of each series was performed, using the avail-
able clinical covariates for each (Table 2). In all CPH
analyses, the low-risk group was used as the reference
group. For all tests, P � 0.05 was considered statistically
significant. Assay sensitivity, specificity, and positive pre-
dictive values were calculated on validation series 1 and
2 using 10-year censored data.

Gene expression analysis was performed using R (http://
www.r-project.org, last accessed March 3, 2011), Bio-

hic Description, and Multivariate Cox Proportional Hazards

DMFS
value*

DMFS HR
(95% CI)

OS
P value† OS HR (95% CI)

0.42 1.01 (0.99–1.02)
0.58 1.18 (0.65–2.16)
0.059 1.40 (0.99–1.97)
0.10 1.01 (1.00–1.02)
0.0001‡ 2.79 (1.67–4.66)‡

0.28 0.73 (0.42–1.28)
0.0032‡ 0.35 (0.18–0.70)‡

0.0001‡ 3.14 (1.80–5.49)‡

0.35 1.022 (0.98–1.07) 0.46 1.02 (0.97–1.06)
0.54 0.81 (0.40–1.62) 0.033‡ 0.48 (0.25–0.94)‡

0.73 1.11 (0.63–1.95) 0.23 0.74 (0.45–1.21)
0.092 1.35 (0.95–1.92) 0.074 1.35 (0.97–1.87)
0.0046‡ 4.37 (1.58–12.08)‡ 0.0053‡ 3.31 (1.43–7.64)‡

0.033‡ 1.93 (1.057–3.51)‡

0.79 1.044 (0.75–1.45)
0.056 2.63 (0.98–7.055)

0.19 1.47 (0.83–2.64) 0.34 1.40 (0.70–2.80)
0.055 2.58 (0.98–6.67) 0.025‡ 4.67 (1.23–17.81)‡

0.22 0.97 (0.93–1.019)
0.74 0.89 (0.46–1.72)
0.94 0.96 (0.38–2.38)
0.0075‡ 1.49 (1.11–1.98)‡

0.019‡ 6.51 (1.37–30.86)‡

0.18 0.74 (0.47–1.16) 0.057 0.51 (0.32–0.82)
0.39 0.84 (0.56–1.25) 0.63 0.90 (0.57–1.40)
0.0001‡ 2.92 (1.77–4.80)‡ �0.0001‡ 3.91 (2.06–7.42)‡

pression Omnibus entry for each series.
ederlands Kanker Instituut (Netherlands Cancer Institute).

nd 5 series.
ies. OS details for other series not available.

containing 99 of the 200 genes used by the classifier. Data were obtained
m.html, last accessed March 3, 2011).
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were performed using MedCalc (MedCalc Inc., Mari-
akerke, Belgium). An online gene expression analysis
system (ChipDX) was developed with R, Bioconductor,
Microsoft ASP.net, and SQL Server (Microsoft Corpora-
tion, Redmond, WA).

Results

Selection of Genes Associated with Cancer
Recurrence and Comparison with Other Signatures

From the training series of 477 patients with breast can-
cer, Cox regression–based gene selection identified a
set of 200 genes with univariate prognostic significance
(P � 0.001). These genes were associated with RFS,
independent of age, tumor grade, ER status, tumor size,
and nodal involvement. Of the 200 genes, only three
(CKS2, PRC1, and TRIP13; all involved in cell-cycle reg-
ulation) were shared with the 231-gene Amsterdam sig-
nature of van’t Veer et al3; two genes (CCNB1 and MKI67;
involved in cell cycle regulation and proliferation) were
shared with the 21-gene recurrence score.2,3 No genes
were in common between all three classifiers. A non-
significant overlap of seven genes was observed with
the Sørlie et al22 intrinsic subtype gene list [361 (85%) of
the 427 unique genes in this list were present on the U133A
GeneChip]. The annotated 200-gene set, correlations to
outcome, and CPH P values are provided in Supplemental
Table S7 (available at http://jmd.amjpathol.org).

Although the genes were selected without regard to
their known or purported biological functions, it was
hypothesized that closer inspection of the set would
reveal roles in cancer development and progression.
Functional analysis was performed using Ingenuity Pa-
thway Analysis (http://www.ingenuity.com/products/
pathways-analysis.html, last accessed March 3, 2011),
which compares the composition of a given gene set
with a database of all known genes and associated
functional annotation. This analysis revealed that sig-
nificant associations existed between the 200-gene set
and gene categories known to regulate tumorigenesis
(eg, ADAM17, MKI67, and CCNB1), cell cycle modula-
tion (eg, ATM, SMARCA4, and CSK2), cell death (eg,
APC, BCL2L, and TOP2A), and connective tissue de-
velopment (eg, NR3C1 and CD46). The top three ca-
nonical pathways enriched in the prognostic gene set
were ATM signaling (eg, ATM, MAP2K4, and H2AFX),
hereditary breast cancer signaling (eg, POLR2H,
RAC2, and SMARCA4), and cell cycle G2/M DNA dam-
age checkpoint regulation (eg, CCNB1, GADD45A, and
TOP2A).

These results suggest that the 200-gene signature
represents several diverse biological and molecular
processes relevant to breast cancer development and
progression. This observation has also been made of
other prognosis signatures that share similar catego-

ries of enriched genes.23
Training Series Cross Validation and Algorithm
Training

After converting the gene expression intensities of the 200
genes to percentile-rank values (from 0.00 to 100.00), the
metagene algorithm was retrained. Risk-group predictions
were compared with those generated by the gene expres-
sion (log) intensity algorithm to verify no loss of accuracy
had occurred because of the data conversion process. In
the finalized rank-based algorithm, samples were classified
as low risk if their prognostic index was ��0.38 or high risk
if the index was greater than this threshold (Figure 1). Table
1 provides details of the 477-patient training series used for
gene selection and algorithm training. Clinicopathological

Figure 1. Visualization of the 200-gene signature in the training series of
patients with breast cancer. Patients are represented horizontally, and genes
are represented vertically. Rows are ordered by increasing prognostic index
(range, –2 to 2), and those individuals experiencing disease relapse within 10
years are indicated with a black bar adjacent to the gene-expression matrix.
Patients without disease recurrence but less than a 3-year follow-up are
excluded. Gene expression: red, up-regulated; green, down-regulated; and
black, no change or absent.
characteristics of the five independent validation series can
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be found in the referenced publications and in Supplemen-
tal Tables S1-S5 (available at http://jmd.amjpathol.org).

In Figure 1, this threshold corresponded to an 8.5%
false-negative rate for 5-year RFS in the subset of training
series patients who did not receive systemic therapy.

Figure 1 also shows the relationship between tumor grade
and prognostic index, with 97% of grade 3 tumors classified as
high risk and 54% of grade 1 tumors classified as low risk. Of
grade 2 tumors, 69% (representing 54% of the complete train-
ing series) were classified as high risk. The result of a �2 test of
tumor grade versus risk group was significant (P � 0.001). The
difference in tumor size was significantly different between risk
groups: mean � SD of 19 � 10 mm in the low-risk group
versus 25 � 12 mm in the high-risk group (P � 0.0001).

Kaplan-Meier analysis and log-rank testing were performed
on the cross-validated training series risk groups, and a sta-
tistically significant difference in RFS was observed between
the high- and low-risk groups [P � 0.001; hazard ratio (HR),
4.2; 95% confidence interval (CI), 3.0 to 5.8]. At the 10-year
follow-up, RFS for the low-risk group [161 patients (33.8%)]
was 87%, compared with 56% for the high-risk group [316
patients (66.2%)]. Of the 118 patients who developed disease
recurrence within 5 years, 104 (88%) were assigned to the
high-risk group. An additional 32 individuals relapsed between
5- and 10-year follow-up, 26 (81%) of whom were classified as
high risk by the signature.

Validation series 5 was analyzed on a custom 22,000-
feature microarray platform that contained features
matching 99 (49.5%) of those used in the 200-gene sig-
nature developed herein. [The metagene algorithm was
retrained on these 99 genes (percentile-rank values),
resulting in cross-validation risk-group assignment
changes for 10% of the 477 patients in the training series,
compared with their result with the full 200-gene model.]
A 15% decrease in the HR of the algorithm was also
observed when comparing the CV performance of the 99
genes with that of the 200-gene classifiers (see Supple-
mental Figure S1 at http://jmd.amjpathol.org).

Analysis of Classifier Performance on Multiple
Independent Validation Series

The performance of the 200-gene prognostic signature
was evaluated by analysis of multiple independent pre-
viously described breast cancer gene expression data
sets, summarized in Table 2 and Supplemental Tables
S1-S5 (available at http://jmd.amjpathol.org). Kaplan-
Meier analyses were assessed with the log-rank test and
resulted in a statistically significant result (P � 0.002) for
RFS, DMFS, OS, or DSS. For validation series 1 through 4,
analyzed by the complete 200-gene signature, each sub-
set of patients classified as low risk (ie, prognostic index
��0.38) experienced extremely high survival rates
(�95% at 5 years and �90% at 10 years).

Despite validation series 5 being analyzed using a 99-
gene subset of the full classifier, a significant stratification
for both DMFS and OS was still observed (P � 0.0001 for
both). Comparison of risk-group predictions by the 99-gene
classifier and those generated by van de Vijver et al16 with

their 70-gene algorithm revealed 81% agreement in high-/
low-risk group assignment. Kaplan-Meier analysis of the
discordant predictions (ie, high/low versus low/high) for
DMFS and OS was not statistically significant (P � 0.15, P �
0.26, respectively), indicating neither classifier was superior
in these cases, despite the observation that the 99-gene
model is known to be less accurate than the full 200-gene
version.

Across the five validation series, 376 (37%) of 1016 pa-
tients were classified as low risk, a similar proportion to that
observed in the cross validation of the training series. Se-
ries-specific risk-group numbers are shown in Figure 2.

To further assess the clinical significance of the 200-gene
signature, differences in OS and DSS for the predicted high-
and low-risk groups from validation series 1 and 3, respec-
tively, were analyzed. In these series, patients classified as
low risk experienced favorable 10-year OS (90%) and 8.5-year
DSS (95%). Kaplan-Meier analysis and log-rank testing of the
risk groups were significant for both OS (P � 0.002; HR, 6.97;
95% CI, 3.35 to 14.5) and DSS (P � 0.003; HR, 3.73; 95% CI,
2.11 to 6.61). In agreement with these findings, risk-group
stratification of patients from validation series 5, performed
using the 99-gene model, was highly significant (P � 0.0001;
HR, 4.81; 95% CI, 3.07 to 7.52). Of patients from this series,
88% who were classified as low risk were alive at the 10-year
follow-up.

Multivariate Analysis of 200-Gene Risk-Group
Predictions

Multivariate CPH was performed on the training and
validation series using all available clinicopathological
covariates to further assess the clinical significance of
the 200-gene algorithm (Table 2). Covariate-adjusted
RFS HRs for the training series and validation series 1
and 4 were statistically significant: 3.14 (P � 0.0001),
4.37 (P � 0.0046), and 6.51 (P � 0.019), respectively.
The 200-gene signature was marginally significant in
validation series 2 (P � 0.056) and 3 (P � 0.055).
Analysis of validation series 5 revealed the 99-gene
subset classifier to be independently significant for
both DMFS and OS (P � 0.0001). In each CPH analy-
sis, the gene expression classifier was the strongest
predictor of outcome.

Analysis of untreated N0 patients (validation series 1
and 2) revealed the sensitivity and specificity of the
assay for predicting 10-year DMFS to be 87.8% (95%
CI, 78.7% to 94.0%) and 41.8% (95% CI, 36.0% to
47.8%), respectively. The positive and negative pre-
dictive values of the classifier in this clinical setting
were 30.5% (95% CI, 24.7% to 36.8%) and 92.2% (95%
CI, 86.1% to 96.2%), respectively. The sensitivity and
specificity of the assay for 10-year OS (based on val-
idation series 1 only) were 89.2% (95% CI, 74.5% to
97.0%) and 46.1% (95% CI, 37.2% to 55.1%), respec-
tively. The positive and negative predictive values for
OS were 32.4% (95% CI, 23.4% to 42.3%) and 93.4%

(95% CI, 84% to 96.2%), respectively.
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Multivariate Analysis of Training Series Patients
Stratified by Gene Expression Risk Group and
Adjuvant Treatment Status

CPH analysis was performed on the high- and low-risk
subset of training series patients to determine the asso-
ciation of receiving no adjuvant treatment, tamoxifen
treatment only, or systemic therapy on RFS. All training
series covariates listed in Table 2 were included in this

Figure 2. Kaplan-Meier analysis of risk-group–stratified training and validat
Validation series 5 was analyzed using a 99-gene subset classifier, generated u
Figure S1 at http://jmd.amjpathol.org).
analysis. Of the 161 patients classified as low risk, 61
(38%) did not receive adjuvant treatment, 63 (39%) re-
ceived tamoxifen only, and 37 (23%) received systemic
therapy. CPH analysis revealed neither treatment type
was significantly associated with RFS compared with the
untreated subset of patients (tamoxifen only, P � 0.69;
systemic therapy, P � 0.16) nor were any of the other
covariates (P � 0.58 for all), as shown in Supplemental
Table S8 (available at http://jmd.amjpathol.org).

Within the high-risk subset of the training series (n �

s. P values are from log-rank testing of the high- versus the low-risk group.
of 200 genes available on the NKI custom microarray used (see Supplemental
ion serie
316), 103 (33%) of the patients were untreated, 142 (45%)

http://jmd.amjpathol.org
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received tamoxifen only, and 71 (22%) received systemic
therapy. In these patients, CPH analysis showed that sys-
temic therapy was significantly associated with recurrence
(P � 0.012; HR, 0.38; 95% CI, 0.18 to 0.81; Supplemental
Table S9 at http://jmd.amjpathol.org). This result suggests
that individuals with a high-risk gene expression profile who
receive systematic adjuvant therapy are approximately two
to six times less likely to relapse within 10 years compared
with an untreated patient of equivalent clinicopathological
and gene expression profile status. Tamoxifen-only treat-
ment was not significantly associated with a significant
change in RFS for patients in the high-risk subset (P �
0.63).

Discussion

By leveraging the body of publicly available breast cancer
gene expression data, a prognostic signature has been
generated and validated on multiple independent series of
patients with breast cancer. The 200-gene algorithm uses
gene expression rank values and generates a unique prog-
nostic index, the higher values of which are associated with
increased risk of disease recurrence and death. Validation
of the assay was performed using an independent series of
patients with breast cancer, representing 1016 individuals
with ER�/� and N0/1 cancer, across multiple age catego-
ries, tumor sizes, microarray platforms, treating hospitals,
and adjuvant treatment regimens.

The outcome of the 200-gene classifier may be useful in
determining the optimal treatment approach for individual
patients. For example, someone classified as low risk (prog-
nostic index, ��0.38) may elect not to receive adjuvant
systemic therapy, confident that �95% of several large
series of patients with a similar molecular profile were re-
currence free at 5 years, with �90% remaining recurrence
free at 10 years. On the other hand, a patient who is clas-
sified as high risk (prognostic index, ��0.38) may elect to
pursue more aggressive treatment options to reduce his or
her risk of recurrence. Furthermore, multivariate analysis of
the high-risk patient subset of the cross-validated training
series showed a significant benefit from adjuvant systemic
therapy compared with untreated patients. Because this
observation was made on the same group of patients used
to create the signature, further validation of independent
patients is warranted. These are theoretical examples of
how the algorithm described herein may be useful in the
clinical decision-making process.

Analysis of the 477-patient training series revealed an
association between histological grade and the prognos-
tic index (Figure 1). Although tumor grade is known to
correlate with disease recurrence in an analysis of large
populations, it is not included in breast cancer staging
guidelines because of the subjectivity associated with its
assessment.24,25 Tumor size and patient age are two
factors that are included in treatment guidelines and were
incorporated into the multivariate analysis of the gene
expression risk-group predictions for RFS in validation
series 1, 2, and 4. In all three analyses, the 200-gene risk
group prediction remained statistically significant and re-

sulted in the largest HR within each model. Tumor size
was significantly associated with RFS in validation series
4 only; however, the HR of 1.49 (95% CI, 1.11 to 1.98)
indicates that its contribution to the overall model was
marginal when compared with the gene expression sig-
nature (HR, 6.51; 95% CI, 1.37 to 30.86).

All genomic data used to develop and validate the assay
were derived from fresh-frozen tumor tissue, which may not
be the most practical preservation method for routine clini-
cal use. A recent clinical trial26 of biomarker-driven treat-
ment allocation for patients with advanced-stage lung can-
cer showed exciting improvements in response rates and
advocates for changes in routine diagnostic work flows to
facilitate the use of fresh tissue. Furthermore, a system that
allows local specimen processing and genomic data gen-
eration may represent an alternate reimbursement model
compared with the use of off-site third-party diagnostic ser-
vices. This factor, potential time savings plus the ability to
analyze multiple genomic signatures in parallel, could in-
centivize changes to allow the collection and preservation
of fresh-tissue biopsy specimens in more routine surgical
procedures. Viable alternatives to the use of fresh-frozen
tissue do exist, including FFPE or RNA-later preservation,
both of which have generated high-quality gene expression
data using a platform (Affymetrix).27,28 Further studies will
be required to evaluate the stability of the assay on tissue
preserved in these formats.

The 200-gene prognostic algorithm exhibits several key
differences versus the commercially available assays for
breast cancer prognosis, including the use of multivariate
Cox regression models for gene selection. This method
identified individual genes with expression patterns signifi-
cantly associated with RFS, independent of age, tumor size,
grade, ER status, and nodal involvement. Another differ-
ence is the use of gene expression ranks, rather than log-
transformed expression values or ratios. The use of rank
values resulted in a robust algorithm, as demonstrated by
the ability to successfully classify patients from multiple
independent breast cancer series into risk groups with sig-
nificant RFS and OS characteristics.

In conclusion, a robust gene expression signature was
developed and validated multiple independent breast
cancer series totaling 1016 patients, including N0/1 and
ER�/� disease, across multiple age groups and adjuvant
treatment categories. The algorithm assigns patients to a
high- or low-risk group on the basis of a set of 200-gene
expression rank values, with those classified as low risk
experiencing high rates of RFS, DMFS, DSS, and OS up
to 10 years after diagnosis; these patients do not appear
to benefit from adjuvant treatment.

The 200-gene signature described herein has been in-
corporated with automated quality control functions, data
visualization, and result-reporting tools (http://www.ChipDX.
com; free registration is required). The system is available to
interested parties for evaluation use and represents a novel
globally available genomic data analysis platform, ulti-
mately aimed at clinical use. By providing a convenient and
standardized system for multigene diagnostic assays, the
benefits of recurrence-risk prediction and treatment optimi-

zation may be extended to more patients worldwide.

http://jmd.amjpathol.org
http://www.ChipDX.com
http://www.ChipDX.com
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