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Plasticity of gene regulatory encryption can permit DNA sequence divergence without loss of function. Functional in-
formation is preserved through conservation of the composition of transcription factor binding sites (TFBS) in a regulatory
element. We have developed a method that can accurately identify pairs of functional noncoding orthologs at evolutionarily
diverged loci by searching for conserved TFBS arrangements. With an estimated 5% false-positive rate (FPR) in approxi-
mately 3000 human and zebrafish syntenic loci, we detected approximately 300 pairs of diverged elements that are likely to
share common ancestry and have similar regulatory activity. By analyzing a pool of experimentally validated human en-
hancers, we demonstrated that 7/8 (88%) of their predicted functional orthologs retained in vivo regulatory control.
Moreover, in 5/7 (71%) of assayed enhancer pairs, we observed concordant expression patterns. We argue that TFBS
composition is often necessary to retain and sufficient to predict regulatory function in the absence of overt sequence
conservation, revealing an entire class of functionally conserved, evolutionarily diverged regulatory elements that we term
‘‘covert.’’

[Supplemental material is available for this article. Generated data sets of covert elements are available at http://
www.dcode.org/covert/.]

In recent years, sequence constraint has been widely used as

a powerful filter to identify regulatory sequences (Hardison 2000;

Bejerano et al. 2004; Pennacchio et al. 2006; Visel et al. 2007a).

However, the divergence of regulatory pathways and networks is

also predicted to play a major role in the diversification and

adaptation of species (King and Wilson 1975). Recent studies

indicate that the cis-regulatory sequences constitute the primary

substrate of evolutionary divergence, while the remaining com-

ponents of the transcriptional machinery, such as transcription

factors (TFs) and the coding genes they modulate, are pre-

dominantly conserved (ENCODE Project Consortium et al. 2007;

Wilson et al. 2008). Furthermore, UTRs, introns, and intergenic

DNA show unexpectedly high levels of divergence (Andolfatto

2005; Bird et al. 2006). Consequently, only ;3.5% of noncoding

sequence are highly conserved among mammals (Waterston et al.

2002; Siepel et al. 2005), and <1% are conserved with more distant

vertebrates, such as teleosts (Thomas et al. 2003).

Regulatory elements (enhancers, silencers, insulators, etc.)

display heterogeneous levels of conservation. Sequences that are

critical for organism development and homeostasis frequently

display evidence of strong selective constraint and are thus con-

served among distant lineages (Nobrega et al. 2003; Woolfe et al.

2005; Visel et al. 2009). For instance, the majority of assayed

conserved noncoding elements (CNEs) in human and fish ge-

nomes have been shown to act as tissue-specific enhancers in

the developing brain and neuronal systems (Loots et al. 2002).

However, most of the regulatory landscape in vertebrate genomes

shows evidence of rapid modification and differs even between

closely related species (Dermitzakis and Clark 2002; Kasowski et al.

2010) as well as between individuals within the same population

(Borneman et al. 2007; Stranger et al. 2007). Although a substantial

fraction of these differences likely corresponds to lineage-specific

elements, recent work suggests that lineage-specific TF binding site

(TFBS) turnover has resulted in a group of regulatory elements with

evolutionarily conserved function but little evidence of sequence

constraint (Blow et al. 2010; Kunarso et al. 2010; Schmidt et al.

2010; Xie et al. 2010). In these elements, which we term ‘‘covert’’

elements, the regulatory encryption is conserved, but embedded

within a divergent sequence background. Individual instances

of covert regulatory elements have been previously reported in

Drosophila (Dermitzakis et al. 2003; Ludwig et al. 2005; Wittkopp

2006; Hare et al. 2008).

The difficulty of reliably aligning noncoding sequences of

distant species was recognized early by the research community,

which has developed several models to assess inference errors

(Pollard et al. 2006; Huang et al. 2007; Kim and Sinha 2010).

Extensive work has been done to provide further insight into the
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functional constraints on TFBS organization, concluding that

clustered and/or overlapping TFBSs are common requirements for

enhancer activity (e.g., Hu et al. 2007; Gotea et al. 2010; Lusk and

Eisen 2010). Many state-of-the-art enhancer predictors search for

clusters of TFBS, facilitating the discovery of regulatory regions in

an ‘‘alignment-free’’ manner (Philippakis et al. 2005; Blanchette

et al. 2006; Sinha et al. 2006; Narlikar et al. 2010), even in the

scenario where relevant TFs or binding affinities are unknown

(Kantorovitz et al. 2009; Arunachalam et al. 2010).

Here, we introduce a computational framework to identify

covert regulatory elements in genomes of distantly related species.

We demonstrate that, using iterative pairwise alignments among

trios of vertebrate species, we can establish orthology relationships

between diverged noncoding sequences and identify specific pat-

terns describing these sequences. Furthermore, we show that these

patterns are appropriately modeled as arrangements of TFBS. Using

this data set of diverged sequences wherein orthology is known,

we developed and trained an alignment model capable of accu-

rately identifying regulatory orthologs genome-wide on sequences

where no overt alignment is provided by standard metrics. Using

alignments of TFBSs instead of nucleotides, we predicted orthology

relationships of 300 human/fish noncoding sequence pairs with

an estimated false-positive rate (FPR) of 5%. Putative human/

zebrafish orthologs were tested in transgenic zebrafish assays,

confirming enhancer activity of 7/8 (88%) of the zebrafish se-

quences for which the human counterpart also showed enhancer

activity. Furthermore, 5/7 (71%) of the zebrafish enhancers dis-

played consistent overlapping function with their human coun-

terparts, despite diverged sequences indicating a high degree of

functional conservation during enhancer evolution. These results

validate the accuracy of our predictions.

Results

Conservation tunneling can reveal diverged regulatory
elements in the human genome

For any given genomic region, both mutation rates and selection

pressure fluctuate over time and between species. Accordingly,

iterative pairwise comparisons among sequences of multiple

species evolving over different divergence times and rates can

provide evidence of orthology where standard sequence alignment

methods (such as BLASTZ) (Schwartz et al. 2003) might fail. We

hypothesized that iterative pairwise comparisons can be used to

identify covert regulatory elements, i.e., sequence orthologs that

are overtly diverged yet retain a core TFBS composition due to

their function.

Using pairwise comparisons among three distantly related

species, we cataloged noncoding sequence pairs for which we could

detect homology in only two of the three possible comparisons.

From these data, we generated a library of sequence pairs that dis-

play extensive divergence but are both homologous to a third se-

quence, and thus, likely to share a common ancestor (Fig. 1). We

compared human/frog, human/zebrafish, and frog/zebrafish con-

served noncoding elements (CNEs; 70% identity across at least 100

bp) and identified approximately 1500 pairs of human and zebra-

fish sequences that show similarity to the same sequences in the

frog genome, but are not alignable to each other (for the phyloge-

netic relationships among the involved species, see Supplemental

Fig. 1). In this case, the frog sequence is likely to be the most similar

to the ancestral sequence, thus serving as an orthology ‘‘tunnel’’

between human and zebrafish.

Tunneled elements (TEs) encompass 267 kb in the human

genome and are widely but not uniformly distributed across all

chromosomes, often residing in clusters—37% lie within 25 kb of

another one (in contrast with the 3% expectation, see Supple-

mental Fig. 2). Nearly all human TEs (TEHs) also exhibit extremely

high levels of conservation in other vertebrates, with an average

phastCons score (Siepel et al. 2005) of 1.4 (as compared to the

average 1.7 for human/zebrafish CNEs). Similarly, 64% of zebrafish

counterparts of TEs (TEZ) are conserved in Fugu (at least 70%

identity across 100 bp). Collectively, these data establish that TEs

are well conserved within vertebrates, supporting their function-

ality, albeit that this conservation is circumscribed to particular

phylogenetic clades.

In addition, as further evidence of their potential association

with regulatory function, TEs demonstrate a highly significant

overlap with sites of ChIP-seq enrichment for the transcriptional

coactivator p300 (Visel et al. 2009) in forebrain (34%), midbrain

(32%), and limb (28%) tissue (all P-values <2.2 3 10�16 according to

a one-tailed Fisher’s exact test). Gene Ontology (GO) categories

(Ashburner et al. 2000) enriched among TEHs include regulation of

transcription, organ development, and morphogenesis (P-values

<0.05 after multiple testing correction, computed with the binomial

test, accounting for locus length differences) (Taher and Ovcharenko

2009).

Figure 1. Conservation tunneling. (A) Phylogenetic tree constructed for three orthologous sequences in human (hg18: chr18:53271349–53271555),
frog (xenTro2: scaffold_97:133388–133595), and zebrafish (danRer5: chr24:28243171–28243307). Only the human and the frog sequences and the
frog and the zebrafish sequences can be aligned (with at least 70% identity across at least 100 bp). The frog sequence has evolved more slowly relative to
the human and zebrafish sequences, and thus, can be used to establish the orthology of the diverged human and the zebrafish sequences. (B) Pairwise
sequence comparisons. Eighty-seven percent of frog nucleotides are conserved in either human or fish (gray squares), while only 42% are conserved in
both human and fish (red triangles).
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These results provide support for the idea that human/

zebrafish TEs predate the tetrapod split and comprise functional

regulatory sequences that have diverged beyond the point where

standard sequence comparison can reliably detect homology.

Thus, TEs constitute an ideal data set to study patterns of regula-

tory sequence evolution at the extremes of sequence divergence.

TFBS constraint characterizes TEs

Although the most evolutionarily distant counterparts of TEs do

not satisfy an empirically optimized similarity threshold (70%

identity across 100 bp) (Loots et al. 2000; Ovcharenko et al. 2004),

some sequences display lower levels of conservation. To quantify

this, we aligned the human counterpart of each TE to the zebrafish

genome using BLAT (Kent 2002). We successfully identified the

zebrafish orthologous region in only 7% of cases, completely fail-

ing to align 33% of the sequences and identifying nonorthologous

alignments for the remaining 60%. In whole-genome compari-

sons, alignments that fall below standard sequence conservation

thresholds are likely to reveal spurious alignments, and are consid-

ered false positives. By tunneling the sequence similarity through

an additional species—in this instance, frog—we minimize this risk,

providing strong evidence of common ancestry for all pairs of hu-

man and zebrafish sequences.

To better assess the impact of sequence divergence on func-

tion, we then analyzed the TFBS composition and variation

among TEs. Using the TF binding specificities in TRANSFAC

(Matys et al. 2006) with a conservative threshold of less than one

occurrence for a given TFBS every 10 kb of random sequence, we

identified an average of 70 and 73 different TFBSs in the human

and zebrafish counterparts of TEs, respectively. Then, we relaxed

the definition of conservation, calling a TFBS conserved if it simply

occurs in all sequences being considered. We found that, on av-

erage, 22% of the TFBSs predicted in the human counterpart of TEs

are conserved in the frog counterpart, and from these, only 7% of

the total are conserved in the zebrafish counterpart. This exceeds

the expected 4% observed for unrelated human and zebrafish

noncoding sequences (P-value <2.2 3 10�16, Wilcoxon rank-sum

test). Also, conserved TFBSs display a high level of sequence

identity, with an average of 73% (while the average sequence

identity between TFBSs in unrelated sequences is 61% [P-value

<2.2 3 10�16, Wilcoxon rank-sum test]). Although we should be

cautious in interpreting these findings, since we ignore which

TFBSs are functional, these observations suggest that TFBSs within

these TEs are subject to evolutionary constraint.

TFBS composition can be used to describe covert
regulatory elements

With the collection of TEs as foundation, we hypothesized that we

could formulate a robust mathematical framework describing the

regulatory function encrypted in the arrangements of TFBS of co-

vert elements. To this end, we developed an alignment model that

compares sets of conserved TFBSs. In our model, TFBSs were con-

sidered conserved if they could be identified in all sequences

involved, regardless of the sequence alignment. The main as-

sumptions behind our alignment model are that the order of the

TFBSs is conserved among orthologous regulatory elements and

that the distance between pairs of functional TFBSs can only vary

within a set range. As a first step, we independently searched the

sequences with a set of position weight matrices (PWMs), gener-

ating a list of TFBS occurrences. Then, for a given PWM, we com-

pared all occurrences on the reference sequence with the occur-

rences on the corresponding target sequence, producing a list of

pairs of occurrences. Lastly, we scored all possible combinations of

pairs of TFBS occurrences that would establish consistent align-

ments, in the sense they do not violate the assumption of order

preservation between any two TFBSs. The score of an alignment is

a function of the number of conserved TFBSs and their relative

position shift (for details, see Methods; for an example, see Sup-

plemental Fig. 3).

Our model was trained and tested on the set of TEs for which

we could ascertain true orthologs. To define the search space in the

zebrafish genome, we first identified syntenic human and zebra-

fish loci containing the TEs. These loci were defined using pairs of

human/zebrafish CNEs separated by #50 kb and encompassing

the TEs. We scanned the resulting set of 308 syntenic zebrafish loci

using a sliding window approach, looking for the counterparts of

the corresponding TEHs. In aggregate, we analyzed more than

3 million windows and selected the highest-scoring window for

each of the 308 TEHs (<0.2% of all windows) as predicted zebrafish

orthologs. Fifty-one percent of predicted orthologs correctly

revealed the location of the corresponding TEZs. Moreover, the

center of the majority (88%) of windows is shifted by <100 bp with

respect to the center of the corresponding TEZs, indicating that our

alignment method recognizes functional orthologs accurately.

A few similar approaches have been proposed in the past

(Berezikov et al. 2004; Blanco et al. 2006; Hallikas et al. 2006),

focusing on the comparison of mammalian regulatory regions that

do not show discernible sequence conservation. In particular, the

method by Blanco et al. (2006), which is targeted to promoters,

succeeded in retrieving only 7% of the zebrafish orthologs. Simi-

larly, EEL (Hallikas et al. 2006), a tool designed to locate enhancers

in mammalian genomes by comparing conserved clusters of TFBSs,

succeeded in 18% of the cases. Despite relying on similar models,

the optimal parameter configuration of these methods depends on

the exact issue to be addressed, explaining the remarkable dif-

ferences in performance. Additionally, we assessed the ability to

recover orthologs in distant species of EMMA (He et al. 2009),

a state-of-the-art computational method for cis-regulatory module

prediction that performs alignment and binding site prediction

simultaneously, based on an evolutionary model. EMMA recog-

nized 13% of TEs as regulatory sequences. We used Cluster-Buster

(Frith et al. 2003), a software that finds clusters of TFBSs in DNA

sequences, and retrieved 5% of TEs. The best performance among

tested previously developed tools was demonstrated by a multi-

ple alignment program, MUSCLE (Edgar 2004), which correctly

identified zebrafish orthologs of human TEs in 47% of the in-

stances. Although our method performed better than these alter-

natives, we would like to emphasize that these tools have been

designed to achieve different goals. Thus, whereas EMMA and

Cluster-Buster produce robust analysis of well-characterized regu-

latory regions and exploration of long sequences with strong

clusters of TFBSs, respectively, our tool is specifically suited to the

alignment and comparison of TFBS profiles. On the other hand,

whereas MUSCLE’s performance is comparable to our method,

it provides little information about the underlying regulatory

architecture of the sequences.

Finally, we investigated how alignments between orthologous

sequences could be distinguished from incorrect alignments, oc-

curring by chance between unrelated sequences. The ability of our

algorithm to recognize the zebrafish counterpart does not depend

on the length of the human (average 170 bp) and zebrafish (aver-

age 161 bp) counterparts of the element or the GC content of the

Conserved function in diverged sequences
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sequences (averages 45% and 46%, respectively; for details, see

Supplemental Fig. 4). Differences in the level of conservation do not

have a major effect either: BLAT (Kent 2002) found no evident

sequence alignment for neither orthologous (88% of cases) nor in-

correct (95%) TFBS-based alignments. However, orthologous align-

ments have significantly higher scores than incorrect alignments

(averages 9.3 and 5.9, respectively; P-value = 1.8 3 10�8, Wilcoxon

rank-sum test). Furthermore, the alignment score is correlated with

the number of TFBS occurrences in the predicted zebrafish ortholog

(R-squared = 0.3). The correlation, however, differs for orthologous

versus incorrect alignments, in that, for a given alignment score,

incorrect alignments contained a disproportionally small number of

TFBSs. Thus, by using the number of TFBSs in addition to the

alignment scores, we can perfectly separate 28% of orthologous

alignments from incorrect alignments (Fig. 2), a 75% improvement

over the separation using alignment scores only. In addition, 74% of

orthologous alignments scored higher than control alignments

computed with their flanking loci, whereas only 38% of incorrect

alignments did (Supplemental Fig. 5). Based on these findings, we

integrated the alignment scores of orthologous and control align-

ments with the number of TFBSs in the corresponding predicted

orthologs and used a Support Vector Machine (SVM) to separate

reliable from unreliable alignments. We examined the performance

of the method by repeating a 10-fold cross-validation 100 times

with random partitions of the data and obtained an average sensi-

tivity of 50% for a FPR of 5% (Fig. 2, insert). This strategy provided

a theoretical framework to detect covert elements genome-wide.

TFBS-based alignments can discover covert regulatory elements
genome-wide

Finally, we set out to determine whether the TFBS-based alignment

model trained on TEs could be helpful to discover other regulatory

sequences that lie below the radar of sequence conservation, de novo.

To ensure that we apply our model to only well-diverged sequences,

we filtered out weakly conserved sequences (50% identity across at

least 100 bp), as well as successfully tunneled elements, and used our

model to align approximately 3000 human/frog CNEs to the zebra-

fish genome. The corresponding syntenic loci in zebrafish were de-

fined as previously described requiring human/zebrafish CNEs to

demarcate locus boundaries (Fig. 3).

Evidently, not all of these human/frog CNEs are expected to

have a functional ortholog in the zebrafish genome, as many might

have been lost due to lineage specialization or constitute lineage-

specific innovation. Using the set of human/frog CNEs we identified

approximately 300 high-confidence predictions of human/zebra-

fish covert elements (with a FPR of 5%). These elements are widely

distributed in 236 loci of UCSC Known and RefSeq (Hsu et al. 2006;

Pruitt et al. 2007) genes. The human counterparts of 3% of these

elements overlap a UTR of a known human protein-coding gene,

while 71% are located in introns of known genes and the rest are

intergenic. Compared to the complete set of human/frog CNEs, our

predictions are significantly enriched in the neighborhood of genes

related to somatic muscle development (200-fold enrichment,

P-value = 0 after multiple testing correction, binomial test), sug-

gesting that they are biologically meaningful. Other attributes,

such as regulation of transcription, are almost twofold enriched

with regard to human/frog CNEs. This suggests that covert ele-

ments may be specifically associated with developmentally rele-

vant regulatory functions. Moreover, 11 elements (Table 1) are

contained in enhancers that have been shown to drive expression

in limb, heart, and brain tissues (Visel et al. 2007b). The regulatory

function of our predictions is further supported by their over-

lap with ChIP-seq and histone monomethylation patterns that

characterize enhancer activity (H3K4me1) (Barski et al. 2007;

Heintzman et al. 2007). The predicted approximately 300 human/

zebrafish predicted covert elements significantly overlap with sites

of p300 enrichment (ChIP-seq) for p300 in forebrain (71%), mid-

brain (71%), and limb (66%), with an increase >1.6-fold over hu-

man/frog CNEs (all P-values <2.2 3 10�16 according to a Fisher’s

exact test). Overall, 87% of the predicted sequences overlap with

p300 peaks, demonstrating overwhelming support for their regu-

latory role in forebrain, midbrain, and limb development. Fur-

thermore, ;26% of the elements have H3K4me1 signatures, em-

phasizing that a large fraction of the reported elements could

exhibit enhancer activity.

In vivo analyses of putative enhancers reveal concordant
tissue-specific expression

The ultimate test for the ability of our method to accurately

identify functional orthologs that are diverged at the sequence

level is to experimentally demonstrate, in vivo, their regulatory

activity. Toward that end, we randomly selected a set of 18 puta-

tive human/zebrafish orthologs discovered by the TFBS-based

Figure 2. Alignment scores as a function of the number of TFBSs in the
target window. Trend lines for correct (solid green line) and incorrect
(solid red line) alignments; (black dotted line) perfectly separates correct
from incorrect alignments. (Inset) The receiver operating characteristic
(ROC) curve for the linear SVM classifier separating orthologous from
control alignments; the curve profiles the performance in terms of the
number of orthologous sequences that are correctly identified among all
orthologous sequences (TPR), and the number of control sequences that
are incorrectly identified as orthologs among all control sequences (FPR).
Gray dotted lines show the standard deviation. The red dotted line dis-
plays the ROC curve for a random classifier. The solid red lines indicate the
selected operating point (FPR = 0.5).
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alignments (Table 2), and undertook in vivo analyses of the

sequences’ ability to drive tissue-specific activity in developing

zebrafish embryos. These human and zebrafish sequences are

neither overtly conserved at the sequence level nor can they be

identified using the conservation tunneling approach. To build up

a comprehensive picture of the accuracy of our model, we assayed

sequences with a wide range of scores.

As expected for deeply conserved elements (Pennacchio et al.

2006), 8/18 (44%) of the assayed human sequences displayed

enhancer activity in vivo. To assess if the predicted zebrafish

sequences correspond to the functional orthologs of the human

sequences, we similarly assayed the zebrafish counterparts of all

identified human enhancers. Remarkably, 7/8 (88%) of the assayed

zebrafish sequences also directed tissue-specific expression.

Moreover, the orthologous sequences displayed notable similarity

in enhancer activity (Fig. 4; Supplemental Fig. 6), in that they di-

rected expression in concordant anatomical discrete units. For

example, the human sequence E (Table 2) directed expression in

the forebrain, notochord, and somites; the predicted orthologous

zebrafish sequence directed expression in the same tissues. In two

cases, however, we observed expression in different tissues (Fig. 4,

sequences B and G; Supplemental Fig. 6). For instance, human

sequence G weakly drives expression in the forebrain and in spinal

cord neurons, while its zebrafish counterpart shows stronger

expression in the notochord (Fig. 4). Unless we have failed to

recognize a related element in the zebrafish locus, the observed

divergence in function likely corresponds to adaptive changes in

the function of these enhancers.

In general, despite the great evolutionary distance and the

absence of sequence conservation, both human and zebrafish coun-

terparts of the tested covert elements displayed strong similarity

in enhancer activity in vivo (zebrafish). Three of the four pairs that

demonstrated enhancer activity had highly overlapping expres-

sion patterns, and the fourth pair was similar in that both had

expression in neural tissues, suggesting functional specialization as

compared to the ancestral sequence.

Taken collectively, our experimental data confirm that our

computational approach captures essential functional in-

formation despite lack of sequence similarity, and therefore,

constitutes an important step toward understanding the encryp-

tion and evolution of the regulatory code.

Discussion
Changes in transcriptional regulation are frequently assumed to

constitute key players in the recent evolution of humans (King and

Wilson 1975). However, despite immense efforts in the field, we

still have a very limited knowledge of the regulatory architecture of

vertebrate genomes. In particular, we know that transcriptional

regulatory sequences appear to be relatively flexible, allowing

considerable sequence mutation while retaining functional

equivalence (Ludwig 2002; Elgar 2006; Polavarapu et al. 2008).

Figure 3. Overview of the detection of covert regulatory elements. We look for functional orthologs of conserved human/frog CNEs in the zebrafish
sequence by computing alignments for syntenic and control loci and using a SVM to distinguish significant from random alignments.

Table 1. Human counterparts of human/zebrafish covert regulatory elements with known enhancer activity

Covert
element [hg18]

VISTA
enhancer [hg18]

Expression
pattern Location

chr5:170,562,014–170,562,483 chr5:170,560,595–170,562,623 Hindbrain, melanocytes Intronic (RANBP17)
chr3:71,117,465–71,117,861 chr3:71,117,079–71,118,120 Heart Intronic (FOXP1)
chr3:159,386,315–159,386,927 chr3:159,386,004–159,387,336 Limb Intronic (RSRC1)
chr3:170,444,414–170,445,187 chr3:170,441,027–170,445,638 Limb, trigeminal V (ganglion, cranial) Intronic (EVI1, MDS1)
chr19:35,459,054–35,459,528 chr19:35,458,898–35,460,113 Heart Intergenic
chr7:21,777,980–21,778,300 chr7:21,777,895–21,778,527 Neural tube Intronic (DNAH11)
chr7:42,158,554–42,158,834 chr7:42,158,253–42,160,163 Forebrain Intronic (GLI3)
chr7:121,755,948–121,756,938 chr7:121,754,764–121,758,314 Neural tube, hindbrain, midbrain, forebrain Intronic (CADPS2)
chr7:69,741,351–69,742,065 chr7:69,741,059–69,742,267 Neural tube, limb Intronic (AUTS2)
chr9:125,578,814–125,579,675 chr9:125,577,539–125,579,750 Midbrain (mesencephalon) Intronic (DENND1A)
chr2:59,032,867–59,033,343 chr2:59,032,496–59,033,746 Heart Intronic (AK055400)

Conserved function in diverged sequences
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Several examples also demonstrate the existence of covert regula-

tory elements, i.e., elements that have maintained their function

despite extensive function divergence (Fisher et al. 2006a; Hare

et al. 2008; McGaughey et al. 2008). Yet, most predictions of

functional noncoding sequences are still achieved through the

analysis of evolutionary conservation,

suggesting that many functional se-

quences may remain undetected.

To improve our understanding of

the language of transcriptional regula-

tion, we have established a strategy to

ascertain the ancestral identity of di-

verged noncoding sequences. In the

comparison of two distantly related spe-

cies, e.g., human and zebrafish, the ad-

dition of a third species that is also a de-

scendant of the last common ancestor of

the original two, e.g., frog, often serves as

a tunnel to establish a relationship be-

tween them. The inclusion of the frog

sequence often provides us with a better

estimation of the sequence of interest in

the last common ancestor of human and

frog, and this sequence is likely to share

more similarity with its hypothetical

zebrafish ortholog than the original hu-

man sequence. Thereby, incorporating

a third species into the genomic pairwise

comparison of two distant species facili-

tates the detection of ancestral sequence

identity. We have applied this principle

to establish orthology relationships

between 1500 noncoding elements in human and zebrafish that

fail to align under standard pairwise sequence comparison, in-

creasing the number of predicted functional elements in ap-

proximately 5%. Human, frog, and zebrafish are certainly not the

only species to which the conservation tunneling principle can be

Table 2. In vivo testing of putative regulatory human and zebrafish orthologs in transgenic
zebrafish assays

Human/frog CNEs
[hg18]

Putative zebrafish
ortholog [danRer5] Assayb IDc

chr12:88,267,809–88,268,037 chr25:8,914,211–8,914,439 Positive A
chr5:3,285,139–3,285,343 chr16:15,172,399–15,172,603 Negative
chr10:131,248,152–131,248,460 chr12:38,822,827–38,823,135 Negative
chr10:11,361,494–11,361,726 chr4:26,815,593–26,815,825 Negative
chr2:182,147,360–182,147,611 chr9:37,985,085–37,985,336 Negativea

chr9:127,267,217–127,267,408 chr8:33,605,138–33,605,329 Positive B
chr15:34,737,795–34,738,181 chr17:50,466,907–50,467,293 Positive C
chr1:10,578,341–10,578,533 chr23:25,818,680–25,818,872 Negative
chrX:153,251,042–153,251,196 chr23:17,626,509–17,626,663 Negative
chr1:7,633,413–7,633,621 chr23:28,890,355–28,890,563 Positive D
chr15:68,061,552–68,061,754 chr7:29,853,606–29,853,808 Positive E
chr15:93,639,709–93,639,857 chr18:23,274,074–23,274,222 Negative
chr9:70,681,777–70,681,903 chr8:6,110,930–6,111,056 Negative
chr20:50,432,647–50,432,819 chr21:41,585,705–41,585,877 Negative
chr15:93,978,011–93,978,355 chr18:23,434,034–23,434,378 Positive F
chr10:130,561,608–130,561,831 chr12:38,483,424–38,483,647 Negative
chr1:90,541,222–90,541,350 chr6:49,105,457–49,105,585 Positive G
chr10:131,123,015–131,123,301 chr12:38,769,512-38,769,798 Negative

aHuman element chr2:182,147,360–182,147,611 displayed enhancer activity, in contrast to its
zebrafish counterpart, which did not.
bThe column ‘‘Assay’’ indicates whether both sequences in a given pair of putative regulatory orthologs
exhibited enhancer activity (Positive) or not (Negative).
cThe column ‘‘ID’’ refers to the identifiers used in Figure 4 and Supplemental Figure 6.

Figure 4. Putative human and zebrafish enhancer pairs direct similar tissue-specific expression (covert regulatory elements D, E, F, G) (Table 2). (A)
Composite overviews of in vivo GFP expression data from 16–20 individual zebrafish embryos per construct. The keys for the marked expression are
provided next to each image, followed by the number of fish in the set with that specific expression. (B) One representative GFP live image from each
enhancer set is displayed. All zebrafish are 24 hpf oriented with anterior to the left and dorsal to the top. The dotted box demarcates the forebrain. The
stacked structures of the notochord are between the dotted lines. Arrows refer to the somites. The solid line box contains the spinal cord. The pronephric
duct-consistent expression is marked by the solid line ovals.
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applied, but only examples to illustrate our approach. Likewise, we

have inferred the orthology of 3600 human/frog (tunneled

through chicken) and 6400 human/chicken (tunneled though

mouse) elements that fail to align under standard pairwise se-

quence comparison methods.

A significant fraction of diverged noncoding sequences defy

detection based on sequence similarity, even after including more

species into the analysis. For those cases, we have designed an

alignment model based solely on the distribution of TFBSs. The

main limitation of the method resides in the need of ensuring the

orthology of the search locus, which we addressed by requiring

conserved elements on both sides of the putative diverged ele-

ment. Also, our model assumes that the set of transcription factors

binding to each particular cis-regulatory module is very similar in

the species compared and will fail to identify orthologous elements

if extensive changes in the transcriptional machinery have taken

place. Evidence suggests that weakly advantageous (or deleterious)

mutations at different positions within a binding site are likely to

be strongly selected for (or against). Consistently, our model does

not require the TFBSs to be identical on both sequences and per-

mits variation as long as the signal represented by the shared TFBSs

is not drowned out by the noise of matches to unrelated sequences.

We evaluated 3000 zebrafish, 8000 frog, and 290,000 chicken

loci, looking for functional orthologs of human/frog, human/

chicken, and human/mouse CNEs, respectively, and found con-

clusive evidence of the existence of covert regulatory elements in

1% to 10% of them. Predicted covert elements are particularly

enriched in loci of genes displaying transcriptional and develop-

mental functions, and sequence divergence of these elements

could be explained by extensive sequence changes in nonbinding

site regions. An in vivo screen for enhancer activity of 18 human

counterparts of putative human/zebrafish functional orthologs

yielded eight positive enhancers with roles in mesoderm and

nervous system development. The zebrafish counterpart of seven

of these eight elements also exhibited enhancer activity. Moreover,

5/7 (71%) of the human/zebrafish pairs of sequences directed gene

expression in overlapping sets of discrete anatomical units, with

40% driving transcription in identical structures. This demon-

strates that enhancers can maintain their function despite se-

quence divergence. Two zebrafish sequences, however, exhibited

divergent activities as compared with their human counterparts.

Indeed, known examples show that extensive expression pattern

changes may result from mutations in only a few nucleotides

(Wittkopp 2006). Our experimental data are consistent with these

interpretations and confirm the theoretical possibility of predict-

ing regulatory function using comparisons that rely on the TFBS

structure rather than nucleotide composition of the sequences.

In summary, although the analysis of regulatory elements

that control gene expression has placed much emphasis on the

conservation of noncoding regions at the sequence level, recent

studies demand a rethink of this approach. Here, we showed how

iterative pairwise sequence comparisons among multiple species

can be applied to detect orthology relationships between non-

coding regions that have diverged at the sequence level. We also

modeled the evolution of regulatory elements based on arrange-

ments of TFBSs identified therein, detecting orthology relation-

ships where conventional strategies failed. With an approach

based on this model, we then searched the zebrafish genome for

orthologs of functional human sequences (as supported by both

functional analysis and post hoc evaluation of ChIP-identified

sequences) previously undetected/undetectable using common

metrics of constraint, confirming their broader existence.

Few available examples of well-characterized sets of en-

hancers that have diverged at the sequence level but preserved

their function limit our understanding of covert regulatory se-

quences. To address this, we have proposed a systematic approach

for detecting further instances and capturing general properties of

covert sequences. In turn, additional experimental investigation

will allow us to develop more robust models and gain greater in-

sight into the evolution of regulatory sequences.

Methods

Conserved elements
Our method relies on the identification of short sequences con-
served between two or three species. Using UCSC single-coverage
pairwise alignments (axtNet) (Kent et al. 2003) produced from
BLASTZ (Schwartz et al. 2003), we looked for sequences that are at
least 100 bp long and show at least 70% identity.

Pairwise alignments of the human genome (hg18) with
mouse (mm9), chicken (galGal3), frog (xenTro2), and zebrafish
(danRer5) genomes, as well as between mouse and chicken,
chicken and frog, and frog and zebrafish (danRer4), were obtained
from the UCSC Genome Browser (Karolchik et al. 2009). The
danRer4 coordinates were converted to danRer5 coordinates using
the UCSC liftOver tool.

We used annotation from RefSeq (Pruitt et al. 2007) and UCSC
Known Genes (Hsu et al. 2006) to identify protein-coding regions.

Syntenic search loci

Syntenic loci are defined by two deeply conserved (i.e., conserved
in all species of interest) elements separated on the reference se-
quence (in our case, human) by a minimum length of 1 kb and
a maximum length of 50 kb. We require consistency on the
chromosome where the flanking elements are located. For exam-
ple, for each human/frog CNE that appears to have diverged in
zebrafish, we used human/frog/zebrafish CNEs to delimit the
corresponding syntenic loci in human and zebrafish; the human/
frog/zebrafish CNEs are required to flank the human and frog
counterpart of the diverged CNE. For the genome-wide prediction
of diverged regulatory elements, we did not enforce any constraint
on the frog sequence other than existence of a conserved element,
but required a minimum length of 1 kb and a maximum length
of 50 kb for the zebrafish sequence.

Sequence representation

Each nucleotide sequence was masked for annotated repeat regions
(Smit et al. 1996-2010) and translated into a map of TF binding
sites using a set of position weight matrices (PWMs) that represent
TF binding specificities.

Position weight matrices (PWMs)

We used a set of 701 PWMs for vertebrate TFs from TRANSFAC 11.4
(Matys et al. 2003) for the analysis. These PWMs include 5 to 30
nucleotide positions. TF binding sites were mapped using tfSearch
(Ovcharenko et al. 2005). tfSearch scores each position in the
sequence for each PWM and reports positions with a score above
a given threshold. We optimized the threshold for each PWM on
a 10-Mb random nucleotide sequence (consisting of multiple short
pieces randomly extracted from the human genome) to obtain at
most k binding sites every 10 kb. We tested different values of k,
which result in different overall sequence densities of TF binding
sites predictions ( rTF) (Table 3). PWMs that produce more than the
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desired number of binding sites predictions for any possible well-
defined threshold are excluded from the final set, resulting in slightly
different sets of PWMs for each value of k. Many PWMs represent the
same transcription factor; we only exclude sites starting at the same
position in the sequence during the alignment procedure.

Alignment model

To identify functional orthologs of diverged noncoding elements,
we applied a loose definition of TF binding site conservation,
comparing pairs of sequences on the basis of the collections of TF
binding sites that are shared among them. Our method uses
a sliding window approach to calculate an alignment score be-
tween the query sequence S1 and each window S2 with length
S2j j = S1j j in the target locus, with S1j j being the length of S1.

Let us define a set of labels for different TF binding
sites, S = a1; a2; a3; . . . ; amf g. We break each nucleotide sequence
S of length Sj j = n, into a set of ordered pairs S0 = <ai1 ; pj1

>;
n

<ai2 ; pj2
>; . . . ; <ail ; pjl

>g, with ai 2 S and 1 # pj # n, the starting
position of the site.

Let us now consider two nucleotide sequences, S1 and S2, and
their sets of ordered pairs S01 and S02, respectively. Then, we define
a TF binding site match between S1 and S2 as a triplet, <ai; pj; pk>,
such that <ai; pj> 2 S

0

1 and <ai; pk> 2 S
0

2. The score for a match is
given by

d < ai ;pj ;pk > =
M � pj � pk

��� ��� �D; if pj � pk

��� ��� < M

0; else

(
;

where M and D are two parameters, heuristically determined,
punishing shifts in the relative positions of the TF binding sites in
both sequences.

Next, we call a set of TF binding site matches between two
sequences S1 and S2 consistent if any two triplets < ai0 ; pj0

; pk0
> and

< ai1 ; pj1
; pk1

> satisfy pj0
6¼ pj1

, pk0
6¼ pk1

, and pj0
<pj1

5pk0
<pk1

.
A TF binding site-based alignment of sequence S1 to sequence

S2 is a mapping from S1 and S2 that identifies a consistent set of TF
binding site matches. Finding an optimal alignment is equivalent
to identifying an alignment with maximum score, which is given
by the sum of the scores of involved TF binding site matches. Let C

be a consistent set of TF binding site matches, then the score of an
optimal alignment is simply:

D = max
C

+
< ai ;pj ;pk >2C

d < ai ;pj ;pk > :

TF binding sites are predicted on both forward and reverse strands,
which are treated independently for alignment purposes. Regions
with no predicted TF binding sites will remain unaligned.

Given a query sequence S1 and a search locus S, we compute
the optimal alignment between the entire query sequence and
each of the possible Sj j � S1j j +1 windows of length S1j j base pairs.
We report the location of the window in the search locus with the
maximum optimal alignment score.

Alignment model parameterization

First, we optimized the number of predictions for each PWM in the
database. This was done by setting a maximum number of overall
TF binding site predictions per base pair ( rTF) in the training data.

The alignment model has two parameters, M and D, which
concern differences in relative positions of the TF binding sites in
the sequences that are being aligned. A TF binding site-match
<ai; pj; pk> between two sequences S1 and S2 will not contribute to
the alignment score (i.e., d<ai ;pj ;pk> = 0) if pj � pk

��� ��� $ M. D is a pen-
alty for the shift in the location of a given TF binding site. We
considered only positive contributions to the scoring function
(d<ai ;pj ;pk> > 0), assessing only 0 # D # 1. The optimal values for M
and D were also empirically optimized on the training data.

All the parameters of the model were heuristically determined
using a 10-fold-cross-validation on the set of approximately 300
human/zebrafish elements obtained through the tunneling con-
servation strategy. rTF is the most sensitive parameter. The optimal
classification rate was obtained for 1.10 TF binding site predictions
per base pair (for both strands combined), which corresponds to an
average of 22 hits for a given PWM every 10 kb of sequence. Several
combinations of rTF, M, and D result in a classification rate of
51%. We set M = 10 and M = 1=M.

Significance of the alignment scores

Our alignment algorithm selects the window(s) in the syntenic
search locus where the alignment of the probe reaches the maxi-
mum score. We discard alignments to multiple windows. To
evaluate the significance of the alignments, we analyze the align-
ments between the probe and two unrelated sequences of similar
length and GC content (control loci). In particular, we chose the
two loci that flank the syntenic locus and have exactly the same
length. Consequently, each human counterpart of a tunneled el-
ement is associated with three alignment scores—the score of the
alignment to the syntenic locus in the species of interest, e.g.,
zebrafish, in addition to the scores of the two alignments with the
control loci.

In general, the alignment score is (weakly) correlated with the
number of TF binding site occurrences in the probe and the
number of TF binding site occurrences in the target window
(R-squared = 0.3). Because of this, target windows with a higher
number of TF binding site occurrences are expected to score higher
than windows with a lower number of TF binding site occurrences.
In any case, correct alignments tend to have higher alignment scores
than random alignments with the same number of TF binding site
occurrences (P-value = 1.8 3 10�8, Wilcoxon rank-sum test).

Thus, we used the three alignment scores in addition to the
number of PWM occurrences in the reference and target sequence
hits to train an SVM with a linear kernel to discriminate ortholo-
gous alignments from those found merely by chance. We se-
lected SVMs because they constitute a well-known classification
algorithm, suitable for dealing with multidimensional data and
able to learn the best features for classification with minimal prior
assumptions on the data distribution. To train this classifier, we
used our database of tunneled elements; human sequences that
are correctly aligned to their zebrafish, frog, and chicken coun-
terparts, respectively, correspond to positive instances, while se-
quences that are incorrectly aligned constitute negative instances.

Table 3. Thresholds imposed on the number of occurrences
for each TFBS and resulting overall density of TF binding site
predictions (for both strands combined, rTF) computed on a 10-Mb
random sequence

k rTF [motifs/bp] PWMs

1 0.025 633
2 0.053 658
5 0.139 678
10 0.289 693
15 0.441 698
25 0.730 698
50 1.439 701
75 2.115 701
100 2.715 701
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The average sensitivity of our method at the FPR of 0.05 is 0.5,
suggesting that we can use the classifier to make high-confidence
predictions of ancestral relationships.

Comparison with alternative methods

We compared our method with four freely available tools. It is worth
pointing out that they have been designed with different aims. Each
program was run with its default settings and PWM data sets, unless
stated otherwise. The method by Blanco et al. (2006) addresses the
problem of comparing and characterizing the promoter regions of
genes with similar expression patterns and has been optimized
by the authors in a collection of human–mouse orthologous gene
pairs. As the tool computes global pairwise alignments, we split
the zebrafish loci using windows with the same length of TEH,
attempted to align TEH to this window, and reported the window
with the highest score, similarly to what we do for our own tool. EEL
(Hallikas et al. 2006) compares conserved clusters of TFBSs to locate
enhancers in mammalian genomes. EMMA and Cluster-Buster
(Frith et al. 2003) identify clusters of TFBSs in DNA sequences.
EMMA was run using the JASPAR (Bryne et al. 2008) vertebrate
collection of PWMs; we pre-computed alignments between the
human and zebrafish loci with MUSCLE (Edgar 2004) and then ran
EMMA to determine how many of the TEZ were successfully iden-
tified as cis-regulatory modules. Free parameters were computed
according to the authors’ instructions on the training data.

Analysis of the distribution of CNEs in the human genome

To test whether particular elements were randomly distributed, we
reallocated each element within its chromosome randomly, fol-
lowing a uniform distribution. We repeated this process 1000 times
and computed average cluster sizes. These cluster sizes were then
compared to the original cluster sizes.

Functional analysis

To assess whether these elements disproportionally occur near genes
with particular functions, we obtained the Gene Ontology (GO)
(Ashburner et al. 2000), CVS Version 1.171, GOC Validation Date
11/29/2010 annotations of the closest neighboring UCSC known
genes (Hsu et al. 2006) for all noncoding elements and assigned
those annotations to each element. Gene-to-GO mapping was
achieved by combining the UCSC known gene table and GOA
(Barrell et al. 2009) association table using UniProt IDs. All P-values
were corrected for multiple hypothesis testing (Bonferroni’s
method) (Abdi and Salkind 2007). Where applicable, we also cor-
rected for differences in locus length (Taher and Ovcharenko 2009).

Synteny blocks

Synteny blocks were downloaded from the ECRBase database of
evolutionarily conserved regions and synteny relationships
among vertebrate genomes (Ovcharenko et al. 2005).

ChIP data

As p300 (also known as EP300) binding sites have been mapped to
the mouse genome, we first identified their human counterparts
using a set of conserved human/mouse elements (Loots and
Ovcharenko 2007). Binding events correspond to reads in the
Gene Expression Omnibus (GEO) series GSE13845.

In vivo regulatory activity assays

Human and zebrafish sequences were PCR-amplified and sub-
cloned into GFP reporter system constructs (Fisher et al. 2006a,b).

These vectors were injected into 200+ zebrafish embryos and were
analyzed from 24 to 96 h post-fertilization (hpf) and at 7 d post-
fertilization (dpf) for consistent tissue-specific GFP expression.
Because expression of enhancers in G0 zebrafish is mosaic, it is
problematic to use individual zebrafish for analyses. To provide
a better representation of the putative enhancer’s regulatory po-
tential, 16 or more zebrafish for each positive set were photo-
graphed (Supplemental Figs. 7–9). The expression patterns present
in each individual zebrafish embryo were overlaid on a camera
lucida zebrafish to create a single composite image (Fig. 4B). The
expression was maintained unchanged past 24 hpf in all of the
zebrafish sets with positive expression.

Fish care

Zebrafish were raised and bred in accordance with standard condi-
tions (Kimmel et al. 1995; Westerfield 2000). Embryos were raised in
embryo medium containing 0.003% phenylthiocarbamide to pre-
vent pigmentation and maintained at 28°C and staged in accordance
with standard methods (Kimmel et al. 1995; Westerfield 2000;
McGaughey et al. 2008).
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Guigó R, Gingeras TR, Margulies EH, Weng Z, Snyder M, Dermitzakis ET,
et al. 2007. Identification and analysis of functional elements in 1%
of the human genome by the ENCODE pilot project. Nature 447: 799–
816.

Fisher S, Grice EA, Vinton RM, Bessling SL, McCallion AS. 2006a.
Conservation of RET regulatory function from human to zebrafish
without sequence similarity. Science 312: 276–279.

Fisher S, Grice EA, Vinton RM, Bessling SL, Urasaki A, Kawakami K,
McCallion AS. 2006b. Evaluating the biological relevance of putative
enhancers using Tol2 transposon-mediated transgenesis in zebrafish.
Nat Protoc 1: 1297–1305.

Frith MC, Li MC, Weng Z. 2003. Cluster-Buster: finding dense clusters of
motifs in DNA sequences. Nucleic Acids Res 31: 3666–3668.

Gotea V, Visel A, Westlund JM, Nobrega MA, Pennacchio LA, Ovcharenko I.
2010. Homotypic clusters of transcription factor binding sites are a key
component of human promoters and enhancers. Genome Res 20: 565–
577.

Hallikas O, Palin K, Sinjushina N, Rautiainen R, Partanen J, Ukkonen E,
Taipale J. 2006. Genome-wide prediction of mammalian enhancers
based on analysis of transcription-factor binding affinity. Cell 124: 47–
59.

Hardison RC. 2000. Conserved noncoding sequences are reliable guides to
regulatory elements. Trends Genet 16: 369–372.

Hare EE, Peterson BK, Iyer VN, Meier R, Eisen MB. 2008. Sepsid even-skipped
enhancers are functionally conserved in Drosophila despite lack of
sequence conservation. PLoS Genet 4: e1000106. doi: 10.1371/
journal.pgen.1000106.

He X, Ling X, Sinha S. 2009. Alignment and prediction of cis-regulatory
modules based on a probabilistic model of evolution. PLoS Comput Biol
5: e1000299. doi: 10.1371/journal.pcbi.1000299.

Heintzman ND, Stuart RK, Hon G, Fu Y, Ching CW, Hawkins RD, Barrera LO,
Van Calcar S, Qu C, Ching KA, et al. 2007. Distinct and predictive
chromatin signatures of transcriptional promoters and enhancers in the
human genome. Nat Genet 39: 311–318.

Hsu F, Kent WJ, Clawson H, Kuhn RM, Diekhans M, Haussler D. 2006. The
UCSC Known Genes. Bioinformatics 22: 1036–1046.

Hu Z, Hu B, Collins JF. 2007. Prediction of synergistic transcription factors
by function conservation. Genome Biol 8: R257. doi: 10.1186/gb-2007-8-
12-r257.

Huang W, Nevins JR, Ohler U. 2007. Phylogenetic simulation of promoter
evolution: estimation and modeling of binding site turnover events and
assessment of their impact on alignment tools. Genome Biol 8: R225. doi:
10.1186/gb-2007-8-10-r225.

Kantorovitz MR, Kazemian M, Kinston S, Miranda-Saavedra D, Zhu Q,
Robinson GE, Gottgens B, Halfon MS, Sinha S. 2009. Motif-blind,
genome-wide discovery of cis-regulatory modules in Drosophila and
mouse. Dev Cell 17: 568–579.

Karolchik D, Hinrichs AS, Kent WJ. 2009. The UCSC Genome Browser. Curr
Protoc Bioinformatics 28: 1.4.1–1.4.26.

Kasowski M, Grubert F, Heffelfinger C, Hariharan M, Asabere A, Waszak S,
Habegger L, Rozowsky J, Shi M, Urban A, et al. 2010. Variation in
transcription factor binding among humans. Science 328: 232–235.

Kent WJ. 2002. BLAT—the BLAST-like alignment tool. Genome Res 12: 656–
664.

Kent WJ, Baertsch R, Hinrichs A, Miller W, Haussler D. 2003. Evolution’s
cauldron: Duplication, deletion, and rearrangement in the mouse and
human genomes. Proc Natl Acad Sci 100: 11484–11489.

Kim J, Sinha S. 2010. Towards realistic benchmarks for multiple alignments
of non-coding sequences. BMC Bioinformatics 11: 54. doi: 10.1186/1471-
2105-11-54.

Kimmel C, Ballard W, Kimmel S, Ullmann B, Schilling T. 1995. Stages of
embryonic development of the zebrafish. Dev Dyn 203: 253–310.

King M-C, Wilson AC. 1975. Evolution at two levels in humans and
chimpanzees. Science 188: 107–116.

Kunarso G, Chia N-Y, Jeyakani J, Hwang C, Lu X, Chan Y-S, Ng H-H, Bourque
G. 2010. Transposable elements have rewired the core regulatory
network of human embryonic stem cells. Nat Genet 42: 631–635.

Loots G, Ovcharenko I. 2007. ECRbase: database of evolutionary conserved
regions, promoters, and transcription factor binding sites in vertebrate
genomes. Bioinformatics 23: 122–124.

Loots GG, Locksley RM, Blankespoor CM, Wang ZE, Miller W, Rubin EM,
Frazer KA. 2000. Identification of a coordinate regulator of interleukins 4,
13, and 5 by cross-species sequence comparisons. Science 288: 136–140.

Loots G, Ovcharenko I, Pachter L, Dubchak I, Rubin EM. 2002. rVISTA for
comparative sequence-based discovery of functional transcription
factor binding sites. Genome Res 12: 832–839.

Ludwig MZ. 2002. Functional evolution of noncoding DNA. Curr Opin Genet
Dev 12: 634–639.

Ludwig MZ, Palsson A, Alekseeva E, Bergman CM, Nathan J, Kreitman M.
2005. Functional evolution of a cis-regulatory module. PLoS Biol 3: e93.
doi: 10.1371/journal.pbio.0030093.

Lusk RW, Eisen MB. 2010. Evolutionary mirages: Selection on binding site
composition creates the illusion of conserved grammars in Drosophila
enhancers. PLoS Genet 6: e1000829. doi: 10.1371/
journal.pgen.1000829.

Matys V, Fricke E, Geffers R, Gossling E, Haubrock M, Hehl R, Hornischer K,
Karas D, Kel AE, Kel-Margoulis OV, et al. 2003. TRANSFAC:
transcriptional regulation, from patterns to profiles. Nucleic Acids Res 31:
374–378.

Matys V, Kel-Margoulis OV, Fricke E, Liebich I, Land S, Barre-Dirrie A, Reuter
I, Chekmenev D, Krull M, Hornischer K, et al. 2006. TRANSFAC and its
module TRANSCompel: transcriptional gene regulation in eukaryotes.
Nucleic Acids Res 34: D108–D110.

McGaughey DM, Vinton RM, Huynh J, Al-Saif A, Beer MA, McCallion AS.
2008. Metrics of sequence constraint overlook regulatory sequences in
an exhaustive analysis at phox2b. Genome Res 18: 252–260.

Narlikar L, Sakabe NJ, Blanski AA, Arimura FE, Westlund JM, Nobrega MA,
Ovcharenko I. 2010. Genome-wide discovery of human heart
enhancers. Genome Res 20: 381–392.

Nobrega MA, Ovcharenko I, Afzal V, Rubin EM. 2003. Scanning human gene
deserts for long-range enhancers. Science 302: 413. doi: 10.1126/
science.1088328.

Ovcharenko I, Loots GG, Hardison RC, Miller W, Stubbs L. 2004. zPicture:
Dynamic alignment and visualization tool for analyzing conservation
profiles. Genome Res 14: 472–477.

Ovcharenko I, Loots GG, Nobrega MA, Hardison RC, Miller W, Stubbs L.
2005. Evolution and functional classification of vertebrate gene deserts.
Genome Res 15: 137–145.

Pennacchio LA, Ahituv N, Moses AM, Prabhakar S, Nobrega MA, Shoukry M,
Minovitsky S, Dubchak I, Holt A, Lewis KD, et al. 2006. In vivo enhancer
analysis of human conserved non-coding sequences. Nature 444: 499–
502.

Philippakis AA, He FS, Bulyk ML. 2005. Modulefinder: A tool for computational
discovery of cis regulatory modules. Pac Symp Biocomput 2005: 519–530.

Polavarapu N, Marino-Ramirez L, Landsman D, McDonald JF, Jordan IK.
2008. Evolutionary rates and patterns for human transcription factor
binding sites derived from repetitive DNA. BMC Genomics 9: 226. doi:
10.1186/1471-2164-9-226.

Pollard DA, Moses AM, Iyer VN, Eisen MB. 2006. Detecting the limits of
regulatory element conservation and divergence estimation using
pairwise and multiple alignments. BMC Bioinformatics 7: 376. doi:
10.1186/1471-2105-7-376.

Pruitt KD, Tatusova T, Maglott DR. 2007. NCBI reference sequences (RefSeq):
a curated non-redundant sequence database of genomes, transcripts and
proteins. Nucleic Acids Res 35: D61–D65.

Schmidt D, Wilson M, Ballester B, Schwalie P, Brown G, Marshall A, Kutter C,
Watt S, Martinez-Jimenez C, Mackay S, et al. 2010. Five-vertebrate ChIP-
Seq reveals the evolutionary dynamics of transcription factor binding.
Science 328: 1036–1040.

Schwartz S, Kent WJ, Smit A, Zhang Z, Baertsch R, Hardison RC, Haussler D,
Miller W. 2003. Human–mouse alignments with BLASTZ. Genome Res
13: 103–107.

Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K,
Clawson H, Spieth J, Hillier LW, Richards S, et al. 2005. Evolutionarily
conserved elements in vertebrate, insect, worm, and yeast genomes.
Genome Res 15: 1034–1050.

Sinha S, Liang Y, Siggia E. 2006. Stubb: a program for discovery and analysis
of cis-regulatory modules. Nucleic Acids Res 34: W555–W559.

Taher et al.

1148 Genome Research
www.genome.org



Smit A, Hubley R, Green P. 1996–2010. RepeatMasker Open-3.0. http://
www.repeatmasker.org.

Stranger B, Forrest M, Dunning M, Ingle C, Beazley C, Thorne N, Redon R, Bird
C, de Grassi A, Lee C, et al. 2007. Relative impact of nucleotide and copy
number variation on gene expression phenotypes. Science 315: 848–853.

Taher L, Ovcharenko I. 2009. Variable locus length in the human genome
leads to ascertainment bias in functional inference for non-coding
elements. Bioinformatics 25: 578–584.

Thomas JW, Touchman JW, Blakesley RW, Bouffard GG, Beckstrom-
Sternberg SM, Margulies EH, Blanchette M, Siepel AC, Thomas PJ,
McDowell JC, et al. 2003. Comparative analyses of multi-species
sequences from targeted genomic regions. Nature 424: 788–793.

Visel A, Bristow J, Pennacchio LA. 2007a. Enhancer identification through
comparative genomics. Semin Cell Dev Biol 18: 140–152.

Visel A, Minovitsky S, Dubchak I, Pennacchio LA. 2007b. VISTA Enhancer
Browser—a database of tissue-specific human enhancers. Nucleic Acids
Res 35: 88–92.

Visel A, Blow MJ, Li Z, Zhang T, Akiyama JA, Holt A, Plajzer-Frick I, Shoukry
M, Wright C, Chen F, et al. 2009. ChIP-Seq accurately predicts tissue-
specific activity of enhancers. Nature 457: 854–858.

Waterston RH, Lindblad-Toh K, Birney E, Rogers J, Abril JF, Agarwal P,
Agarwala R, Ainscough R, Alexandersson M, An P, et al. 2002. Initial

sequencing and comparative analysis of the mouse genome. Nature 420:
520–562.

Westerfield M. 2000. The zebrafish book. A guide for the laboratory use of
zebrafish (Danio rerio), 4th ed. University of Oregon Press, Eugene, OR.

Wilson MD, Barbosa-Morais NL, Schmidt D, Conboy CM, Vanes L,
Tybulewicz VLJ, Fisher EMC, Tavare S, Odom DT. 2008. Species-specific
transcription in mice carrying human chromosome 21. Science 322:
434–438.

Wittkopp PJ. 2006. Evolution of cis-regulatory sequence and function in
Diptera. Heredity 97: 139–147.

Woolfe A, Goodson M, Goode DK, Snell P, McEwen GK, Vavouri T, Smith SF,
North P, Callaway H, Kelly K, et al. 2005. Highly conserved non-coding
sequences are associated with vertebrate development. PLoS Biol 3: e7.
doi: 10.1371/journal.pbio.0030007.

Xie D, Chen C-C, Ptaszek LM, Xiao S, Cao X, Fang F, Ng HH, Lewin HA,
Cowan C, Zhong S. 2010. Rewirable gene regulatory networks in the
preimplantation embryonic development of three mammalian species.
Genome Res 20: 804–815.

Received December 8, 2010; accepted in revised form April 19, 2011.

Conserved function in diverged sequences

Genome Research 1149
www.genome.org

http://www.repeatmasker.org/
http://www.repeatmasker.org/

