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Metabolomics can map the large metabolic diversity in spe-
cies, organs, or cell types. In addition to gains in enzyme speci-
ficity, many enzymes have retained substrate and reaction
promiscuity. Enzyme promiscuity and the large number of
enzymes with unknown enzyme function may explain the
presence of a plethora of unidentified compounds in metabo-
lomic studies. Cataloguing the identity and differential abun-
dance of all detectable metabolites in metabolomic reposito-
ries may detail which compounds and pathways contribute to
vital biological functions. The current status in metabolic
databases is reviewed concomitant with tools to map and
visualize the metabolome.

Biological databases are indispensable for comparing
genomes, proteins, and biological regulation. GenBankTM, Pro-
tein Data Bank (PDB), and Gene Expression Omnibus (GEO)
are prime examples of how collecting biological information in
a coherent manner enables novel insights into evolution and to
derive testable hypotheses for gene function, yet biochemical
databases on substrate-product relationships and organism-
specific metabolic networks have lagged behind. Much of this
lag is due to the inherent complexity of enzymology. Small
changes in protein folding or in mutations in catalytic sites not
onlymay change reaction kinetics but also have large impact on
substrate specificity. Enzymes may have much broader sub-
strate specificity than usually considered. Moreover, many
enzymes exert reaction promiscuity (1), which is exploited in
bioengineering but which also complicates the reconstruction
ofmetabolic networks. Low-abundant enzymatic side reactions
have likely not been reported in favor of the dominant and
apparently biologically relevant functions and are consequently
lacking in biochemical databases, yet such side reactions may
become themajor enzyme function through evolutionary pres-
sure. Hence, the number of metabolites per species (or per cell
type inmulticellular organisms) is hard to predict except for the
most conserved metabolic pathways.
Accordingly, a surprisingly small fraction of detectedmetab-

olites can be readily identified by sensitive screening tools
such as HPLC- or GC-coupled MS (Fig. 1). It appears that the
metabolome is much larger than anticipated. Phenotypes of

species need to be determined by their individual metabolic
capacities, defined by the plasticity and flexibility of their met-
abolic networks. Metabolites can act as intracellular and extra-
cellular signals at very low concentrations and enable commu-
nication between organs, aswell as servemultiple and vital roles
for species in their ecological niches, e.g. for defense or repro-
ductive purposes.

Metabolome Diversity Originates from Enzyme
Substrate and Reaction Promiscuity

Enzyme evolution has progressed to ever more biochemical
specificity. Hence, scientific reports and consequently bio-
chemical databases emphasize specificity over diversity. On the
other hand, it is well known that substrate specificity can still be
broad (e.g. lipases (2)), and the exact substrate preferences often
remain unclear or untested. Enzymes may use a broad range
of substrates yet remain high stereospecificity (3). Different
ligands may induce large conformational changes in the cyto-
chrome P450 enzymes, leading to different kinetic parameters,
e.g. in metabolizing exogenous compounds in humans (4). In
fact, many enzymes still lack rigorous functional characteriza-
tions and are only broadly classified as “cytochrome P450” or
“oxidoreductases.” Such classifications are too vague to deduce
enzyme functions in genome-basedmetabolic reconstructions.
Enzymes may also exert specific and promiscuous compart-

ments in the same catalytic site, as shown for human carboxy-
lesterase 1, which can even bind two different molecules simul-
taneously (5). Moreover, substrate ambiguity may exert large
survival benefits for microorganisms, e.g. for detoxifying a
range of different exogenous compounds simultaneously (6).
Besides accepting diverse substrates, enzymes may also cat-

alyze more than one biochemical reaction, called enzyme
promiscuity. It has been shown that enzymes may perform
novel catalytic reactions elsewhere than in the previously iden-
tified catalytic site (7), as has been shown, for example, for phos-
photriesterase (8). This phenomenon can explain how infec-
tious microbes may quickly develop resistance against drug
therapies but can also be experimentally verified in forced evo-
lution experiments (9). Indeed, even structurally unrelated pro-
teins may perform the same reactions (on a primitive scale)
(10), thus explaining metabolic diversity as well as the limited
impact of knock-out mutations that is often observed. The abil-
ityof recoveringandmagnifyingpromiscuouscatalytic reactions is
even useful for synthesis of new chemicals (11) or for metabolic
engineering, which strives to advance metabolic capacities in
organisms (12, 13). Enzyme evolution and retention of promiscu-
ity may thus explain the size of the metabolome (Fig. 2).
Exploring the array of potential substrates in a high-

throughputmanner and simultaneously testing reaction prom-
iscuity call for unbiased reliable assays such as metabolomic
techniques. Metabolomic technology has matured to enrich
biochemical databases by hypothesis-driven biochemical
research and could also be employed for broad analysis of
mutant collections and metabolic diversity of species or to fill
gaps in metabolic networks. Current biochemical and metabo-
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lomic databases can be largely distinguished by the respective
input data in repositories that focus on genes, pathways, and
enzymes and libraries that are focused on compound-centric
data (Table 1).

Reconstructing Genomic Information toward Enzymes
and Pathways

Genomes of ever more species are being sequenced. Open
reading frames are first tentatively annotated and later
enriched, curated, and complemented by the research commu-

nity interested in that species, including highlighting pathway
gaps. For this work, a range of tools have been developed, com-
piled in the BioCyc pathway tool collections (14). Genome-re-
constructed metabolic databases are now available for hun-
dreds of species, most of which are automatically annotated.
Curation of these databases depends heavily on the input of
users from the biochemical community as exemplified for
mammalian systems (HumanCyc and MouseCyc) to plants
(AraCyc (15), MedicCyc, and RiceCyc) and microbial data-
bases, e.g. Escherichia coli (16) and yeast (17). The umbrella
databases MetaCyc and BioCyc (18) today cover more than
1500 organisms and 1100 metabolic pathways. Interestingly,
newly sequenced organisms often do not convey many novel
predicted enzymes or pathways, pointing to the relatively poor
annotation of substrate specificity for non-primary metabo-
lism, e.g. for the P450 enzyme superfamily. By evaluating the
number of enzymes, reactions, and chemical compounds
deposited in MetaCyc, it becomes apparent that the number of
biochemical entities increasesmore rapidly than the number of
pathways, indicating that many of the newly added enzymatic
reactions are not yet connected into the broadermetabolic net-
work. Here, gap filling by verifying missing links through
metabolome analysis might be highly fruitful.
A similar approach for genomic reconstruction has been pre-

sented by the Kyoto Encyclopedia of Genes and Genomes
(KEGG) Pathway Database, which can either be used as a
generic pathway tool or be restricted to specific organisms (19).
The LIGAND repository within the KEGG Database is one of
the best known and most often used reference databases of
substrate-product reaction pairs (KEGG RPAIR). Within the
past year, the KEGG LIGAND Database has increased from
15,217 metabolites to 16,746 compounds that are assigned to
5317 enzymes and 12,457 reaction pairs. Unfortunately, the
LIGAND Database comprised many erroneous structures,
often concerning stereochemistry (20). KEGG covers 366 ref-
erence pathways that are assigned to 1550 taxonomic species,
mostly automatically annotated without extensive curation.
Nevertheless, this automatic annotation can be used to con-

FIGURE 1. Metabolome diversity observed by MS. Shown are the results
from cold injection GC/TOF MS of human ileal effluent (70). Upper panel, total
ion chromatogram for a 10-s retention time window out of a 20-min chromat-
ogram. Lower panel, extracted ion chromatogram for the same 10-s retention
time window. As each ion trace can be deconvoluted into individual peaks
with resolved mass spectra, many co-eluting compounds can be separated
and identified. Novel compounds of unknown structure are detected along
with known “primary” metabolites. Compound 1, unknown; compound 2,
unknown; compound 3, serine; compound 4, unknown; compound 5, benzoic
acid; compound 6, unknown; compound 7, glycerol; compound 8, ethanola-
mine; compound 9, phosphate; compound 10, isoleucine.

FIGURE 2. Enzyme evolution toward higher specificity, retaining some substrate and reaction ambiguity. Shown is a schematic diagram of the origin of
metabolome diversity between species and within species (adapted from Ref. 1). Given the currently accepted model of enzyme evolution by gene duplication
and subsequent specialization, a generalist progenitor enzyme may have performed catalytic reactions (a and b) on substrates (A, B, and C). The phylogenetic
tree for this enzyme may have led to isoenzymes that accept only substrate B for reaction a, whereas others retained some level of substrate and reaction
ambiguity, leading to higher metabolome diversity (e.g. adding reaction a to substrate C or accepting the novel substrate D for reactions a and b).
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strain KEGG to species-related information (18, 21–23). Of a
total of 3575 EC numbers stored in the KEGG Pathway Data-
base, 1269 have more than one reaction annotation. Interest-
ingly, �1200 reactions in KEGG do not have EC annotations,
and about half of allmetabolites deposited inKEGGdonot have
any reaction annotation. These compoundsmight be formedby
chemical rather than biochemical reactions; however, it seems
more likely that there are many metabolites included in KEGG
that are not yet linked to enzymes and genes. For example,
the plant hormone methyl salicylate is present as a com-
pound in LIGAND (C12305) but is not associated with the
enzyme salicylate methyltransferase, which can be retrieved
from the better curated AraCyc Database as AtBSMT1
(At3g11480). A number of tools guide KEGG queries, e.g. the
KEGG BRITE collection of hierarchical classifications and
links to a range of further genomics databases such as the
National Center for Biotechnology Information (NCBI),
UniProt, Swiss-Prot, and BRENDA, the classic enzyme data-
base that has recently extended its functionality (24).
KEGG, BioCyc, and Reactome (25) are now storedwithin the

umbrella database NCBI BioSystems to link pathway informa-
tion to the well established Entrez (22). The NCBI BioSystems
Database is accessible via web services and Entrez query tools.
Similar query functionalities are presented by the BioMart,
Pathway Commons, and MetaCyc “advanced search” tools.
MetaCyc provides an extensive description of its pathways with
literature references; such description is lacking in the KEGG
Database. To improve and accelerate the process of curating
metabolic pathways, the WikiPathways Database has been
developed recently (21).WikiPathways enables the community
at large to construct, curate, and submit pathway maps. The
maps are providedwith descriptions, hyperlinks, and literature.
Within the past 2 years, the WikiPathways Database has com-
piled �1300 pathways. These pathway maps can be visualized
online (26) or can be downloaded and imported inCytoscape or
PathVisio software for visualization (27). Data sets of metabo-
lome or gene expressions can be visualized on these pathways
using an Atlas mapper.

Metabolome Databases

Cataloging the metabolome itself by experimental data and
by literature information can complement genomic recon-
structions of metabolism. Just like for pathways, information
can be generated by information mining, as demonstrated for

the Flavonoid Viewer through MediaWiki (28). Metabolome
repositories are compound-centric databases that may be
enriched by mass spectral libraries or links to pathway data-
bases. They link the chemical identity of metabolites to pres-
ence and potentially to concentrations in a species, organ, or
cell type. It is of paramount importance that the underlying
database information is based on the chemical structure, not on
names or “identifiers.” Metabolite names are not unambiguous
identifiers, as metabolites may be naturally occurring in differ-
ent chiral forms, e.g. D- and L-amino acids. Hence, the best
annotation for a metabolite is its chemical structure. Encoding
the structure in a string of letters in an open access format
was standardized by the International Union of Pure and
Applied Chemistry (IUPAC) in 2004 by introducing the
International Chemical Identifier (InChI) code. This code
has been abbreviated as InChI hash key to be readily used in
tables or publications.

Linking Compounds to Chemical and Biological
Information

A wealth of information is available through published liter-
ature, some of which can be accessed through generic chemis-
try databases. CAS, the Chemical Abstracts ServiceDatabase, is
a fee-based service that compiles published literature on a
compound-by-compound basis (29), comprising �50 million
unique chemical substances. CAS does not distinguish bio-
chemical metabolites from man-made small molecules. CAS
also restricts batch downloads for chemical structures, com-
pound names, or other metadata to be used for retrieving the
complement of all chemicals that had been previously reported
for a given species. Compound annotation by CAS numbers
may change over time. For example, a variety of CAS numbers
can be found for a single structure such as ribosylnicotinamide,
which is annotated as 19131-72-7, 20299-13-2, 954368-04-8,
and 1341-23-7 (30). CAS entries are also not linked to biochem-
ical pathways databases.
Alternatively, public databases have been constructed. Most

importantly, PubChem (31) presents a very versatile, open
access database for small molecules. It ismaintained at NCBI as
part of the Entrez information retrieval system (32). Records for
PubChem compound identifiers have increased to �31million
unique structures. All PubChem contents can be freely down-
loaded in batch mode, including compound properties such as
lipophilicity, protondonor number, synonyms, andpharmacol-
ogy and toxicology information. PubChem compound identifi-
ers are linked to many other biochemical databases, from PDB
to KEGG. Unlike CAS, PubChem is not a literature-curated
database but depends on depositor information. Hence, Pub-
Chem compounds cannot be queried for presence or concen-
trations in biological species, biofluids, or tissues. A third exam-
ple of a chemistry-focused database is Chemical Entities of
Biological Interest (ChEBI) (33, 34). ChEBI compounds can be
queried using chemical ontologies, enabling searches by chem-
ical class information such as “D-aldohexose.” At this point,
ChEBI does not store concentration data for species, organs, or
cells.
Because of the lack of species-related metabolome informa-

tion in chemistry resources, researchers have started collecting

TABLE 1
Overview of selected biochemical and chemical databases for
metabolomics

Pathway- and enzyme-centric
databases and tools

Compound-centric databases
Chemical
databases

Spectral
libraries

�400 MetaCyc databases (18) PubChem (31) MassBank (38)
KEGG (19) ChemSpider (61) PlantMetabolomics (45)
BRENDA (24) ChEBI (33) BinBase/SetupX (47)
Reactome (25) HMDB (35) GMD (39)
YeastNet (17) KNApSAcK (36) Kazusa OMICS
SMPDB (65) CAS (29) NMRShiftDB (53)
MetPA (64) NIST MS (51)
Ingenuity Systems IPA METLIN (25)
Ariadne Genomics Pathway
Studio

GeneGo MetaCore
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information from literature. Most prominently, the Human
Metabolome Database (HMDB Version 2.5) has been con-
structed over the past 5 years to detail information for almost
8000 metabolites that are present in human organs or reported
in conjunction with human health (35). Related databases that
compile information about exogenous human metabolites, e.g.
phytochemical components from food or metabolites of xeno-
biotics, are stored in accessory repositories (DrugBank and
FooDB). HMDB stores concentrations for �4000 metabolites
for a variety of tissues and body fluids and can thus now serve as
a reference repository to compare metabolome data. HMDB
can serve as a leading example of how further metabolome lit-
erature databases might be compiled.
Mammals have only limited anabolic capacities due to their

adaptation to the diversity of micronutrients in their food, e.g.
vitamins. Hence, natural products have been listed in the
KNApSAcK repository (36). KNApSAcK is a species/metabo-
lite database focused mostly on complex plant metabolites. Its
size has doubled from 25,000 metabolites in 2008 to �50,000
entries in 2010. An alternative source, extending from plant
metabolites to small molecules from microorganisms and
fungi, is the commercial Dictionary of Natural Products (37).
This library boasts 200,000 literature-based secondary plant,
fungal, and microbial metabolites, including taxonomic refer-
ence species for most of the structures. Batch downloads of up
to 100 search results are permitted.

Databases Linking Metabolomic Data to Compound
Information

Finally, metabolome data repositories exist that are geared
toward comprehensive identification of small molecules in bio-
logical samples, with the aim to unravel biochemical relation-
ships, gene function annotation, and potentially biological
function via statistical comparison of data sets. Several public
databases store and disseminate spectral information for
metabolites, and some databases exist for which experimental
profiles can be downloaded, including raw annotated metabo-
lite tables and raw files.
MassBank denotes a very ambitious project: the collection of

a very large range of mass spectra from different instrument
platforms and currently 15 collaborating institutions (38).
MassBank entries span many metabolite classes. At current,
�27,000 spectra have been collected from �13,000 com-
pounds. Almost half of the spectra account for electron ioniza-
tion mass spectra used in GC/MS analysis. However, it is
unclear how many redundant spectra are housed and to what
extent spectra are freely available, e.g. to develop new fragmen-
tation algorithms. An alternative accurate mass database is the
Kazusa OMICS Database, which resulted from a landmark
paper on use of mass spectral data processing for compound
identification. A process for metabolite annotations was out-
lined that was based on high-resolution accurate mass analysis
by HPLC/electrospray/Fourier transform ion cyclotron reso-
nance MS (40). Accurate masses for isotope clusters above a
signal/noise ratio of 3:1 were averaged, and potential elemental
formulas were calculated within 1-ppm mass windows. These
formulas were constrained by heuristic rules similar to the
those published in “Seven Golden Rules” (41) and compared

between positive and negative electrospray ionization. A total
of 869 metabolite peaks were detected in tomato, albeit still
lacking metabolites that are very difficult to ionize by electro-
spray, e.g. carotenoids. A thorough comparison with previous
work and published tomato metabolites (42, 43) led to the con-
clusion that at least 494 novel metabolites were detected (40).
However, only 3.6% of all peaks were identifiable using authen-
tic standards due to the vast complexity of plant natural prod-
ucts and the limited availability of pure reference chemicals.
Annotation plausibility was further categorized using a novel
approach (40): first, MS/MS spectra were interrogated for
shared ions amongmetabolites and whether identical mass dif-
ferences were observed for these compounds. Approximately
37% of the detected metabolites were assigned as “biologically
relevant” using this schema. Aglycone backboneswere found to
be supplemented by additions of caffeic acid, amino groups,
hydroxyl groups, hexoses, deoxyhexoses, malonic acid, or cou-
maric acid. Interestingly, a novel modification was detected as
the addition of C3H7NO2S, which points to cysteine addition.
Suchmodification had never been reported before for chalcone
and flavonoid aglycones. Analysis of mutant plants led the
authors to suggest a novel pathway from �-tomatine to esculo-
side, exemplifying how metabolomics can generate novel bio-
chemical hypotheses to be tested in follow-up studies (40).
A less elaborate protocol using data fromHPLC/quadrupole/

TOFMSwas used to suggest novel metabolites in seeds ofAra-
bidopsis thaliana (44). Data sets of extracts ofmutant andwild-
type seeds were manually investigated for ion pairs formed by
molecular ions and accompanying in-source fragmentation
ions. These parent ion clusters were subsequently further
investigated by MS/MS or in-source MS3 mass spectral acqui-
sitions. The information obtained fromMS/MS andMS3 spec-
tra was applied as neutral loss substructure constraint into cal-
culations of element formulas. Subsequently, the KNApSAcK
(36), CAS, and PubChem (31) databases were queried to enu-
merate potential candidate structures. Comparative analysis of
chalcone synthase and chalcone isomerase mutants eventually
assigned novel phenolic choline esters that were suggested to
indicate additional branch points in phenylpropanoid meta-
bolic pathways (44).
Complementing HPLC/MS metabolomic investigations are

databases for GC/electron ionization MS. BinBase/SetupX is a
combined resource for metabolomic GC/TOF MS profiles
using TOFMS (46). Data annotations employ the BinBase algo-
rithm (47), which identifies metabolites based onmass spectral
and retention index library matching using �2000 spectra of
authentic reference compounds (48). BinBase maintains data
for �25,000 samples that were acquired from �420 studies of
�70 biological species. Each sample is associated with detailed
information on taxonomy, genotypes, organs, cells, and exper-
imental treatment data (biotic or abiotic treatments; time
courses). A similar resource for freely downloadable GC/elec-
tron ionization mass spectra is available through the Golm
Metabolome Database (GMD) (49). GMD has been recently
updated by added functionalities such as substructure annota-
tion for unidentifiedmetabolites (50), similar to thewell known
substructure features given in the NIST MS software (51). The
library details compounds by referencing to other databases
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such as KEGG as well as InChI codes but does not comprise
taxonomic or biological metadata. GMD has a very useful asso-
ciated web service that allows automatic programmatic access
(Representational State Transfer (REST)).
For metabolome analysis by NMR, two repositories are

prominent. First, the Madison Metabolomics Consortium
Database (MMCD) reports�700 experimental carbon, proton,
and two-dimensional NMR spectra of a diverse set of metabo-
lites (52). The compounds are well annotated using KEGG and
PubChem identifiers to enable comparisons with other
resources. Raw data are freely downloadable for academic pur-
poses and comprise different types of NMR spectra for each
compound such as one-dimensional 1H and 13C files as well as
two-dimensional 1H-1H total correlation spectroscopic spectra
and 1H-13C heteronuclear single quantum coherence data. An
alternative open NMR database, NMRShiftDB (53), is main-
tained at the European Bioinformatics Institute.

Mapping and Visualization of Metabolomic Data to
Biochemical Pathways

Once metabolome data are annotated by hundreds of iden-
tified metabolites, one might be tempted to map these com-
pounds according to their location on pathway overview charts.
A range of studies and reviews have been published (54–57) to
demonstrate how a database can be used to integrate, query,
and visualize pathway results (58, 59). A straightforward solu-
tion is presented by the KEGG “pathway mapping” tool, which
directly displays metabolites on metabolic network graphs.
More advanced variants first employ statistics assessments
using the open R Project and subsequently use the Bioconduc-
tor tool (60). It has been shown thatmultiple pathwaymaps can
be combined to construct a global pathway overview (19, 62). In
addition, the KEGG Atlas mapping (61) and iPath (63) tools
map data on global pathway graphs.More often,metabolic pro-
filing studies include multiple class experiments such as wild-
type/genotype or drug/non-drug treatmentswithmultiple time
points. Publicly available database services such as MetPA (64)
and the Small Molecule Pathway Database (SMPDB) (65) can
be used to visualize the coverage of submitted metabolites
on different pathways. Commercial tools, including GeneGo
MetaCore, Ingenuity Systems IPA, and Ariadne Genomics
Pathway Studio, are oriented mostly toward microarray gene
expression and proteomics data but recently also increased the
coverage for small molecules and metabolic pathway analysis
by actively analyzing the published literature.
Themoremetabolite nodes are visualized in a single pathway

map, the more difficult it is to see details and obtain informa-
tion on both larger biochemical modules and reactions. A web-
based zoomable Pathway Projector has recently been proposed
using the KEGG Atlas and Google Map technologies for
magnifying details on global metabolic maps (66). However,
such approaches necessarily fail when input metabolites (or
enzymes) are not included in KEGG Atlas. Indeed, metabolo-
mic surveys often detect novel metabolites for which no enzy-
matic reaction has been established. Moreover, biochemical
pathwaymaps detail all intermediary steps, whereas in a biolog-
ical sample, only some of the metabolites in a pathway might
accumulate enough to be detectable. Hence, direct mapping

approaches yield sparsely populated pathway charts. More
abstract approaches have been used following the well known
modular organization of biological systems (67). MapMan
leaves out many low-abundant intermediates and summarizes
metabolites into predefined sets of biochemical modules, e.g.
TCA cycle, carbohydrates, amino acid biosynthesis, and glycol-
ysis (68). These preset boxes are then superimposed with sta-
tistical analysis of metabolite expression to display differential
regulation and hence enable highlighting the most prominent
changes in biochemistry when looking at large data sets. As an
alternative, network graphsmay be used (69). A reconstruction
of metabolic networks has been proposed (70) that employs
biochemical and chemical similarity distances to visualize met-
abolic relationships and differential regulation in the open
source Cytoscape tool (Fig. 3) (71). Metabolites are first
mapped to presence in the KEGGRPAIRDatabase to provide a
core biochemical structure, to which all identified metabolites
are linked via their chemical similarity index. Chemical similar-
ities are calculated viamatrices that are obtained by decompos-
ing all compounds into sets of substructures in the PubChem
tool. Last, unknown metabolites can be mapped by calculating
scores for mass spectral similarities to known compounds. As
an example, a published data file onmetabolic regulation of the
human ileal effluent was downloaded from BinBase/SetupX
(72) and used for network construction in Fig. 3.
Analysis of the overall topology of biochemical networks can

lead to novel insights into metabolic capacities of cells (73).
Large-scale metabolic interactions have to be founded on the
actual biochemical transformations that are performed. Earlier
focus in computational analysis of metabolism had been geared
toward mere node/edge topology analysis (74), but seemingly
tight connectivities in topology networks are based mostly on
hub metabolites like ATP and water and do not convey actual
modifications of carbons and functional groups. Stoichiometric
analysis of metabolism has been performed with great success
for mapping microbial pathways in flux-constraint models (75,
76), and a combination ofmetabolome analysis of accumulating
metabolites with genomic and fluxomic investigations appears
to be most promising.

FIGURE 3. Mapping metabolome regulation on biochemical networks.
Shown is the regulation of the human ileal effluent metabolome after versus
before ileostomy surgery (70), magnified for the carbohydrate cluster. Iden-
tified metabolites are mapped to the biochemical KEGG RPAIR Database and
chemical similarity (green edges, dashed if �600 similarity), spanning a net-
work displayed in Cytoscape. Unknown metabolites (BinBase Metabolome
Database numbers (48)) are added by mass spectral similarity (red edges,
dashed if �600 similarity). Red node metabolites are significantly increased in
concentration (p � 0.05), blue nodes mark decreased compounds, and yellow
nodes (small print) are not regulated. Node size indicates magnitude of
change.
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Perspective

This minireview has focused on enzyme pathways and
metabolome databases that are deemed critical for more in-
depth understanding of metabolic architectures. Quantitative
considerations have been left out here but will be critical for
using such databases, e.g. as constraints in flux-balance analysis.
A range of metabolic pathway databases and public chemistry
repositories can be used today as a backbone to understand
metabolomic surveys. Lack of data on substrate specificity for
large enzyme classes (ligases, P450, and oxidoreductases)
explains the difficulty in identifying the plethora of detected
signals and their biochemical relationships. Even for the best
studied organisms such as yeast and E. coli, we cannot accu-
rately enumerate the size of the minor-abundant compound
metabolome, although a consensus exists for the major meta-
bolic network in yeast (17).
Novel tools that suggest enzymatic relationships between

novel metabolites may be exploited in the future (77). As of
today, metabolomics can cover large parts of genome-recon-
structed networks and is highly useful in targeted fluxomic
investigations (78). However, novel pathways and novel
enzymatic actions are more likely to be discovered in the vast
array of species-specific metabolism (79), including lipid
transformations.
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