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Network ‘‘guilt by association’’ (GBA) is a proven approach for identifying novel disease genes based on the observation
that similar mutational phenotypes arise from functionally related genes. In principle, this approach could account even
for nonadditive genetic interactions, which underlie the synergistic combinations of mutations often linked to complex
diseases. Here, we analyze a large-scale, human gene functional interaction network (dubbed HumanNet). We show that
candidate disease genes can be effectively identified by GBA in cross-validated tests using label propagation algorithms
related to Google’s PageRank. However, GBA has been shown to work poorly in genome-wide association studies
(GWAS), where many genes are somewhat implicated, but few are known with very high certainty. Here, we resolve this
by explicitly modeling the uncertainty of the associations and incorporating the uncertainty for the seed set into the GBA
framework. We observe a significant boost in the power to detect validated candidate genes for Crohn’s disease and type 2
diabetes by comparing our predictions to results from follow-up meta-analyses, with incorporation of the network serving
to highlight the JAK–STAT pathway and associated adaptors GRB2/SHC1 in Crohn’s disease and BACH2 in type 2 diabetes.
Consideration of the network during GWAS thus conveys some of the benefits of enrolling more participants in the GWAS
study. More generally, we demonstrate that a functional network of human genes provides a valuable statistical framework
for prioritizing candidate disease genes, both for candidate gene-based and GWAS-based studies.

[Supplemental material is available for this article.]

Causal genes remain extraordinarily difficult to identify in most

genetic diseases and, in particular, in highly polygenic disorders for

which current approaches are most limited (Bonetta 2008), iden-

tifying causal genes is a major barrier to progress in understanding

these diseases. More generally, traditional linkage analyses have

mapped causal genes for many diseases, often using positional

cloning, but these methods are difficult and time-consuming

(Altshuler et al. 2008). However, genome-wide association studies

(GWAS) have opened the way to unbiased discovery of large

numbers of disease genes in a more efficient manner.

A typical GWAS analysis involves comparing case and con-

trol individuals at selected single nucleotide polymorphisms

(SNPs) or, more recently, copy number variants (CNVs). SNPs

representing common haplotype blocks are measured genome-

wide (at approximately 500,000–1,000,000 locations), and the

disease-associated genetic markers are identified (for review, see

McCarthy et al. 2008). The SNPs that show association strong

enough to surpass a genome-wide significance threshold are then

analyzed for chromosomal proximity to genes that might cause

the disease, or otherwise affect its etiology. However, even though

the data from GWAS support a great number of loci involved in

common diseases, it is hard to separate many of the causal genes

from the background noise of the hundreds of thousands of SNPs

in the assay. Consequently, GWAS suffer from a lack of statistical

strength, requiring large test populations to overcome the large

multiple hypothesis correction needed in evaluating hundreds of

thousands of candidate loci.

The lack of sufficient statistical power forces GWAS studies

to ignore weaker loci, focus primarily only on the strongest ge-

netic effectors, and genotype thousands of individuals (e.g., see

Wellcome Trust Case Control Consortium 2007). Moreover, the

combinatorial effects of multiple disease genes are often not

simply additive, but epistatic (Liew and Dzau 2004; Pomp et al.

2004; Hirschhorn and Daly 2005), further hampering their dis-

covery. Simply considering pairs of interacting loci increases the

strength of associations required by orders of magnitude so as to

be able to overcome the multiple testing criteria, requiring tens of

thousands of individuals (Visscher 2008). Rarely has genetic as-

sociation to allele triplets (or higher) been examined by these or

any other approaches. Linear additive models have been suc-

cessfully built, most notably for 54 alleles useful for predicting

human height (Gudbjartsson et al. 2008; Lettre et al. 2008;

Weedon et al. 2008), one of the first quantitative human traits

successfully addressed to this degree. Finding these alleles none-

theless required genotyping ;63,000 individuals over the course

of three studies, each explaining <4% of the variance in height.

Recent analysis of ;300,000 SNPs, without regard to the signifi-

cance of their association, demonstrated that a total of 45% of the

variance in height could potentially be explained, with most ef-

fects too small to pass significance tests (Yang et al. 2010).
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However, the polygenic nature of a disease may also offer

potential opportunities to more efficiently discover new and

relevant genes. In particular, we might expect that the genes asso-

ciated with a disease will often organize into pathways or functional

groupings linked to the disease formation and progression. Thus,

knowing some disease genes in advance, it may occasionally be

possible to apply guilt-by-association (GBA) in gene networks (for

review, see Ideker and Sharan 2008). In particular, it is now possible

to construct large gene network models, as has been done, e.g., for

yeast, worms, plants, mice, and humans, summarizing thousands of

functional associations among genes (for review, see Christensen

et al. 2007; Lee et al. 2007b; Bonneau 2008; Feist et al. 2009). Gene

pairs are coupled in these networks if they are inferred to participate

in the same biological process (Marcotte et al. 1999) and may have

corresponding measures of confidence (Troyanskaya et al. 2003; Lee

et al. 2004; Rhodes et al. 2005; Alexeyenko and Sonnhammer 2009;

Jensen et al. 2009). GBA in such networks has been shown to cor-

rectly identify disease and phenotype-linked genes based on their

network connections to previously known genes (e.g., Fraser and

Plotkin 2007; Lage et al. 2007; McGary et al. 2007; Lee et al. 2008,

2010a; Chen et al. 2009b; Huttenhower et al. 2009; Linghu et al.

2009), based on the observation that genes involved in a common

biological process often tend be associated with similar mutational

phenotypes (as seen, e.g., in Fraser and Plotkin 2007; Hart et al.

2007; Lage et al. 2007; Lee et al. 2008).

In principle, the GWAS-based association of genetic loci

with a disease and the functional association of genes into

pathways represent independent sets of observations that can be

logically combined to improve identification of relevant disease

genes. For example, networks have been applied to search for

interacting loci in human GWAS data (Emily et al. 2009; Rossin

et al. 2011) and in yeast (Hannum et al. 2009), to identify GWAS-

and cancer genome-enriched pathways (Baranzini et al. 2009;

Wu et al. 2010), and to rank genes in implicated chromosomal

intervals (Franke et al. 2006; Pico et al. 2009; Wu et al. 2009).

Other studies have looked at previously studied pathways for

a disease, and tried to improve the ranking of the candidate

genes using this information (e.g., Chang et al. 2008; Saccone

et al. 2008; for review, see Wang et al. 2010b). Here, we have

tested and expanded the general validity of the approach of

using functional networks for prioritizing candidate disease

genes. We propose a theoretical framework for combining the

large-scale, unbiased pathway and association information

encoded by functional gene networks and GWAS studies, re-

spectively, showing improvements in performance as judged by

data from GWAS meta-analyses.

First, we describe the construction of a functional network

for human genes. This network spans 87% of validated protein

coding genes, and provides strong predictive power for a ma-

jority of currently known genetic diseases. We evaluate six al-

ternate approaches for prioritizing candidate disease genes using

this network, and demonstrate the strongest overall perfor-

mance with algorithms related to Google’s PageRank. We then

show that this network, in conjunction with genome-wide as-

sociation data for Type 2 diabetes and Crohn’s disease, boosts

the identification of disease-associated genes that were discov-

ered in later meta-analyses. This work suggests both a specific

strategy and a general path to future improvements for the

interpretation of GWAS data. Taken together, our work demon-

strates that a high-quality functional network for human genes

can provide a powerful resource for identifying causal genes in

human disease.

Results

HumanNet: an extended functional gene network for H. sapiens

To test the ability of functional networks to improve gene associa-

tion studies, we first constructed a genome-scale functional network

for human genes. Diverse distinct lines of evidence, spanning hu-

man mRNA coexpression, protein–protein interactions, protein

complex, and comparative genomics data sets, in combination with

similar lines of evidence from orthologs in yeast, fly, and worm, were

analyzed using an approach previously developed and validated for

yeast (Lee et al. 2004, 2007a), C. elegans (Lee et al. 2008, 2010b), and

Arabidopsis (Lee et al. 2010a). In total, 21 large-scale genomics and

proteomics data sets from the four species (see Methods; Supple-

mental Tables S1, S2) were integrated into a functional gene network

spanning 476,399 scored functional couplings between 16,243

(87%) of validated human protein encoding genes (Fig. 1A).

HumanNet predicts cellular loss-of-function phenotypes

To evaluate the predictive power of the new network, we first ex-

amined cellular-level phenotypes. Many human diseases reflect

failures of core cellular machinery, e.g., failures of metabolism,

DNA repair, replication, etc. For example, hereditary nonpolyposis

colorectal carcinoma arises from mutations in DNA mismatch re-

pair (Fishel et al. 1993; Miyaki et al. 1997), Zellweger syndrome

arises from mutations in peroxisome biogenesis (Moser et al.

1995), and leukoencephalopathy with vanishing white matter

arises from mutations in any of the subunits of translation initia-

tion factor EIF2B1 (Leegwater et al. 2001; van der Knaap et al. 2002).

A network for even a single eukaryotic cell will capture many of

these basic processes and has the potential to prove predictive

for genes for diverse human diseases. We therefore investigated

whether the human gene network was predictive of cellular-level

mutational phenotypes, focusing on cell survival and proliferation

phenotypes from loss-of-function studies in cell culture.

We first asked whether genes essential to cell viability could

be accurately identified using the gene network. Schlabach and

colleagues identified about 600 genes that affect the viability

and proliferation of normal human mammary epithelial cells

(HMEC) by using multiplex short hairpin RNA (shRNA) screening

(Schlabach et al. 2008). Although assayed largely for proliferation

defects, these genes are highly likely to be essential for HMEC cell

growth, given the incompletely penetrant phenotype induced by

shRNA knockdown (Chang et al. 2006).

We found that the essential HMEC genes were, indeed, highly

connected in HumanNet (Fig. 1B), as assessed by cross-validated

receiver operating characteristic (ROC) analysis (see the Methods

section). For example, ;18% of all known essential genes, but only

2% of all genes not known to be essential, are connected to known

essential genes in HumanNet, a ninefold enrichment. From these

results we conclude that essential genes can be predicted on the

basis of their connectivity to other essential genes in HumanNet.

This general level of predictability was also observed for more

specific cellular phenotypes. We tested whether genes known to be

required for HIV infection, as measured by large-scale RNAi knock-

down (Brass et al. 2008), were predictable by guilt-by-association in

HumanNet. Indeed, they showed a moderate degree of predictivity,

at a level significantly higher than random chance (Fig. 1C).

The essentiality and viral infectivity phenotypes described above

are single gene phenotypes, but yeast and worm gene networks have

also proven generally predictive for bigenic phenotypes, such as syn-

thetic genetic interactions (e.g., Lee et al. 2010b). We therefore next
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asked whether the human gene network could predict genetic in-

teractions, focusing on two large-scale RNAi screens performed

in mammalian cell culture. The first screen identified genes mod-

ulating expression of a core stemness regulator OCT4 (also known

as POU5F1) in mouse embryonic stem cells (Ding et al. 2009). The

second found genes acting as synthetic lethal interaction partners

with oncogenic KRAS mutants expressed in a colorectal cancer

cell line, screening for genes whose knockdown in the activated

KRAS background resulted in cellular lethality (Luo et al. 2009).

In both cases, genes identified by the screens were well predicted

by guilt-by-association in HumanNet at rates significantly higher

than random expectation (Fig. 1C). The high predictive strength

(AUC = 0.81) for KRAS interactors is particularly notable, as such

genes might be useful as cancer cell-specific drug targets (Luo et al.

2009). More generally, these tests confirm that the human gene net-

work is predictive of a variety of cellular level loss-of-function phe-

notypes, including specific bigenic traits.

Genes linked to specific mouse mutational phenotypes
and human diseases are predictable by guilt-by-association
in the network

The cellular-level results demonstrate that genes for cell viability

and proliferation phenotypes can be identified based on network

Figure 1. Construction and evaluation of a genome-scale human gene network, HumanNet. (A) 21 diverse functional genomic and proteomic data sets
(Supplemental Table S1) were evaluated for their tendencies to link genes in the same biological processes. Pairwise gene linkages derived from the individual
data sets were then integrated into a composite network of higher accuracy and genome coverage than any individual data set. The integrated network
(HumanNet) contains 476,399 functional linkages among 16,243 (86.7%) of the 18,714 genes encoding validated human proteins. The x-axis indicates the
log-scale percentage of the 18,714 genes covered by functional linkages derived from the indicated data sets (curves); the y-axis indicates the predictive
quality of the data sets, measured as the cumulative log likelihood of linked genes to share Gene Ontology (GO) biological process annotations, tested using
0.632 bootstrapping and plotted for successive bins of 1000 linkages each (symbols). Data sets are named as XX-YY, where XX indicates species of data origin
(CE, C. elegans; DM, D. melanogaster; HS, H. sapiens; SC, S. cerevisiae) and YY indicates data type (CC, co-citation; CX, mRNA coexpression; DC, domain co-
occurrence; GN, gene neighbor; GT, genetic interaction; LC, literature-curated protein interactions; MS, affinity purification/mass spectrometry; PG, phy-
logenetic profiles; PI, fly protein interactions; TS, tertiary structure; and YH, yeast two-hybrid). Detailed descriptions are listed in Supplemental Table S1. (B)
Essential genes were highly interconnected in HumanNet, and thus predictable from the network, as shown by ROC analysis. Genes were ranked by their sum
of network edge weights to the known essential genes, measuring recovery of known essential genes (true positives) and other genes (false positives) using
leave-one-out cross-validation. (C ) Genes involved in more specific cellular phenotypes—host factors required for HIV infection (HDF) (Brass et al. 2008),
modulators of OCT4 (also known as POU5F1) expression (Oct4-GI) (Ding et al. 2009), and synthetic lethal partners of activated KRAS alleles (KRAS-SL) (Luo
et al. 2009)—were also well predicted by their interconnectivity in HumanNet, calculated as for B. (D) Finally, network-linked gene pairs were substantially
more likely to show similar tissue specificity in their expression patterns, measured as the likelihood of co-occurrence of transcripts of pairs of genes in the same
tissues across 30 different human tissues from the TiGER database of tissue-specific gene expression and regulation (Liu et al. 2008).

Network-guided genome-wide association mining
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connectivity in HumanNet. A further trend for genes linked in the

network to share tissue-specific expression patterns (Fig. 1D) implies

that the network could potentially predict more specific organism-

level mutational phenotypes as well. This notion has previously

been explored for human diseases by considering network con-

nections among known disease genes, prioritizing the genes most

highly connected to the known causal genes as being likely new

candidate genes for that disease (Fraser and Plotkin 2007; Lage et al.

2007; McGary et al. 2007; Linghu et al. 2009) as illustrated in Figure

2A. Such approaches primarily consider direct network connections

to known disease genes, but related work on predicting gene func-

tion from networks (for review, see Sharan et al. 2007; Stolovitzky

et al. 2007) has shown wide benefits of also appropriately consid-

ering indirect network connections (e.g., as in Mostafavi et al. 2008),

and tests have confirmed the utility of these so-called network dif-

fusion algorithms for predicting RNAi phenotypes in worms and

loss-of-function phenotypes in yeast cells (Wang and Marcotte

2010). Here, we implemented a representative set of both types of

algorithms, collectively termed label propagation algorithms and

chosen by their successful application in yeast and worm networks

(Wang and Marcotte 2010) for inferring disease genes based on

network connectivity, evaluating them for their overall pre-

dictive ability using cross-validation and ROC analysis.

Specifically, we considered six methods of network label prop-

agation. The first are two methods that consider only direct network

neighbors: (1) neighbor counting (Schwikowski et al. 2000), in

which the genes with the most neighbors already linked to the dis-

ease are most highly scored, and (2) naive Bayes label propagation, in

which the sum of the HumanNet linkages to implicated neighbors

is used rather than their count (Lee et al. 2007a), corresponding to

the naive Bayes estimate for a gene to participate in the same process

as the known disease genes. We further considered four methods

Figure 2. Network-guided prediction of genes for transgenic mouse phenotypes and human diseases. (A) A schematic figure of network-guided
prioritization of candidate disease genes. Given some known disease genes (black nodes), additional genes can be predicted by their (weighted) asso-
ciations in the network, with more strongly connected genes being prioritized more highly (node shading). (B) Known genes associated with several
human diseases are well predicted by the Iterative Ranking method for propagating disease labels across HumanNet, as measured using cross-validated
ROC analysis. In this and later GBA analyses, we used leave-one-out cross-validation for phenotype sets of 3–10 genes and 10-fold cross-validation for all
other sets. The performance can be summarized as the area under the ROC curve (AUC), ranging from 0.5 (random) to 1.0 (perfect). (C ) Network GBA
predictability of genes associated with 3374 transgenic mouse phenotypes. Bar-and-whiskers plots summarize the predictive performance (measured as
cross-validated AUC) for each of six algorithms for using HumanNet to prioritize candidate disease genes. The Iterative Ranking and Gaussian smoothing
approaches outperform the others by a significant margin, and show generally high predictability for more than three-quarters of the phenotypes tested.
In bar-and-whiskers plots, the central horizontal line in the box indicates the median AUC, and the boundaries of the box indicate the first and third
quartiles of the AUC distribution, whiskers indicate the 10th and 90th percentiles, and plus signs indicate individual outliers. The mean AUC is plotted as
a dashed blue horizontal line. (D) A related analysis of human disease genes, assembled for 263 diseases from the OMIM database (http://omim.org/),
shows similarly strong prediction strengths and the same relative ranking of algorithm performance.
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that ‘‘diffuse’’ disease associations across the network, considering

both direct and indirect connections, similar to the methods con-

sidered in Chen et al. (2009a). Two of these are mathematically re-

lated to Google’s PageRank algorithm: (3) the Iterative Ranking

method, in which a gene’s score is calculated from an initial score

and the normalized scores of its neighbors, which, when updated

over successive iterations, ‘‘smear’’ across the network linkages

(Ramakrishnan et al. 2009; Wang and Marcotte 2010), and (4)

Gaussian field label propagation (Gaussian smoothing, for short),

in which the difference between a gene’s initial and final scores and

the weighted score difference between a gene and its neighbors are

simultaneously minimized (Mostafavi et al. 2008). Finally, we con-

sidered (5) a clustering approach, using Markov clustering of genes

based on simulation of stochastic flow in the network (Enright et al.

1999), followed by ranking of each gene within a cluster for rele-

vance by considering the sum of the gene’s edge-weights within the

cluster relative to all of its edge-weights (Wang and Marcotte 2010),

and (6) a model based on electrical circuits (Suthram et al. 2008),

in which network edge weights are considered to be analogous to

electrical conductance and disease-implicated proteins are consid-

ered as ground nodes; candidate nodes are identified by modeling

the application of current to the resulting circuit and measuring

which nodes have the highest modeled current flow.

Figure 2B shows examples of ROC curves associating genes

with several human diseases using the Iterative Ranking approach,

showing high predictability for these cases. In order to systemati-

cally test whether such predictability was common, and in order to

judge the relative merits of the network diffusion approaches, we

next evaluated a more comprehensive set of mouse phenotypes

and human diseases.

We first evaluated the predictive power of HumanNet for genes

associated (via orthology) with mouse mutational phenotypes,

drawing upon the over 3000 well-annotated gene–phenotype

associations identified in gene knock-out, gene trapping, and

chemical mutagenesis experiments, and cataloged in the Mouse

Genome Database (MGD) database (Eppig et al. 2005). In order to

minimize the risk of circular predictions, we performed the tests

using a version of the network lacking human literature-based

linkages (i.e., no linkages by HS-CC or HS-LC). For each of the six

approaches, we measured the network predictability for these mouse

phenotypes using cross-validated ROC curve analysis, plotting the

distributions of AUC (area under the ROC curve) scores for 3374

gene sets associated with mouse phenotypes in Figure 2C. Human-

Net shows broad predictive ability of genes associated with specific

mouse phenotypes and is significantly better than expected by

chance using each of the six algorithms. However, the closely related

Gaussian smoothing and Iterative Ranking approaches perform

comparably to each other and significantly better than the other

four approaches, indicating that there is a clear benefit to consid-

ering indirect connections as well as direct network connections.

Unlike mouse phenotypes, annotations for human disease

genes are still extremely limited, spanning ;3000 gene-disease

linkages in human versus nearly 100,000 in mouse (McGary et al.

2010). From annotations available at The Mendelian Inheritance

in Man (OMIM) database (http://omim.org/), we selected 263

diseases with at least three associated genes. We tested the net-

work’s ability to associate genes with each of the 263 diseases using

cross-validated ROC analysis, testing each of the six approaches,

just as we did for mouse phenotypes (and again, using the version

of the network lacking human literature-based linkages in order to

avoid any potential circularity). We observed strong predictability

for the human genetic diseases, with many disease gene sets

predicted to high accuracy based upon gene–gene associations in

the network (Fig. 2D). Again, the Iterative Ranking and Gaussian

smoothing approaches performed similarly well and significantly

better than the other four approaches, confirming the general ap-

plicability of network label propagation for associating genes with

human diseases and organism-level phenotypes.

Data from diverse sources is used to predict disease genes

We further investigated how the various data sets derived from

high-throughput experiments and model organisms contribute to

the mouse and human phenotype predictions. We examined

predictions made by direct network connections using the naive

Bayes analysis and excluding the human literature-derived HS-LC

and HS-CC data sets as for analysis in Figure 2, C and D. These

contributions are visualized for the 20 most predictable mouse

phenotypes and human diseases in Figure 3. Notably, data sets

from worm and fly were strong contributors to the prediction of

mouse phenotypes, as were data from human mRNA coexpression

patterns (Fig. 3A). Likewise, diverse data sets from yeast were strong

contributors to a variety of well-predicted human diseases (Fig. 3B).

This demonstrates that most data sets contribute to the pre-

dictions, supporting the importance of data integration for effec-

tive disease gene identification.

Figure 3. The predictive power for loss-of-function phenotypes stems from a wide variety of data types integrated into HumanNet. Prediction both of (A)
genes associated with mouse phenotypes and (B) of genes associated with human diseases are supported by diverse lines of evidence, including, for example, fly
and worm data contributing strongly to mouse phenotypes, and yeast data contributing to human diseases. Grayscale indicates percentage contribution of
a given data set’s naive Bayes score to a phenotype’s total AUC.
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Combining evidence from network guilt-by-association
and genome-wide association studies

Given that network GBA is strongly predictive of human disease

genes, a potentially powerful application of this approach is to

combine the network GBA with the data from GWAS for direct

discovery of human disease genes from patient and control pop-

ulations. In order to use the information encoded by HumanNet,

our method takes a slightly different approach from the SNP level

tests used in the statistical analysis of GWAS today. Instead of

focusing on single SNPs, we try to identify which genes and

pathways might be involved in the disease. There are a number of

reasons for this. First, even the SNPs that are identified in the tra-

ditional analysis are rarely thought to be the causal variants

underlying the disease. This is due to the fact that the poly-

morphisms measured by GWAS have been chosen not for their

biological significance, but for being the most informative of the

surrounding region of the genome. Second, only a very small

fraction of the genetic heredity of most diseases studied so far can

be explained by the SNPs identified by GWAS (Park et al. 2010).

This might be because a very large number of genes are involved in

the diseases, or it might be because rarer variants cause a greater

fraction of the heredity than previously thought (Dickson et al.

2010; Wang et al. 2010a). If it is due to the latter, we need to

identify the regions of the genome where these rare mutations are

located so that our search for such variants can be as efficient as

possible. Our goal then is to identify genes and pathways of genes

involved in the disease, not the marker SNPs most strongly corre-

lated with the disease. Third, by taking a gene-centric approach, we

can use the information encoded by HumanNet to improve our

predictions. Finally, by working on the level of genes instead of

SNPs, the method generalizes to future sequencing data, as long as

the genetic variation can be associated with nearby genes.

If a GWAS finds a highly significant gene, it makes sense to

attempt to identify the causal mechanism by which this gene

influences the disease by looking at which pathways proteins

encoded by this gene are active in. For example, this strategy leads

to b-catenin expression and WNT signaling as a likely mechanism

by which TCF7L2 influences type 2 diabetes (for review, see Jin and

Liu 2008). By performing this type of pathway analysis automati-

cally, it might also be possible to uncover genes that would not

otherwise easily be found. This is especially true for genes that fall

just under the threshold of significance for the GWAS study, but

which might be ‘‘rescued’’ by considering their interactions with the

confident genes. Recent evidence for the case of human height

shows that such minor contributions are common from poly-

morphisms falling below the significance threshold for association,

but nonetheless contributing to total variation (Yang et al. 2010).

Unlike the GBA analyses considered above, for GWAS data,

definite seed genes can rarely be found, particularly for the case

where the only evidence for disease association comes from the

GWAS itself. In order to make use of the information from the genes

that are on the verge of being statistically significant, we imple-

mented a ‘‘soft category assignment’’ for the GBA, where only genes

that show a very strong signal are given full weight in the GBA.

Notably, the performance of guilt-by-association in HumanNet is

independent of the number of genes linked to the phenotype

(Supplemental Fig. 1), which means that by varying the parameter

that assigns weight in the GBA, we can include successively more

genes that are increasingly less likely to truly be involved in the

disease. We chose to base our method on the naive Bayes GBA rather

than the Iterative Ranking or Gaussian smoothing methods, since

naive Bayes gave superior recall in the highest precision regime

(Supplemental Fig. 2), and the log odds output of the naive Bayes

can be combined with the log odds from the GWAS in a natural way.

We developed the following scoring scheme: Let Si denote the

total GBA score for a gene i, and denote by pj the probability that

some other gene j is involved in the disease. Suppose that j is

connected in the functional network to i by a link of strength lij . It

would then be natural to assign a ‘‘soft’’ GBA contribution from

gene j to gene i by

DSi;j = pj � ð1� pjÞ
� �

lij;

which gives the total ‘‘soft’’ score Si of gene i as

Si = +
j

DSi;j = +
j

ð2pj � 1Þlij:

This gives very poor results in practice, most likely because the

network is only built on positive evidence. However, by only

keeping positive contributions, we observe good empirical results.

Our ‘‘soft’’ GBA score is therefore summed only over those j where

2pj-1 > 0. Note that another natural way to take into account the

fact that the network is built only on positive evidence would be to

use pj as a weight instead of 2pj�1. In practice, however, this does

not work well (data not shown).

If we assume that the data from the GWAS and the data for the

network are conditionally independent given the set of genes that

are involved in the disease, we can again integrate them in a naive

Bayes framework. The posterior log odds that gene i is involved in

the disease are then

ln O i 2 D DNDGWAjð Þ= +
j

2pj � 1
� �

j
lij + ln O i 2 D DGWAjð Þ;

where ln O i 2 D DGWAjð Þ is the log odds of association calculated

from the GWAS data, corresponding to the log Bayes factor for

association with the disease plus the prior log odds for association.

In general, the prior log odds of association can be thought of as

a proxy for the number of genes believed to be involved in the

disease; in practice, we see significant boosts in performance over

a wide range of values for the prior log odds.

Considering network linkages increases the power
of genome-wide association studies

To evaluate whether the genes highlighted by this method actu-

ally are genes that are biologically relevant to diseases, we used

ROC analysis to compare how highly the combined GWAS/GBA

method ranks the top candidates from meta-analyses for type 2

diabetes and Crohn’s disease (Barrett et al. 2008; Zeggini et al.

2008), versus how highly those same genes are ranked by the

Wellcome Trust study by itself (Wellcome Trust Case Control

Consortium 2007). These meta-analyses contain the Wellcome

Trust data used for the predictions, but also incorporate data from

a number of similar size studies, and have higher statistical power.

For both type 2 diabetes and Crohn’s, the Wellcome Trust study

considered about 2000 cases and 3000 controls. For Crohn’s, the

meta-analysis considered 3230 cases and 4829 controls; for di-

abetes, 4549 cases and 5579 controls. To confirm that it really is the

incorporation of the information encoded by the network that

improves our predictions, we also compared these results with 200

randomly shuffled networks. As shown in Figure 4A and Figure 5A,

the combined GWAS/GBA method clearly improves the ranking of

the genes for both diseases, and does so over a wide range of pa-

rameter settings for the prior parameter.
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Genes boosted in Crohn’s

Prior to the Wellcome Trust study, strong association signals for

Crohn’s disease had been observed in NOD2, IL23R, ATG16L1,

ZNF365, and in 5q31 and the gene desert, 5p13.1. Furthermore,

the Wellcome Trust study identified four more strong associations

that were replicated in follow up studies. These were IRGM; a locus

on chromosome 3 containing BSN, MST1, MST1R, TRAIP, and some

other genes; NKX2-3; and finally, PTPN2. Moderate association

was also seen in the regions 1q24, 5q23, 6p22, 6p21, 6q23, 7q36,

10p15, and 19q13, which contain a number of plausible candidate

genes, such as STAT3 and TNFAIP3.

Figure 4. Consideration of the human gene network boosts recovery of validated Crohn’s disease genes from GWAS analysis of 2000 cases and 3000
controls. (A) The performance improvement achieved by network-boosted GWAS relative to GWAS alone (Wellcome Trust Baseline, [Wellcome Trust
Case Control Consortium 2007]), measuring performance as the area under a ROC curve up to 5% false positive rate (AUC, <5% FPR) for recovering the
top 22 Crohn’s disease genes identified in a larger meta-analysis of 4549 cases and 5579 controls (Barrett et al. 2008). For the AUC (<5% FPR) measure
of performance, a perfect predictor achieves a score of 0.05, while random predictors score near 0.00125. The network boosted approach (colored red
line) outperforms the GWAS alone (straight dashed blue line) over a wide range of parameter values. For comparison we also show the results of network
boosting when randomized networks are used, plotting the mean (dotted line) and range of performance (2 SD) for 1000 random trials. B plots the
network of candidate genes (rounded rectangles) identified from the combination of HumanNet and GWAS data, visualized using Cytoscape (Cline
et al. 2007). The node size corresponds to the strength of the combined evidence from the Wellcome Trust Case Control Consortium (WTCCC) data
and the network, and the intensity of the red color indicates how much the gene was boosted by the HumanNet GBA. HumanNet linkages are drawn as
directed arrows connecting genes, with edge weight scaled by strength of boost contributed by the source to the sink. All genes are drawn with positive
posterior log-odds when the prior log-odds of association are �1.7, except for network singletons, and the 50 highest scoring nonsingleton genes are
shown. Note the strong boost given to GRB2 and SHC1, which are known to be involved in healing gastric ulcers (Pai et al. 1999), and to JAK2 and
STAT3, which were also identified in later meta-analyses (Van Limbergen et al. 2009).
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Using the evaluation method described above, we saw a dis-

tinct increase in the top portion of the ROC curve for a wide range

of values for the prior parameter from�3.5 to�1.5 (Fig. 4A). Using

�1.7 as our value for the prior parameter, we then surveyed the

gene groups that had strong network support. Interestingly, many

of the gene clusters that emerged in this analysis showed strong

connections with TNF signaling, which suggests multiple points of

failure for the TNF pathway in Crohn’s disease. We note that one of

the most successful drugs against Crohn’s disease is the TNF anti-

body Infliximab.

IL23R, STAT3, IL12RB2, and JAK2 have all been indicated

as candidate genes for Crohn’s disease, probably affecting the dis-

ease through their involvement in the differentiation of Th17 cells

(Van Limbergen et al. 2009). These are strongly connected in our

network, and therefore boost each other’s rankings. For our choice

of the free prior parameter, STAT3 gets bumped from rank 17 to 8,

and JAK2 from rank 3139 to 38 (Table 1). Many of these are func-

tionally connected in our network to both the gene coding for

adaptor protein GRB2 (rank 99 to 7) and to its interaction partner

SHC1 (6125 to 17). GRB2 and SHC1 are also involved in gastric ulcer

healing (Pai et al. 1999). GRB2 and SHC1 are furthermore supported

by their functional interactions with PTPN2 and MST1, which

probably affect Crohn’s disease via their roles in the orchestration

of the secondary immune response (Van Limbergen et al. 2009).

Lastly, GRB2 is a binding partner to TNFRISF1A, TNF receptor type I,

which can mediate a majority of TNF-dependent activities (Hildt

and Oess 1999). All of this, taken together, indicates that GRB2-

SHC1 warrants further study as disease candidate genes for Crohn’s

disease.

The cluster containing CYLD, TRAIP, and TRAF1 could also

show a mechanism of action for Crohn’s disease candidate

genes. CYLD is located next to NOD2 on chromosome 16.

Figure 5. Consideration of the human gene network boosts recovery of validated type 2 diabetes genes from GWAS analysis of 2000 patients and 3000
controls. (A,B) Plotted using the same conventions as in Figure 4, analyzing WTCCC GWAS data (Wellcome Trust Case Control Consortium 2007) for type
2 diabetes alone and in combination with HumanNet and measuring performance as AUC (<5% FPR) for recovering the top 20 genes from a type 2
diabetes meta-analysis of 4549 cases and 5579 controls (Zeggini et al. 2008). As for Crohn’s disease, consideration of the network boosts performance
across a wide range of parameter values. Notably, consideration of the network strongly implicates the genes CTNNB1 and BACH2 in type 2 diabetes;
CTNNB1 is well studied in connection with type 2 diabetes and BACH2 has been previously implicated in type 1 diabetes and celiac disease (e.g., Cooper
et al. 2008; Madu et al. 2009), but not type 2 diabetes.
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However, Cyld�/� knockout mice have an irritable bowel disor-

der phenotype (Reiley et al. 2007), and CYLD has been shown to

interact with TRAIP (TRAF interacting protein) by yeast two-

hybrid screens (Regamey et al. 2003). TRAIP is located in the

3p21 locus, which contains multiple independent signals for

association with Crohn’s disease (Beckly et al. 2008). Both of

these genes are connected in HumanNet to TRAF1, TNF re-

ceptor-associated factor 1, which is involved in TNF signaling

and NF-kappaB signaling.

We also see encouraging support of already known loci—

TNFRSF6B and TNFSF15 are both known to be involved in Crohn’s

disease, and they are connected in HumanNet.

Another interesting gene association is given by ATG16L1

and CAPN9, which boost each other. ATG16L1 is involved in

autophagy and has been implicated in multiple GWAS. CAPN9 is

a stomach-specific calpain, and mouse Capn9�/� knockouts are

sensitive to gastric mucosal injury induced by ethanol adminis-

tration (Hata et al. 2010). This, together with

the connection to ATG16L1, indicates that

this is another plausible candidate gene for

Crohn’s disease.

Genes boosted in type 2 diabetes

Before the Wellcome Trust study, PPARG,

KCNJ11, and TCF7L2 had all been identified

as genes involved in type 2 diabetes through

genome-wide association studies and repli-

cated in follow-up studies (for review, see

Bonnefond et al. 2010). The strongest can-

didate gene for type 2 diabetes, TCF7L2, was

also the strongest signal seen in the Well-

come trust study, although the others were

not so strong. However, the exact mecha-

nism by which TCF7L2 acts was not en-

tirely clear. In our analysis (Fig. 5), we find

it directly connected to the b-catenin/WNT

signaling pathway by its functional con-

nection to CTNNB1, as well as to BACH2,

a gene that has been repeatedly impli-

cated in type 1 diabetes (e.g., Cooper et al.

2008; Madu et al. 2009), but which has

not yet been linked to type 2 diabetes.

BACH2 is among the genes most strongly

boosted by network linkages, deriving ad-

ditional signal from CREB5 and PARD3B,

which both score highly in the GWAS data.

PARD6G, PARD3B, and CDC42 are also em-

phasized by the method. Notably, these

genes form a complex with PRKCZ (Koh

et al. 2008), a variant of which correlates

with type 2 diabetes in Han Chinese (Qin

et al. 2008). EBF1, a known regulator of

adipocyte differentiation (Akerblad et al.

2005) is also strongly boosted by the net-

work, supporting a possible role in type 2

diabetes.

Thus, for both Crohn’s disease and type

2 diabetes, the combined GWAS/GBA ap-

proach both boosts genes that have support

in other populations and that have been

replicated in later meta-analyses and high-

lights new connections between functionally

connected genes among the genes that show moderate association

to the disease.

Discussion

A new functional gene network for human genes

In order to test the general ability of a gene network to prioritize

disease genes, particularly in conjunction with GWAS studies, we

constructed a genome-scale functional network of human genes,

incorporating diverse expression, protein interaction, genetic in-

teraction, sequence, literature, and comparative genomics data,

including both data collected directly from human genes, as well as

that from orthologous genes of yeast, worm, and fly. The resulting

HumanNet gene network can be accessed through a web interface

(http://www.functionalnet.org/humannet). Using this interface,

researchers can easily search the network using a set of ‘‘seed’’

Table 1. Selected top-ranked Crohn’s disease and type 2 diabetes genes for which
network data added support to GWAS evidence, measured as an increase in odds
(prior = –1.7 for each)

Crohn’s disease

Gene name New rank Original rank Log odds increase Interaction partners

NOD2 1 1 0
ATG16L1 2 2 0.53 CAPN9
IL23R 3 3 0.76 STAT3
CYLD 4 4 0.52 TRAIP
PTPN2 5 6 0.76 STAT3
GRB2 7 99 3.63 DAG1, APP, STAT3, DDK1,

PPP2R2B
STAT3 8 17 1.88 IL23R, PTPN2, GRB2
BSN 9 9 0.61 CAMKV, ERC2
DAG1 11 21 1.6 TCTA, GRB2
PPM1K 16 125 2.27 CDK14, CAMKV, CLK3, MAGI2
SHC1 17 6125 3.98 PTPN2, STAT3, DOK1,

GRB2, DAG1, SBNO2, DAG1
SRC 20 11633 4.38 MAGI2, DAG1, STAT3, GRB2,

USP4, PTPN2, PPM1K
CAPN9 22 18 0.58 ATG16L1
TRAIP 28 45 0.66 CYLD
TRAF1 34 327 1.91 BATF, CREM, CYLD, TRAIP,

USP7
JAK2 38 3139 2.95 IL23R, STAT3, GRB2, IL12RB2,

PPM1K, MAG12
Type 2 diabetes

Gene name New rank Original rank Log odds increase Interaction partners

TCF7L2 1 1 0
THBS2 2 5 0.36 ISLR
CDKAL1 3 2 0
TSPAN8 4 3 0
PARD3B 10 13 0.22 KIF23
KIF23 14 44 1.05 MELK, FAM49A, DYNC1H1,

GTSE1, PARD3B
FAM49A 16 42 0.9 ANKS1B, KIF23, ANKS1A
ISLR 17 26 0.49 THBS2, ZNF532
BACH2 18 200 1.66 TCF7L2, PARD3B, CREB5
ANKS1A 23 30 0.32 FAM49A
XYLB 27 34 0.36 ATG7
MAGI2 29 65 0.67 ALK, CHUK, PRKG1, MELK,

DYRK1A
CDC42 35 191 1.18 PARD38, ATG7
MELK 38 51 0.46 MAGI2, KIF23
CTNNB1 76 3099 1.88 ATG7, TCF7L2, LOH12CR1,

CHUK, MAGI2
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genes of interest. The interface returns a list of genes ranked

according to their connections to the seed genes, together with the

evidence used to identify each coupling. The interactions and ev-

idence can be downloaded, and a network visualization tool has

been incorporated. All linkages can also be downloaded for in-

dependent analysis.

Functional networks provide a general strategy for prioritizing
disease genes

We demonstrate here that connectivity of human genes in an

integrated functional network is a strong predictor of disease

genes, both for cellular phenotypes and for diseases at the level of

the whole organism. This predictability is strong even when

considering only direct network connections, as shown both here

and by related previous work (e.g., Fraser and Plotkin 2007; Lage

et al. 2007; McGary et al. 2007; Linghu et al. 2009). We further

show that algorithms developed originally for predicting gene

function using gene networks also perform well at prioritizing

candidate disease genes. Importantly, the consideration of indi-

rect connections in diffusion algorithms, such as Iterative Ranking

(Ramakrishnan et al. 2009) and Gaussian smoothing (Mostafavi

et al. 2008), greatly improves the correct identification of disease

genes. Thus, knowing a few genes implicated in a disease, the net-

works offer a strong tool for prioritizing additional likely candidate

genes.

One primary limitation of this approach is that genes must

already be affiliated with the disease in order to predict new can-

didates. Typically, these seed genes would come from prior studies.

However, we demonstrate that the approach is still valuable when

used in combination with GWAS data, where no genes are de-

finitively associated with the disease.

Recent work also demonstrates that functional networks

inworm and yeast can successfully predict genetic modifiers

of genes (Lee et al. 2010b) using the same network guilt-by-

association approach. The effectiveness of this strategy in yeast

and worms strongly supports using a human gene network

in the same manner to predict genes of synthetic or epistatic

phenotypes. While relatively few such genetic interactions are

known currently among human genes (Flint and Mackay 2009)

as compared with the cases for yeast (e.g., Tong et al. 2001,

2004; Davierwala et al. 2005; Costanzo et al. 2010) or worm

(Lehner et al. 2006; Byrne et al. 2007), functional gene net-

works offer a potential directed strategy for expanding current

sets of human genetic interactions by prioritizing the tested

interactions using gene networks, and our preliminary results

demonstrating prediction of KRAS and OCT4 modifiers (Fig. 1C)

support such an approach.

Tissue specificity profiles are shared by linked genes

One important characteristic of HumanNet is the tendency for

linked genes to share specificity of expression in distinct tissues

(Fig. 1D). The observation of tissue specificity embedded in net-

works is consistent with our expectation for colocalization of

proteins in the same functional modules (e.g., protein complexes

and pathways) in specific cell types. However, this is nonetheless

notable, since many of the raw data sets for network construction

were not themselves tissue specific. For example, yeast-two-hybrid

(Y2H) interactions are tested not in human cells but in yeast cells

and, in fact, linkages derived only from Y2H do not show high

tissue specificity (data not shown). Similarly, the phylogenetic

profiling and gene neighbor comparative genomics approaches are

strictly based on analysis of genome sequences and make no ref-

erence to tissue expression, nor do, for example, linkages inferred

by homology from yeast. This trend for linked proteins in a ge-

nome-wide functional gene network to share tissue specificity has

also been previously observed for worm and Arabidopsis gene

networks (Lee et al. 2008, 2010a), and thus seems to be a result of

the training process and integration of multiple data types cor-

rectly capturing the sorts of functional relationships reflected by

the tissue specificity. A practical consequence is that a single ge-

nome-wide network of genes is nonetheless able to successfully

implicate genes in tissue- and cell-type-specific disorders as, for

example, the case of liver cirrhosis genes, which are well predicted

(AUC = 0.88) (Fig. 2B).

Network-aided association studies: A general strategy
for prioritizing genome-wide associations in human disease

The success of our approach suggests that analysis of GWAS data

sets using gene networks offers a useful strategy for identifying

both directly causal genes and even potential modifier loci in

human disease, and since neither the pathway information

encoded by the network nor the disease-association likelihoods

that come out of the GWAS make any prior assumptions about

the disease studied, this strategy is free from the study design bias

that is inherent in candidate gene or candidate pathway analyses.

The altered prioritization offered by the network-based associa-

tion approach has the effect of shifting attention for follow-up

studies to those genes (not SNPs) that are both best supported

independently, and most likely to impinge upon the process(es)

that are themselves best supported by the GWAS data, as de-

termined from the current state of biological knowledge that has

been objectively reconstructed and summarized in the gene

network. Since this technique is gene focused and not SNP fo-

cused, it can be used with any future sequencing technology as

long as the genetic variations can be associated with genes. In our

analyses of Crohn’s disease and type 2 diabetes, the network

boosted identification of correct associations by ;10% (measured

in area under the first 5% of the ROC curve), which translated in

practice to one to two genes more for these cases, a statistically

significant, but not large effect. However, the organization of the

associated genes into processes offered a large practical benefit,

such as focusing attention to BACH2, CTNNB1, and EBF1, which

were not well-supported by the type 2 diabetes GWAS, but which

were prominent network connectors between the well-supported

genes. Furthermore, this boost is an effect of using the full net-

work; individual sources of data do not provide nearly the same

coverage and accuracy as the integrated network, and the kinds of

data that is informative varies for the two different diseases

studied (data not shown).

A second overall strategy also presents itself for integrating

GBA and GWAS data sets, that of a candidate gene-based approach:

It seems quite feasible to use GBA to known causal genes in order to

select additional candidates, then to evaluate those candidate

genes in a directed fashion, either by interrogating the GWAS data

for associations involving these loci, or by directed sequencing of

the candidate genes in patient populations. By focusing only on

those genes ranked highly by GBA, the multiple testing explosion

of typical GWAS is eased considerably, allowing for smaller pa-

tient samples to be tested and easier statistical significance

thresholds to meet.
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Concluding remarks
In summary, the approach outlined here provides a general

method for prioritizing human disease genes, both for the case

where seed genes associated with the disease are known already,

and for the case where no such seed genes are known, but GWAS

data for the disease is available. Our results suggest that the net-

work will be useful for a considerable fraction of human diseases

with genetic components, and thus provides a general resource for

diverse genetic diseases.

Methods

Construction of HumanNet
This study is based on 18,714 human Entrez genes with validated
coding proteins (downloaded from NCBI; March 2007). Gene
functional associations were trained using a reference set of gene
pairs sharing Gene Ontology (GO) biological process annotations
(downloaded from NCBI; March 2007). We used only annotations
supported by experimental evidence: IDA (inferred from direct
assay); IMP (inferred from mutant phenotype); IPI (inferred from
protein interaction); IGI (inferred from genetic interaction); and
TAS (traceable author statement). To minimize training bias, we
excluded highly over-represented annotations: (1) ‘‘signal trans-
duction’’ (GO:0007165) (this term alone would otherwise account
for 38% of total positive reference gene pairs); (2) three additional
phosphorylation terms that have highly diverse biological roles,
‘‘protein amino acid phosphorylation’’ (GO:0006468), ‘‘protein
amino acid autophosphorylation’’ (GO:0046777), and ‘‘protein
amino acid dephosphorylation’’ (GO:0006470); and (3) all terms at
the first and second levels of the GO hierarchy (assuming the term
‘‘biological process’’ is level zero). The resulting data set of 270,704
reference gene pairs covers 5369 (29%) human genes.

Functional associations were learned (as described in detail in
the Supplemental Methods) in a supervised training framework
using the log likelihood scoring (LLS) scheme of (Lee et al. 2008,
2010a), monitoring overtraining with 0.632 bootstrapping as in
Lee et al. (2008). Gene associations from each separate data set
described below were optimized to maximize performance as
measured by precision-recall analysis, in accord with the rationales
presented in Lee et al. (2008, 2010a). Multiple LLS for each gene
pair were integrated using the weighted sum method with linearly
decaying weights as in (Lee et al. 2008).

Analysis of tissue-specificity of network linkages

The similar tissue specificity of linked gene pairs was measured as
the likelihood of co-occurrence of transcripts of pairs of genes in
the same tissues, calculated as likelihood score = PðCjNÞ=Pð:CjNÞ

PðCjRÞ=Pð:CjRÞ

h i
,

where PðCjNÞ and Pð:CjNÞ are probabilities that genes connected
by the network (N) are coexpressed (C) and not coexpressed ð:CÞ in
the same tissue. PðCjRÞ and Pð:CjRÞ represent similar calculations
based on randomized networks (R), repeating calculations for 100
randomized networks. As a reference for tissue-specific expression,
we collected 5018 tissue-specific genes and their expression pro-
files across 30 different human tissues from the TiGER database of
tissue-specific gene expression (Liu et al. 2008).

Implementation of network guilt-by-association algorithms

The naive Bayes GBA algorithm was implemented as previously
described (Lee et al. 2008). Briefly, a gene score consists of the sum
of LLSs to seed genes. For neighbor counting, the LLS sum is
simplified to a count of neighboring seed genes. For Markov

clustering, MCL software was downloaded from www.micans.
org/mcl (van Dongen 2000; Enright et al. 2002). We obtained
network clusters using the default granularity settings. The final
score for a gene consists of the sum of the gene’s maximal cov-
erage scores to clusters containing seeds. The coverage score is an
MCL measure, comprised of the sum of edge weights from a node
to a cluster, with larger edge weights rewarded. To obtain random
scores for a phenotype set, we randomly selected from the ge-
nome a set of seeds of the same size, and performed naive Bayes
GBA as before.

The following methods were implemented in Matlab:
GeneMANIA Gaussian field label propagation (Gaussian smooth-
ing) was implemented as previously described (Mostafavi et al.
2008). Briefly, seeds were assigned initial scores of 1, and all others
n/N, where n is the number of seeds and N is the total number of
network genes. We then solved the system y = (I + L)f, where y is
the set of initial scores, L is the graph Laplacian matrix of the net-
work, and f is the set of final scores. The method for Iterative
Ranking is derived in detail elsewhere (Ramakrishnan et al. 2009).
However, rather than iteratively computing the final scores, we
solved the system y = (I - U)f, where U is the matrix of network edges
weighted by the sum of outgoing edges from each node. For the
circuit-based method, we followed the electrical model proposed
previously (Suthram et al. 2008). Each edge in the network is treated
as the conductance between the connecting nodes. The seed nodes
are designated as the ground reference, and a current is simul-
taneously applied to all other nodes in the network. Using Kirchoff
Laws, we solved for the voltage for each node. The final score for
a node is the flow, or the node’s total current multiplied by its
voltage.

Integrating the gene network with genome-wide association
study data

GWAS data came from the Wellcome Trust Case Control Consor-
tium (Wellcome Trust Case Control Consortium 2007). We se-
lected the additive Bayes factor as a measure of association between
SNPs and diseases, and represent each gene by the strongest asso-
ciation signal within 10 kb from the beginning or end of the gene.
The same analysis for different cutoffs, varying from 0 to 250 kb,
did not significantly change the boosting from the network.

We approximated the probability of a gene being involved in
a disease by assuming that the space of possible hypotheses was
limited to the null hypothesis and the additive hypothesis used for
calculating the Bayes factors, and chose the value for the prior odds
by optimizing the area under the first 5% of the area under the
ROC curve. In general, we observed an improvement for prior
(log10) odds ranging from roughly �2.5 to �1, corresponding to
;60–1900 associated genes, respectively. Finally, in testing the
effect of normalizing for node degree in the gene network, we
observed a loss of performance, presumably because node degree
does carry information for associating genes with diseases.
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