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All individuals in a finite population are related if traced back long enough and will, therefore, share regions of their
genomes identical by descent (IBD). Detection of such regions has several important applications—from answering
questions about human evolution to locating regions in the human genome containing disease-causing variants. However,
IBD regions can be difficult to detect, especially in the common case where no pedigree information is available. In
particular, all existing non-pedigree based methods can only infer IBD sharing between two individuals. Here, we present
a new Markov Chain Monte Carlo method for detection of IBD regions, which does not rely on any pedigree information.
It is based on a probabilistic model applicable to unphased SNP data. It can take inbreeding, allele frequencies, genotyping
errors, and genomic distances into account. And most importantly, it can simultaneously infer IBD sharing among
multiple individuals. Through simulations, we show that the simultaneous modeling of multiple individuals makes the
method more powerful and accurate than several other non-pedigree based methods. We illustrate the potential of the
method by applying it to data from individuals with breast and/or ovarian cancer, and show that a known disease-causing
mutation can be mapped to a 2.2-Mb region using SNP data from only five seemingly unrelated affected individuals. This
would not be possible using classical linkage mapping or association mapping.

[Supplemental material is available for this article. The MCMC software is freely available at http://people.binf.ku.dk/ida/
Software/MCMC_IBDfinder/.]

Identity by descent (IBD) is a fundamental concept in genetics. Two

or more individuals share a region of their genomes IBD if they have

identical nucleotide sequences in this region due to common an-

cestry. The concept of IBD has existed for a long time. It was in-

troduced in the 1940s (Malecot 1946, 1948) and has since then re-

ceived attention within a number of fields of genetic research,

ranging from forensic genetics (Evett and Weir 1998) to molecular

ecology (Thompson 1975; Queller and Goodnight 1989; Ritland

1996; Lynch and Ritland 1999). But, most importantly, during the

last several decades it has played an essential role within the field of

human disease mapping. Until the beginning of this century, the

main focus within this field was the development of methods for

analyzing data from families with known pedigrees (Elston and

Stewart 1971; Ott 1974; Cannings et al. 1978; Lander and Green

1987; Kruglyak et al. 1996; Abecasis et al. 2002). However, the con-

cept of IBD has recently received renewed attention in the context of

genomic data without any external pedigree information (Purcell

et al. 2007; Browning 2008; Thompson 2008; Albrechtsen et al.

2009, 2010; Gusev et al. 2009; Browning and Browning 2010).

There are a number of different definitions of IBD in different

contexts. In most human single nucleotide polymorphism (SNP)

data, each SNP is caused by a single mutation. Therefore, all in-

dividuals who share the same allele in a site are ultimately identical

by descent in that site. However, it is often practically important to

identify regions with increased allele sharing between individuals

compared with that expected for a large population under random

mating. The concept of IBD then becomes a statistical construct in

which the objective is to identify regions of the genome with in-

creased allele sharing. This is the concept of IBD, which is referred

to in this article.

Several methods for computational detection of IBD regions

using nothing but dense SNP data have been proposed (Purcell

et al. 2007; Browning 2008; Thompson 2008; Albrechtsen et al.

2009; Gusev et al. 2009; Browning and Browning 2010), and these

methods have been shown to provide very powerful tools for a

wide range of purposes: for detecting unknown familial relation-

ships (see above references), for detecting phasing errors (Gusev

et al. 2009), for detecting natural selection in the human genome

(Albrechtsen et al. 2010), and for disease mapping (Purcell et al.

2007; Albrechtsen et al. 2009). Thus, they constitute an important

advance within several fields.

Yet, the current IBD inference methods still have some limi-

tations. First, they could potentially be more powerful. All of the

above mentioned methods are pairwise, i.e., they infer IBD sharing

between pairs of individuals only, and in doing so they do not take

results from other pairs into account. However, if an individual

shares the same region of the same inherited chromosome IBD

with two other individuals, then these individuals must also share

this region IBD. Hence, taking more than two individuals into

account at a time could potentially increase the power to detect

smaller IBD regions. Furthermore, the potentially limited power of

the pairwise methods can give rise to inconsistent results when the

pairwise methods are used for inferring IBD sharing between
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multiple individuals. We will provide examples illustrating these

effects in the Results section.

Secondly, the fact that all current methods are pairwise also

makes them difficult to use for answering questions about IBD

sharing between more than two individuals in a probabilistically

sound manner, because it is not straightforward to combine proba-

bilities of pairwise IBD sharing to a single overall probability, as the

pairs are highly correlated.

Thirdly, several current methods are based on an assumption

that the individuals are not inbred, i.e., that there is no IBD sharing

within any of the individuals (Purcell et al. 2007; Albrechtsen et al.

2009). This is not always true. Small populations, for example, are

particularly likely to be useful for IBD-based inferences, but in such

populations the level of inbreeding may be high, leading to a high

degree of IBD sharing within individuals.

Motivated by these observations, we here propose a new IBD

detection method that models IBD simultaneously in multiple in-

dividuals and between chromosomes within each individual, while

still explicitly modeling IBD in a stringent probabilistic manner.

It should be mentioned, that several methods for simulta-

neous inference of IBD/IBS regions among multiple individuals

have already been proposed, both by us (Hansen et al. 2009) and

others (Leibon et al. 2008; Thomas et al. 2008; Thomas 2010) for

cases in which some pedigree information or information about

IBD sharing is available. However, here we consider the general

case where no pedigree information nor other prior information

about IBD sharing patterns is available. It should also be men-

tioned that the presented method has the limitation that it cannot

take linkage disequilibrium (LD) into account yet; however, see the

Discussion for comments on future directions.

Several of the previous methods are based on inferring if a pair

of individuals share 0, 1, or 2 chromosomes IBD. Each part of the

genome may be in either of these three ‘‘states,’’ and a hidden

Markov model (HMM) is used to model how the genome pairs

transition between these states due to recombination (Purcell et al.

2007; Albrechtsen et al. 2009). The ‘‘state-space’’ of the model is

the set of possible IBD relationships, and in this case the size of the

state space is 3 (sharing of 0, 1, or 2 chromosomes between a pair of

individuals). When the HMM framework has first been estab-

lished, there are standard algorithms, such as the forward algo-

rithm (Rabiner 1989), that allow calculation of the likelihood

function by summing over each of the three possible states along

the length of the chromosomes. Various standard Bayesian ap-

proaches can also be used to infer which segments of the genome is

in which of the three possible states.

However, for our purpose, the state space (i.e., the set of

possible IBD relationships) is significantly larger. We consider N > 2

individuals at a time, and we allow for inbreeding and, generally,

all possible IBD relationships between the chromosomes. There-

fore, in principle, for each locus we need a state for each partition

of 2N chromosomes into subsets of chromosomes that are IBD. The

number of partitions of 2N objects is a well-known combinatorial

quantity called B(2N), the Bell number of 2N. Even when N is

small, B(2N) is extremely large; for example, B(50) = 1.86 � 1027.

Clearly, we cannot use standard HMM algorithms for inference as

they are not computationally tractable for HMMs with state spaces

of that size. Hence, the IBD inference problem for more than two

individuals cannot simply be solved by a trivial extension of any of

the current pairwise methods. On the contrary, it constitutes

a substantial combinatorial challenge.

In order to solve the problem, we use an HMM to model the

distribution of the IBD set partitioning of a given genomic region

in multiple individuals. However, because the large state space

makes standard HMM methods intractable for direct calcula-

tions, we have developed a Markov Chain Monte Carlo (MCMC)

approach to infer relevant information about the distribution.

MCMC methods are simulation-based methods that allow analy-

ses of high-dimensional models, such as the one considered here,

when calculations are difficult or impossible to do directly. In this

way we have achieved a computationally tractable solution, which

is the main contribution of this study.

As already mentioned, IBD inference can be used for many

different purposes, but in this study we will mainly focus on its

potential use in medicine and mostly in disease mapping. The

overall idea in using IBD sharing for disease mapping is that if

a disease is heritable, then all affected individuals in the same

family are likely to have inherited the same disease-causing fac-

tor(s). On average, affected individuals will, therefore, be geneti-

cally more closely related to each other in the region(s) carrying the

disease variants, and therefore have a higher degree of IBD sharing

in these regions than unaffected individuals. Hence, searching for

regions with an increase in IBD sharing among affected individuals

can help us identify regions that contain disease-causing muta-

tions. This idea has already been used for decades in linkage

mapping, where genotyping data from entire families have been

used to detect IBD regions. Linkage mapping using multiple fam-

ilies has been a highly successful method for identifying rare and

highly penetrant genetic variants. However, most linkage studies

require a large number of families with affected individuals to map

the disease-causing variant, and even so, the causative variant may

only be mapped to a very large genomic region (Hirschhorn and

Daly 2005). The reason for this is that within each family only very

few recombination events have occurred. And since the main

cause of shortening of IBD regions is recombination, the regions

shared IBD within each family are often very long. Therefore, it was

recently proposed to use seemingly unrelated individuals in com-

bination with IBD region inference instead, performing so-called

population-based linkage analysis or relatedness mapping (Purcell

et al. 2007; Albrechtsen et al. 2009). Here, we will build on this idea

to illustrate the potential of the new MCMC-based IBD inference

method. For completeness it should be noted that several other

approaches to using IBD sharing information for disease mapping

(IBD mapping) have been proposed; for instance, searching for

unusually long IBD regions shared between pairs of affected in-

dividuals (Houwen et al. 1994; Te Meerman et al. 1995). Also, it

should be noted that IBD mapping has already been shown to have

great potential, both through simulations and in practice, espe-

cially for founder populations (Houwen et al. 1994; Te Meerman

et al. 1995; Te Meerman and Van der Meulen 1997; Van der Meulen

and Te Meerman 1997; Albrechtsen et al. 2009).

In the following we will first present the new IBD inference

method. Then, using simulated data we will show that the new

method has more power to detect short IBD regions than several

existing methods on data without LD. Subsequently, using real

data, we will illustrate how the new method makes it possible to

answer medically relevant evolutionary questions much more di-

rectly and probabilistically sound than other current methods.

Finally, we will give an example of the method’s potential in

disease mapping. We use a set of five seemingly unrelated in-

dividuals with breast and/or ovarian cancer caused by a specific,

very recently discovered mutation in the BRCA1 gene as a test

case. Using the new method we correctly map the disease-causing

mutation down to ;2.2 Mb accuracy using only five cases and 10

controls.
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Methods
In this section we will first provide an overview of the new MCMC
method and the underlying model. All mathematical details are
provided in the Supplemental Material, sections S1, S2, and S3.
Afterward, we will describe the methods used for simulations and
introduce the data to be analyzed.

The underlying model and the MCMC method

We want to model the situation where we have genotype data for L
diallelic SNP loci from N individuals from the same homogeneous
population, so for each locus we can infer which of the N in-
dividuals’ 2N chromosomes are IBD. To do that we use an HMM
with the genotypes as the observed data and the partitioning of
chromosomes into IBD sets in all loci (the IBD configuration) as
the hidden (unknown) variable that we wish to infer. The concept
of IBD sets and IBD configurations can be understood by consid-
ering Figure 1A, which depicts the IBD sharing pattern of 10 in-
dividuals in 501 positions in an 8-Mb region. In this figure, se-
quences that are colored green in a position are IBD with all other
sequences of the same green color in the given position. Sequences
that are not IBD with any other sequence are colored gray. Hence,
in all positions within the first 3 Mb, one chromosome from each
of individuals 1 and 3 are shared IBD, one chromosome from in-
dividual 5 and both chromosomes from individual 6 are shared
IBD, and the rest of the chromosomes are not IBD to any other of
the chromosomes in the data set. Each of the two groups of
chromosomes that are shared IBD in these positions constitute an

IBD set. As can be seen, different IBD sets can exist in the same
position in different individuals, and two sequences from the
same individual can be IBD, thereby allowing for inbreeding. The
entire coloring of sequences in a position is the IBD configura-
tion in that position. The ultimate objective of the MCMC ap-
proach is to estimate the IBD configuration in all positions of the
genome.

To simplify, we assume that at most k, IBD sets can be present
in any given position/locus and that there is no linkage disequi-
librium between any of the loci. We then represent the IBD con-
figuration by a matrix, X, with a row for each chromosome c and
a column for each locus l with Xcl 2 D = {0, 1, 2,.., k}. In this matrix
the lth column, X.l,, represents the partitioning of the 2N chro-
mosomes into IBD sets at locus l as follows: all chromosomes with
the same positive value of Xcl share this locus IBD, and all chro-
mosomes with value 0 are not IBD to any of the other chromo-
somes. A fully outbred population with no IBD would have Xcl =

0 for all values of c and l.
We will initially assume that the haplotype phase is known,

i.e., that for each genotype we know which of its constituent
alleles originates from which chromosome, and thus that we
know the haplotypes of all 2N chromosomes. Let us also initially
assume that the data contains no genotyping errors. In that case,
we can let the observed data H be a matrix with a row for each of
the 2N chromosomes and a column for each of the L loci, where Hcl

2{0,1} is the allelic type of chromosome c at locus l. Here, we have
coded the nucleotide data as binary data, because we assume that
only diallelic SNPs are included in the data. If the IBD configura-
tion is known, then it is quite simple to calculate the probability of
the data. If there are no IBD sets (all chromosomes are in state 0),
the likelihood would simply be the product of the nucleotide fre-
quencies over all L loci and all 2N chromosomes, i.e.,

QL
l=1

Q2N
c=1 f l;hcl

,
where fl,hcl

is the nucleotide frequency of nucleotide hcl at position
l estimated from an appropriate reference population. In the pres-
ence of IBD sets, it becomes

P H j Xð Þ=
YL

l = 1

Y2N

c = 1
P Hcl = hcl j Xcl = xclð Þ ð1Þ

where P(Hcl = hcl | Xcl = xcl) equals fl,hcl
if Xcl = 0, i.e., if chromosome

c in locus l is not in an IBD set, or if Xcl > 0 and c is the first
chromosome of the IBD set when calculating the product in
equation 1. For the subsequent chromosomes in the IBD set,
P(Hcl = hcl | Xcl = xcl) equals 1 if the nucleotide in chromosome
c matches the nucleotide in the first chromosome of the IBD set,
and 0 otherwise. If the first chromosome in an IBD set has a par-
ticular nucleotide in position l, then, ignoring genotyping errors,
the other chromosomes in the IBD set must also have the same
nucleotide.

The probabilities described above are the so-called ‘‘emission
probabilities’’ of the HMM. To fully define the model, we also need
a set of ‘‘transition probabilities.’’ Transition probabilities are the
probabilities of seeing a change in IBD state when moving from
one locus to the next along a chromosome, and they serve the
purpose of capturing information about the lengths of IBD sharing
regions. These probabilities are defined by the rates at which
chromosomes jump in and out of IBD states. We assume that
a chromosome jumps from a state different from 0 into state 0 at
constant rate, r > 0, and from state 0 into a state different from 0 at
a constant rate, l > 0. Additionally, to keep the number of pa-
rameters at a minimum, we assume that the instantaneous rate of
transition made directly between different non-zero IBD sets is 0.
Under these assumptions, it follows from standard continuous
time HMM theory that the transition probabilities for each of the
2N chromosomes are:

Figure 1. The example run. (A) The overall IBD configuration from
which a data set with 10 individuals was simulated. There is one colored
line for each of the 20 chromosome sequences and each column rep-
resents a locus in the data set. If a chromosome sequence in a given
locus is light green or dark green, it means that it is shared IBD with all of
the other chromosome sequences of the same color in that locus. If it is
gray, it means that it is not IBD with any of the other chromosomes. (B)
The inferred IBD configuration when the MCMC method is applied to
the simulated data set. For each locus, the figure depicts the IBD set
partitioning with the highest posterior probability, i.e., the estimated
MAP IBD set partition. The specificity is 0.999 and the sensitivity is
0.998.
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P Xcl = xcl j Xc l�1ð Þ = xc l�1ð Þ

� �

=

r + le�t r + lð Þ

r + l
if xc l�1ð Þ = 0 and xcl = 0

l�le�t r + lð Þ

k r + lð Þ if xc l�1ð Þ = 0 and xcl > 0

r�re�t r + lð Þ

r + l
if xc l�1ð Þ > 0 and xcl = 0

e�tr �1 + kð Þl + e�tl�1 + kð Þrð Þ+ l

k r + lð Þ if xc l�1ð Þ > 0 and xcl = xc l�1ð Þ

e�tr �1ð Þl + e�tl�1ð Þrð Þ+ l

k r + lð Þ if xc l�1ð Þ > 0 and xc l�1ð Þ 6¼ xcl > 0

8>>>>>>>>>>><
>>>>>>>>>>>:

where t is the genetic distance between SNP locus l�1 and SNP
locus l. The full transition probability, P(X.l = x.l | X.l�1 = x.l�1) for
a given locus l, is simply calculated as the product of the transition
probabilities for the individual chromosomes. The parameters l

and r will be inferred from the data. Because inferences will be
done in a Bayesian framework, we must define a prior distribution
for l and r, P(l,r). Uniform priors have been chosen in all appli-
cations in this study, but other priors could have been chosen.

Given the described emission and transition probabilities, the
new model is quite standard for HMMs. It is described in detail in
the Supplemental Material, section S1. Supplemental Material,
section S1 also provides the mathematical derivation of an algo-
rithm that allows us to calculate P(H,X | l,r), the joint probability
of the data and the IBD configuration.

It is important to note that the simplifying assumption that
the instantaneous rate of transition between different non-zero
IBD states is zero only means that such transitions are not allowed
to happen over infinitesimal distances along the chromosome.
Since the distance between any two loci is bigger than infinitesi-
mal, the model does indeed, despite the assumption, allow such
transitions to happen between any two loci, as is evident from
the fact that the transition probabilities indicated above for such
transitions is non-zero when t > 0.

It is it also worth noting that the described model reduces
to the inbreeding model by Leutenegger et al. (2003) with a set to
l + r and f set to l

l+r
when N ¼ 1 and k ¼ 1. This is noteworthy

both because it illustrates that the new model can be viewed as an
extension of the model by Leutenegger et al. (2003) and because
the reparameterization to a and f contributes some additional
intuition about the parameters l and r. As in the model by
Leutenegger et al. (2003), a (= l + r) determines the overall in-
stantaneous rate of change between IBD and non-IBD states and
f = l

l+r

� �
is the stationary probability of a non-zero IBD state.

Using this new model, we wish to estimate P(X, l, r|H), the
joint posterior distribution of the parameters of the model and the
IBD configuration for each site. To do so we construct an MCMC
method. MCMC methods are simulation methods that now are
commonly used in genetics and genomics for estimating posterior
distributions using simulations. These algorithms work by first
initializing the parameters to some values and then repeatedly
proposing changes to the parameter values using some stochastic
algorithm. The parameter changes are accepted with a certain
probability that depends on the likelihood calculated under the
current and the proposed parameter values. The values of the pa-
rameters in the simulations then form a Markov chain, and stan-
dard Markov chain theory guarantees that if the simulation algo-
rithm is repeated for a sufficiently long time, parameter values
sampled from the simulations follow the desired posterior dis-
tribution and can be used to represent this distribution. The
algorithm used in our case is described in the Supplemental
Material, sections S2 and S3. This algorithm proposes changes
from (lcur, rcur, Xcur) to (lprop, rprop, Xprop) with probability q(lcur,
rcur, Xcur! lprop, rprop, Xprop). These proposed changes are then
accepted with probability

min
P H;Xprop jlprop; rprop

� �
P lprop; rprop

� �
q lprop; rprop;Xprop ! lcur ; rcur ;Xcur

� �

P H;Xcur j lcur ; rcurð ÞP lcur ; rcurð Þq lcur ; rcur ;Xcur ! lprop; rprop;Xprop

� � ;1

0
@

1
A:

ð2Þ

The values of X sampled from these Markov chain simula-
tions then provide an estimate of the posterior distribution of X,
and directly provide various forms of IBD probabilities between
pairs of sequences and between larger sets of sequences. For ex-
ample, for the BRCA1 data set consisting of SNP data from five
cancer patients, later analyzed, the posterior probability that all
five patients share the BRCA1 gene IBD can simply be approxi-
mated by the fraction of MCMC samples in which these five pa-
tients all share the BRCA1 gene IBD. Similarly, the posterior ex-
pectation of the number of these patients that share at least one
chromosome IBD in the BRCA1 gene can be approximated by the
mean number of the patients that share this gene IBD in the
MCMC samples.

The Supplemental Material, sections S1, S2, and S3, provides
all details of both the HMM and the MCMC algorithm. It also
describes the method we use for incorporating genotyping errors
and unknown phasing of the genotype data.

Simulated test data

To test the performance of the MCMC method and to compare it
with existing methods we simulated data sets for a number of
different conditions by

1. Specifying an IBD scenario (number of individuals N, number of
SNP loci L, distances between loci and the IBD set partitioning
of the 2N chromosomes for each locus).

2. Sampling a minor allele frequency (MAF) uniformly between
0.05 and 0.5 for each locus to mimic the high frequencies ob-
served in data from most genotyping platforms.

3. Making a haplotype data set for each locus, by independently
sampling an allele (A or a) for each IBD set in the locus based on
the MAF of the locus, and then assigning an allele to each of the
2N chromosomes according to the IBD sets they belong to.

4. Adding errors at rate r.
5. Collapsing the two haplotypes for each individual into geno-

types to achieve unphased data.
6. Estimating population allele frequencies based on sampling

a number of extra individuals (subsequently used as input for
the MCMC method instead of the ‘‘real’’ allele frequencies).

For the first IBD scenario we used 10 individuals, 501 equidistant
SNPs covering a region of 8 Mb, an error rate of 0, and 10,000 extra
individuals for estimating population allele frequencies. For the
rest of the scenarios we used four individuals, 201 equidistant SNPs
also covering a region of 8 Mb, an error rate of 0.003 to mimic
realistic SNP chip error rates, and 100 extra individuals for esti-
mating population allele frequencies corresponding by and large
to a HapMap population sample size. The latter scenarios are thus
both more realistic and more challenging than the first one.

All of the IBD scenarios used are described thoroughly in the
Results section. Note that for the MCMC analyses, the extra in-
dividuals were not included in the IBD analysis; they were only
used to get better estimates of population allele frequencies. Like-
wise, they were not included in the actual IBD analyses for any of
the other methods we tested. However, for fairness we, of course,
made the extra individuals available for all the methods to improve
estimation of allele frequencies and other similar population-specific
information. Hence, for instance, the method BEAGLE (Browning
and Browning 2010) was allowed to use them for estimating
haplotype clusters prior to IBD estimation.

A method for detecting IBD regions
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We used a recombination rate of 1.3 cM per 1 Mb as estimated
by Kong et al. (2002).

Power analysis

To evaluate the power and accuracy of the MCMC method, we
used simulated data to compare it with four other methods; the
method by Albrechtsen et al. (2009) implemented in the program
Relate (version 0.994), the method by Purcell et al. (2007) imple-
mented in the program PLINK (version 1.07), the method by
Browning and Browning (2010) implemented in the program
BEAGLE (version 3.3.0), and the method by Gusev et al. (2009)
implemented in the program GERMLINE (version 1.3). When
comparing to GERMLINE we used the option that allows for in-
ference from unphased data.

We note that the four methods are all pairwise methods that
cannot directly evaluate IBD relationships among more than two
individuals. As such, the goal of our method is much more ambi-
tious than any previous method for seemingly unrelated in-
dividuals, in that it allows analyses of IBD relationships among
multiple individuals. However, our simulation study only allows
comparison among the methods in the efficacy to determine
pairwise IBD relationships.

We performed the comparison by first simulating data for six
different IBD scenarios, each consisting of an IBD sharing pattern
for four individuals in an 8-Mb region (see section ‘‘Simulated Test
Data and Results’’ for details about the simulation method and the
scenarios, respectively). For each scenario, we simulated 500 pos-
itive data sets with the scenario-specific IBD sharing pattern and
500 corresponding null data sets, with the exact same IBD sharing
patterns, except that for scenario 1 the IBD sharing between the
two chromosomes of individual 1 is removed and for the rest of the
scenarios the IBD sharing between individuals 1 and 2 is removed.
We then applied the MCMC method, Relate, PLINK, BEAGLE, and
GERMLINE to all 6000 data sets. And finally, based on the results,
we compared the methods. For scenario 1 the methods were
compared on their ability to find the region of IBD sharing within
individual 1, and for the rest of the scenarios the methods were
compared on their ability to find the region of IBD sharing be-
tween individuals 1 and 2. The comparison was performed by
producing ROC curves and by calculating the power of the dif-
ferent methods at significance levels 0 and 0.05. For all of the
methods, except for GERMLINE, the ROC curves were produced
as follows: We defined a region to be inferred as IBD when at least
frac = 95% of the SNPs in it have a posterior probability higher
than a given threshold t. For each scenario, any given threshold
value t thereby determines a true-positive (TP) rate, namely, the
fraction of positive sets for which the IBD sharing region of in-
terest is (truly) inferred, and a false-positive (FP) rate, namely, the
fraction of null sets in which the same region is (falsely) inferred
to be IBD. The ROC plots were produced by plotting (FP rate, TP
rate) for a number of thresholds. For GERMLINE, the ROC curves
were produced in a similar manner. However, since GERMLINE, as
opposed to all the other methods, does not output probabilities of
IBD sharing, but instead outputs a list of inferred IBD regions, the
thresholds used were instead the lower limits on the length of
a potential IBD that were used when running GERMLINE.

For all five methods, the power values at significance level
0 and 0.05 were found by taking the TP rate corresponding to a FP
rate of 0 and 0.05, respectively. In some cases, a FP rate of 0.05 was
not observed. For theses cases, we instead indicate power as an
interval with the TP rate that corresponds to the FP rate closest to
0.05 on each side as end points.

The process of producing ROC curves and power values was
repeated with frac = 50 and frac = 100 to ensure that the choice of

frac was not a determining factor for the conclusions we make
based on the power study. For details on how the different pro-
grams were applied, see Supplemental Material, section S5.

Real test data

To test the applicability of the method to real data, we applied it to
two human data sets. The first data set consists of five patients with
breast and/or ovarian cancer, four Danes and one Greenlandic
Inuit. These individuals are all heterozygous for a recently identi-
fied mutation in their BRCA1 gene on chromosome 17 (Hansen
et al. 2010). Except for two of the individuals that have a coan-
cestry coefficient of 0.107, the individuals are seemingly unrelated
(the remaining coancestry coefficients are all lower than 0.014).

The second data set was the Center d’Etude du Poly-
morphisme Humain (CEPH) population from HapMap phase II
(Frazer et al. 2007). It consists of 30 trios of European ancestry.
However, we excluded the offspring, leaving us with 60 seemingly
unrelated individuals. This second data set was included for two
purposes. The main purpose was to improve all estimates of pop-
ulation genetic parameters, such as allele frequencies and LD that
is needed prior to the IBD analysis of the first data set. Hence, the
main purpose was to play the same role as the ‘‘extra individuals’’
did in the simulated data. The second purpose was to serve as
controls in the disease mapping. For the latter, 10 randomly sam-
pled individuals were included in the IBD analysis together with
the five individuals from the first data set.

We emphasize that in real disease mapping studies it is ad-
visable to have better matched controls or otherwise to control for
population structure.

Both data sets were genotyped using the Affymetrix Sty chip
which contains ;225,000 SNPs. The base calling was performed
using the BRLMM algorithm (Affymetrix 2006). The first data set
was genotyped and called by Hansen et al. (2010), the second by
Affymetrix.

Before applying the MCMC method, we pruned away a
number of SNPs. First, we removed all SNPs that were not from
chromosome 17. Then, we removed all SNPs with missing data and
all SNPs with a minor allele frequency below 0.05. Finally, we re-
moved LD by removing SNPs with an r2 value above 0.2 and a LOD
score above 2 in a sliding window of 100 SNPs using a step size of 1.
This left us with 1278 SNPs.

For genetic distance we used the positions supplied by Hap-
Map (Frazer et al. 2007).

Calculation of Bayes Factors

As a part of the analysis of disease-related mutations, we calculated
Bayes Factors in order to test different hypotheses (see the Results
section for details about the specific hypotheses). A Bayes factor
summarizes how much our relative belief in the hypothesis has
increased by the information in the data compared with our belief
in the hypothesis before observing the data.

To calculate a Bayes Factor (BF) for hypothesis (or model) M1

over hypothesis (or model) M2, we used the following formula:

BF =
posterior odds

prior odds
=

P M1 jGð Þ
P M2 jGð Þ
P M1ð Þ
P M2ð Þ

=
P M1jGð ÞP M2ð Þ
P M2jGð ÞP M1ð Þ ;

where G is the observed unphased genotype data. Both the pos-
terior and the prior probabilities were estimated using the MCMC
method. The prior probabilities were estimated by running the
MCMC method with the likelihood of the data set to a constant
value. We estimated the priors, because it is difficult to find ana-
lytical expressions for them. MCMC estimation of the priors on the
other hand is straightforward to perform for any hypothesis.
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Relatedness mapping

For relatedness (IBD) mapping we used two different statistics. The
first statistic, stat1, is the posterior expected number of cases that
share at least one chromosome IBD with another case. The second
statistic, stat2, is the posterior probability of all cases sharing at
least one allele IBD. The mapping was performed by running the
MCMC method on five cases plus 10 additional individuals from
the HapMap CEPH population as controls. We then calculated the
test statistics for each locus for the five real cases. Finally, we
obtained critical values for the test statistics by permuting the case-
control labels. More precisely, for each of the two statistics we
obtained experiment-wide critical values from the distribution
among permutation replicates of the maximum of the test statistic
over all loci, thereby controlling for multiple testing.

Results

An example run

We first made an initial test to ensure that the method is mathe-

matically correct and correctly implemented. A description of this

test and the test results can be seen in the Supplemental Material,

section S5. The test was successful.

We then turned our attention to evaluating the efficacy of the

method for solving IBD inference problems. To do so, we first ap-

plied the method to an example data set consisting of simulated

unphased genotype data set for 10 individuals in a 8-Mb region

containing 501 equidistant SNPs without LD between them (see

Methods for details about the simulation approach). No errors

were added when simulating the data, and allele frequencies were

estimated from a very large population sample. The genotype data

was simulated based on the IBD configuration in Figure 1A. This

configuration contains several long and several short regions of

IBD sharing between non-inbred individuals, an inbred individual,

and IBD sharing between an inbred individual and a non-inbred

individual. This simulated data set contains a broad range of the

IBD sharing patterns that can be encountered in real data, thus

applying the MCMC method to it should give a good overall idea

of how well the method works for IBD inference. We ran the

MCMC method with two different starting values in order to be

able to properly assess if convergence had been reached. If the

MCMC has been run for a too short amount of time, the samples

obtained from the simulations will not reflect the correct distri-

bution. To address this problem it is common practice to run

multiple replicate simulations of the Markov chain and compare

the results. Various statistics can then be used to assess if the

simulations were run for a sufficiently long amount of time, i.e., if

the chains have converged. The statistic we use is the Gelman-

Rubin statistic (Gelman and Rubin 1992; Brooks and Gelman

1997), called the ‘‘potential scale reduction factor.’’ When the

value of this statistic is close to 1, it is assumed that the simulations

have converged. As can be seen in the Gelman-Rubin plot in Figure

2 the potential scale-reduction factor stabilizes at a value close to 1

after a few thousand iterations. This suggests that the chains did

indeed reach convergence. For more information about conver-

gence assessment of all other runs of the MCMC method presented

in this study, see the Supplemental Material, section S6.

The inferred IBD configuration can be seen in Figure 1B. This

inferred configuration is simply the IBD set partitioning with the

highest posterior probability, i.e., maximum a posteriori (MAP)

estimate, for each locus. As intended, the method can, at least

in this example, very accurately infer both inbreeding and IBD

among multiple individuals in the presence and absence of in-

breeding. Also, and most importantly, the method is able to detect

very short IBD regions of length <1 Mb.

The MCMC method is constructed such that transitions di-

rectly between different IBD sets are not allowed. Therefore, it is

perhaps surprising that the inferences on data such as the data in

Figure 1, where direct transitions between different IBD sets do

occur, are so accurate. The simplifying assumption of no direct

transitions between different IBD sets seems not to affect the ac-

curacy of the method much, even when such transitions exist.

For comparison we ran four of the main competing methods,

Relate, PLINK, BEAGLE and GERMLINE, with default settings on all

the pairs of individuals. Except for GERMLINE, they all found all the

long IBD regions that are shared between individuals. BEAGLE also

found the long region of IBD sharing within individual 6 (BEAGLE

is the only one of the four software packages that offers inbreeding

inference). However, none of the four methods found any of the

short (<1Mb) regions that are shared between the individuals.

Power analyses

Of course, nothing can be concluded from the above example run

alone. Therefore, to quantify to what extent the above observa-

tions are true in general, we simulated 1000 data sets for each of six

simple IBD scenarios. The simulated data sets all consist of geno-

type data for four individuals from an 8-Mb region containing 201

equidistant SNPs loci without LD between them. The IBD config-

urations underlying the six scenarios are illustrated in Figure 3.

The scenarios are meant to represent the most important IBD

patterns in the previous IBD configuration: (1) IBD within an in-

dividual, i.e., inbreeding, (2) long regions of IBD sharing between

two non-inbred individuals, (3) long regions of IBD sharing be-

tween two individuals in the presence of inbreeding, and (4) very

short regions of IBD sharing between non-inbred individuals. The

Figure 2. Gelman-Rubin plot based on the number of zeros in the
sampled IBD configurations. The MAP estimates that the inference it was
based on is only a summary statistic in the sense that it summarizes all
samples in one overall statistic per locus and not a statistic for each
sample. Hence, it cannot be used for convergence monitoring. Instead,
we used the number of zeros in the IBD configuration since this, at least to
some extent, captures the state of the entire IBD configuration. The solid
line is the Gelman-Rubin ‘‘potential scale reduction factor’’ and the
dashed line is the upper 95% confidence limit of the ‘‘potential scale re-
duction factor.’’
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latter is represented by three scenarios: (4a) short regions of IBD

sharing supported by longer IBD sharing regions in other in-

dividuals, (4b) short IBD sharing regions, supported by a lot of IBD

sharing in the area, and (4c) a short IBD sharing region with no

support from IBD sharing between other individuals. Scenarios 4a

and 4b are examples of situations where simultaneous analysis of

all individuals, in theory, should increase power. Scenario 4c is an

example of the opposite, and is included to test if the MCMC

method in practice gains power from simultaneous analysis of

multiple individuals.

We applied the MCMC method, Relate, PLINK, BEAGLE, and

GERMLINE to the simulated data sets, and based on the results we

assessed the power and accuracy of the methods for each of the six

scenarios. More specifically, for scenario 1 we assessed the power

and accuracy with which the methods were able to detect the re-

gion of IBD sharing within individual 1 and for the remaining five

scenarios we assessed the power and accuracy with which the

methods were able to detect the region of IBD sharing between

individual 1 and individual 2. For instance, for scenario 3 the

methods are assessed on their power and accuracy to detect that

individual 1 and individual 2 share at least one chromosome IBD

from locus 1 to locus 100. The reason why we only focus on the IBD

sharing between individual 1 and 2 (and within individual 1) and

not the entire IBD configuration is that Relate, PLINK, BEAGLE,

and GERMLINE are all pairwise methods. Hence, in order to make

a comparison possible we had to limit the test to pairwise IBD

inference.

For details about the simulation approach and about how

power calculations were performed, see Methods, and for details

about how the programs were applied see the Supplemental Ma-

terial, section S5. What should be noted here is that for this test,

PLINK and GERMLINE were not run with default parameter values,

as this resulted in extremely poor results. For instance, PLINK

only managed to infer 0.3% of the IBD regions in scenarios 4a, 4b,

and 4c.

The power at false-positive rates (FP rates) 0 and 0.05 of each

of the five methods in the six scenarios is shown in Table 1, A and

B, respectively. A subset of the ROC curves that these power cal-

culations are based on are shown in Figure 4. The remaining ROC

curves are shown in the Supplemental Material, section S7.

Inspection of Table 1, A and B, shows that both the MCMC

method and BEAGLE have full (100%) power to detect inbreeding,

a feature the three other methods do not offer. The results also

show that all five methods have full or at least high power to detect

long IBD regions in the absence of inbreeding, even at a very low FP

rate. However, and perhaps somewhat surprisingly, all methods

also have full power to detect IBD between individual 1 and in-

dividual 2 in the presence of inbreeding in individual 1, even

though Relate, PLINK, and BEAGLE are based on an explicit as-

sumption that there is no inbreeding present. Thus, the results

suggest that for long IBD regions, all five methods seem to perform

well, and that specifically, the MCMC method seems to perform at

least as well as the other methods.

For the scenarios with very short IBD regions the power

analysis reveals that the MCMC method has considerably more

power to detect short IBD regions than Relate, PLINK, BEAGLE,

and GERMLINE. This is especially true in scenarios where simul-

taneous inference from multiple individuals provides a distinct

advantage. As seen from the ROC curves for the MCMC method in

scenarios 4a, 4b, and 4c in Figure 5, it is clear that the method

indeed does achieve higher power when there is additional in-

formation to obtain from simultaneous analyses (scenarios 4a and

4b). However, the MCMC method actually also has higher power

than the other methods in scenario 4c, where there is no extra

information to achieve by analyzing the individuals simulta-

neously. We believe that this, at least in part, is due to the fact that

the MCMC method takes the uncertainty of l and r into account

by allowing these to be parameters estimated from the data during

the MCMC procedure. For comparison, the results from PLINK and

Relate are achieved by first finding point estimates for the equiv-

alent parameters and then using these as the ’’true’’ parameter

values in the subsequent analyses. The results from BEAGLE are

achieved using user supplied values as ’’true’’ values of the equiva-

lent parameters.

Figure 3. The IBD scenarios used in the power analysis. For each of the
scenarios there is one colored line for each of the eight chromosome se-
quences. In addition, each column represents a locus in the data set. If
a chromosome sequence in a given locus is green it means that it is shared
IBD with all the other chromosome sequences of this color in that locus. If
it is gray, it means that it is not IBD with any of the other chromosomes.
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Overall, the new MCMC method seems to have considerably

more power to detect IBD sharing in data without LD than the four

other methods. In fairness, it should be noted that Relate, BEAGLE,

and GERMLINE are all able to handle data with LD, which the

MCMC method is not. In fact, BEAGLE is based on a model that is

highly dependent on the presence of LD, and therefore has po-

tential to perform much better than it does in this test if applied to

data with LD. Also, it should be noted that the gain in power comes

at a price: the runtime of the MCMC method is significantly lon-

ger. Whereas the mean runtime for each of the above scenarios is

a little less than 18 min for the MCMC method, the runtime of the

other methods is on the order of seconds. A complete list of run-

times for all of the runs of the MCMC method presented in this

study can be seen in Table 2.

Applications to analyses of disease-related mutations

To illustrate the potential of the MCMC method for analyses of

disease-related questions, we applied it to SNP chip data from a

recent study by Hansen et al. (2010). In this study a disease-causing

point mutation in the BRCA1 gene was identified in a Greenlandic

Inuit with ovarian cancer (Hansen et al. 2010). It was the first

report of this specific point mutation in the Greenlandic Inuit

population, but the same point mutation

had previously been observed among

four Danes with breast and/or ovarian

cancer. By use of pairwise IBD analysis

with Relate, Hansen et al. (2010) inves-

tigated whether or not all five cancer pa-

tients share the allele IBD and found it

very likely that they do, and thus, that

their mutations are all caused by a single

founder mutation. As a consequence, the

authors recommended that the current

approach to genetic screening of Green-

landic Inuit families with breast and/or

ovarian cancer should be changed.

This study is a recent example of

how questions regarding IBD sharing in a

specific region can have important med-

ical implications. It also illustrates the

utility of the MCMC method as a tool for

answering such questions in a probabilis-

tic manner.

We applied the MCMC method to

SNP data from a 12-Mb region surround-

ing the BRCA1 gene, and to compare with

the pairwise methods, we also applied

Relate, PLINK, BEAGLE, and GERMLINE

to the same data. The first three of these

methods were applied with essentially

the same settings as in the power study,

and GERMLINE was run with default

values (see the Supplemental Material,

section S4, for details about the program

settings used). All five methods were ap-

plied to the data with the purpose of an-

swering the question posed in the origi-

nal study: do all five individuals share the

disease-causing mutation IBD?

The pairwise results for all of the

five methods can be seen in Figure 6. Here,

the probability that each of the 10 pairs of individuals share at

least one chromosome IBD in the BRCA1 gene is plotted (since

GERMLINE does not provide probabilities, we simply set the

probability to 1 if the individuals were inferred to be IBD and 0 if

they were not).

As can be seen, the five methods give very different pairwise

results. The MCMC method infers that there is a high probability

that all of the pairs are IBD in the BRCA1 region. Relate infers that

there is a high probability of IBD sharing between almost all pairs

of individuals, with the exception that ‘‘Dane1’’ only seems to be

IBD with the Greenlandic Inuit (exactly as reported by Hansen

et al. 2010). PLINK gives the same overall picture as Relate, except

that PLINK only infers ‘‘Dane1’’ to have an intermediate proba-

bility of sharing the BRCA1 region IBD with the Greenlandic

Inuit. BEAGLE also gives the same overall picture as Relate, except

that BEAGLE infers very low IBD sharing probabilities between

‘‘Dane1’’ and ‘‘Inuit’’ and between ‘‘Dane2 and ‘‘Dane4’’ and it

only infers an intermediate probability of IBD sharing between

‘‘Dane2’’ and ‘‘Dane3’’. Finally, GERMLINE only infers IBD sharing

between two of the individuals.

There are three important differences between the answers

that the five methods provide. First, and most importantly, due to

their pairwise nature, the pairwise methods only provide pairwise

Table 1. Power values

Program frac 1 2 3 4a 4b 4c

(A)
MCMC 50 1.00 0.99 1.00 0.20 0.42 0.33

95 1.00 0.99 1.00 0.31 0.21 0.17
100 1.00 1.00 1.00 0.16 0.35 0.21

Relate 50 - 1.00 1.00 0.11 0.09 0.03
95 - 1.00 1.00 0.09 0.10 0.03

100 - 1.00 1.00 0.12 0.09 0.02
PLINK 50 - 0.99 1.00 0.10 0.06 0.04

95 - 0.99 1.00 0.09 0.05 0.04
100 - 1.00 1.00 0.17 0.05 0.03

BEAGLE 50 1.00 0.70 1.00 0.06 0.06 0.13
95 1.00 0.59 1.00 0.06 0.07 0.08

100 1.00 0.44 0.99 0.06 0.05 0.06
GERMLINE 50 - 0.90 1.00 0.03 0.01 0.01

95 - 0.90 1.00 0.04 0.01 0.01
100 - 0.88 0.89 0.04 0.01 0.01

(B)
MCMC 50 1.00 1.00 1.00 0.95 0.94 0.76–0.78

95 1.00 1.00 1.00 0.88 0.84 0.64
100 1.00 1.00 1.00 0.89 0.99 0.86

Relate 50 - 1.00 1.00 0.62 0.61 0.70
95 - 1.00 1.00 0.49 0.59 0.61

100 - 1.00 1.00 0.64 0.61 0.68
PLINK 50 - 1.00 1.00 0.52 0.58 0.57

95 - 1.00 1.00 0.46 0.51 0.48
100 - 1.00 1.00 0.64 0.70 0.68

BEAGLE 50 1.00 0.70–1.00 1.00 0.11–1.00 0.11–1.00 0.13–1.00
95 1.00 0.70–1.00 1.00 0.12–1.00 0.12–1.00 0.13–1.00

100 1.00 0.44–1.00 0.99 0.06–1.00 0.05–1.00 0.06–1.00
GERMLINE 50 - 0.98 1.00 0.27–0.28 0.16 0.27

95 - 0.99 1.00 0.34–0.36 0.23 0.38
100 - 0.88–1.00 0.89–1.00 0.37 0.28–0.32 0.38–0.41

(A) Power values at false positive rate (FP rate) 0. (B) Power values at FP rate 0.05. In cases where this FP
rate is not observed, the power is represented by an interval, where the left end point is the nearest
power observed with FP rate < 0.05, and the right end point is the nearest power observed with FP
rate > 0.05. Boldface indicates that the nearest observed point has a FP rate that differs from 0.05 with
more than 0.005. The definition used for calling an IBD region inferred is when at least frac % of the
SNPs in the IBD region of interest are inferred to be IBD. It should be noted that BEAGLE is based on
a model that is highly dependent on the presence of LD, and therefore has the potential to perform
much better than it does in this test, if applied to data with LD.
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probabilities like the ones shown in Figure 6. The pairs are corre-

lated, and it is unclear how the pairwise probabilities should be

combined into one overall probability. Therefore, questions about

more than two individuals like the one posed here cannot be

addressed directly in a strict probabilistic manner. Having only

pairwise methods available Hansen et al. (2010) were only able to

answer the question indirectly. Using pairwise probabilities and

a plot of the average IBD sharing probabilities, Hansen et al. (2010)

argued that it is very likely that they all share the region IBD. The

MCMC method on the other hand, answers this question directly.

By calculating the fraction of the samples in which all five in-

dividuals are IBD in the BRCA1 region, we

can estimate the posterior probability

that all five individuals share this region

IBD to be 0.67. Using the MCMC method

we can also easily provide a Bayes Factor

for the hypothesis that all of the in-

dividuals share their BRCA1 region IBD

versus the hypothesis that they do not all

share the region IBD. In this case it is’97,

which means that there is very strong

support for the hypothesis that they all

share their BRCA1 region IBD, and thus,

that the disease-causing mutation is a

founder mutation.

Second, the results from the pairwise

methods are not always consistent. For

instance, the Relate results are somewhat

odd. They can only be correct if the

Greenlandic Inuit shares one allele IBD

with ‘‘Dane1’’ and the other allele IBD

with the rest of the Danes, which is very

unlikely. Hence, it seems that Relate is

either incorrectly inferring IBD sharing

between the Greenlandic Inuit and

‘‘Dane1’’ or that it does not have enough

power to detect IBD sharing between

‘‘Dane1’’ and the other individuals. If the

former is true, it would lead us to con-

clude that only four of the individuals

share the disease-causing mutation IBD.

If the latter is the case, all five individuals

share the mutation IBD. Such ambiguous

results make it difficult to answer ques-

tions about IBD relationships among

multiple individuals indirectly using pair-

wise methods, because these methods do

not provide any obvious approach for

testing different hypotheses statistically.

The MCMC method, on the other hand,

always provides consistent results. More-

over, if two hypotheses both seem proba-

ble, the MCMC method facilitates statis-

tical discrimination between hypotheses.

For instance, it allows us to calculate a

Bayes Factor for the hypothesis that all

of the individuals share their BRCA1

gene IBD versus the hypothesis that only

Danes 2, 3, and 4 and the Greenlandic

Inuit share the region IBD. Based on the

previously published Relate output, this

would be an important question to ad-

dress. This Bayes Factor is ’9; thus, there is substantial support for

the hypothesis that they all share the region IBD.

Third, and last, the pairwise methods clearly give very dif-

ferent results. In general, the pairwise methods infer less IBD

pairwise sharing than the MCMC method. To be as fair as possible

to Relate, BEAGLE, and GERMLINE, we only removed SNPs in LD

from the data used by PLINK and the MCMC method, since Relate,

BEAGLE, and GERMLINE can analyze SNPs in LD and can thus

potentially benefit from the extra genotype information. This

difference in input data is, of course, one possible explanation that

these methods infer less IBD than the MCMC method. However,

Figure 4. ROC curves for the six scenarios. The definition used for calling an IBD region inferred for
these curves is when at least 95% of the SNPs in the region are inferred to be IBD. The green points are
from the MCMC method, the purple points are from Relate, the blue points are from PLINK, the red
points are from BEAGLE, and the black points are from GERMLINE. The green and blue points are almost
not visible in the plots for scenarios 2 and 3 because the purple points cover them. The red points are
difficult to see in several of the plots, because in these plots the amount of unique points is very low. It
should be noted that BEAGLE is based on a model that is highly dependent on the presence of LD, and
therefore has the potential to perform much better than it does in this test if applied to data with LD.
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including SNPs in LD did not cause either Relate, BEAGLE, or

GERMLINE to infer less IBD. On the contrary, running Relate,

BEAGLE, and GERMLINE on the LD reduced data set results in the

same or lower IBD sharing probabilities for almost all pairs (up to

0.4 lower). In addition, in the few cases where this is not the case,

the IBD probability only becomes slightly higher (<0.1). This is

most likely because the LD free data set have fewer SNPs and,

therefore, contain less information. Another possible explanation

for the different results is that all five individuals actually do share

the mutation IBD, but that some of the shared regions are too short

for Relate, PLINK, BEAGLE, and GERMLINE to accurately infer

them. We find this explanation very plausible. It appears very

likely that the reason that GERMLINE finds much fewer IBD re-

gions than the other methods is that it (per default) has very strict

requirements for detecting IBD regions at this scale. If we relax the

default settings as we did in the power simulations, we find that

the more we reduce the lower bound on IBD regions length, the

more putative IBD regions are inferred. Indeed, if we set it low

enough, all pairs are inferred to be IBD in the BRCA1 region.

However, as it is unclear which settings to use (in order to avoid

a vast amount of false positives), we used the default settings.

As already reported in Hansen et al. (2010) some of the IBD

regions that are inferred by Relate are rather short (down to 1–2

Mb). MAP estimates based on output from the MCMC method also

suggest that some of the IBD regions containing the BRCA1 gene

are relatively short (see Supplemental Material: Supplemental Fig.

S13). This, combined with the fact that the results from Relate,

and to some extent PLINK and BEAGLE,

seem internally inconsistent, makes it

seem likely that Relate, PLINK, and

BEAGLE infer fewer IBD regions than the

MCMC method, due to lack of statistical

power, since Relate, PLINK, and BEAGLE

do not take information about more than

two individuals into account at a time. In

fact, this explanation was proposed by

Hansen et al. (2010). Hence, it appears

that the increased power of the MCMC

method is not only of theoretical interest,

but also results in tangible improvements when it is applied to

real data.

Overall, these observations suggest that the MCMC method

constitutes a very good alternative to the pairwise methods for

inferring IBD relationships in a probabilistically sound manner in

cases where the computational demands of the method are not

prohibitive.

Applications to disease mapping

We further illustrate the potential of the method for IBD-based

disease gene mapping by applying it to the data set discussed

above: a set of five cancer-affected individuals with the same dis-

ease-causing mutation in the BRCA1 gene on chromosome 17. We

applied the MCMC method to all of chromosome 17 of the five

cases and 10 additional controls (HapMap individuals) and per-

formed a test for increased IBD sharing among the cases by per-

mutation of the case/control labels of the individuals. In real

disease mapping studies, we would encourage the use of better-

matched controls and/or the use of a statistical correction for

population structure. We used two different mapping statistics for

the test: stat1, which is the posterior expected number of cases that

share at least one chromosome IBD with another case, and stat2,

which is a simple indicator of whether or not all cases share at least

one allele IBD. Other statistics might be more appropriate in other

cases depending on the underlying inheritance model and on the

number of founder mutations/defective alleles that cause the dis-

ease. The P-values corresponding to each of the two chosen sta-

tistics along chromosome 17 can be seen in Figure 7. The depicted

P-values have been corrected for multiple testing in the permuta-

tion procedure. As can be seen, stat1 allows us to identify a 9.2-Mb

region (using a significance level of 0.01), and stat2 allows us to

identify a 7.6-Mb region (again using a P-value cut-off of 0.01),

both containing the BRCA1 mutation. It is worth noting that if we

use an even stricter significance level (0.0005) stat2 actually allows

us to narrow the region down to a size of only 2.2 Mb still con-

taining the BRCA1 gene. Hence, based on very simple statistics and

data from only five affected individuals we are actually able to map

the region with the disease-causing mutation down to a very small

region. In contrast to family-based IBD mapping, relatedness

mapping (IBD mapping based on population data) allows the

identification of a very small genomic region containing the causal

variant, i.e., it has increased mapping accuracy. The reason is that

relatedness mapping gains information from all the meiosis in the

pedigree relating the individuals carrying the founder mutation.

In the example shown here, the five individuals were chosen

because they share a single mutation. For relatively common dis-

eases, such as breast and ovarian cancer affected by the BRCA1

locus discussed here, analyses of five individuals are unlikely to

be very helpful in practice because of genetic heterogeneity. It is

Figure 5. ROC curves for scenarios 4a, 4b, and 4c using the MCMC
method. The curves for scenario 4a (dark green), 4b (light green), and 4c
(yellow) were all calculated with an inference criterion of 95% SNPs
detected.

Table 2. Summary information for all MCMC analyses in this study

Analysis # SNPs # chrs k # samples Avg. runtime

Example run 501 20 2 20,000,000 34.09 h
Power analysis 201 8 1 250,000/450,000 0.29 h
Founder mutation question 161 10 3 5,500,000 10.62 h
Mapping analysis 1278 30 1 30,000,000 21.20 h

The total number of samples includes all samples, i.e., also those discarded as burnin and during
thinning. For the power analysis, there are two values in this column, because a few of the scenarios
took longer to converge than the rest. The analyses were performed on an Intel Xeon 2.5 GHz CPU.
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unlikely that all individuals will share the same mutation and

larger samples will typically be needed. A full exploration of the

relationship between statistical power, degree of allelic heteroge-

neity, and penetrance is not the objective of this study, but see

Albrechtsen et al. (2009) for more discussion regarding power in

studies based on relatedness mapping.

Discussion
We have presented a new method for identifying regions that two

or more chromosomes share IBD using nothing but unphased SNP

data. In contrast to the current competing methods, which all are

pairwise methods, our method models IBD sharing among multi-

ple individuals simultaneously while taking parameter uncertainty

into account. We have shown that this leads to higher power for

finding short IBD regions, even in pairwise comparisons. We have

also shown that our approach can answer a broad range of medi-

cally relevant questions in a probabilistic manner, which cannot

be answered directly by other methods. Finally, we have provided

an example of an application to real data; we have shown that

the method can be used for quite accurate disease mapping using

only unphased SNP data from five affected individuals. Neither

Figure 6. Probabilities of sharing at least one chromosome IBD between all 10 pairs of affected individuals in the BRCA1 gene. The probabilities are
depicted for the MCMC method, Relate, PLINK, BEAGLE, and GERMLINE, respectively.
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association mapping nor linkage mapping could have detected

associations from these data. Linkage mapping could not be applied

because the pedigree relating the five individuals is not known.

Genome-wide association mapping would essentially have zero

statistical power, because the data set is too small (five cases). Of

course, this does not mean that the new method should entirely

replace linkage mapping or association mapping. The method will

only have significant power if the mutation(s) is so rare/recent that

IBD regions around the mutation can be inferred. In addition, the

size of the region inferred to contain the causal mutation(s) might

be large if the number of meiosis in the (unobserved) pedigree re-

lating the individuals is small. However, when a disease is caused

by one or a few rare founder mutations, the MCMC method pro-

vides a good alternative to the standard approaches, in the sense

that mapping can be done with reasonable resolution using only

unphased SNP chip data from very few seemingly unrelated

individuals.

An important drawback of the method presented is, however,

that it is significantly slower than all other current methods for

detecting IBD as shown in Table 2. The method cannot be applied

directly to whole genomes for hundreds or thousands of in-

dividuals. For this purpose, programs like Relate, PLINK, BEAGLE,

and GERMLINE are much better suited, as least for the initial

analysis. Subsequent analyses of candidate regions can then be

carried out using the MCMC method. The MCMC method can also

be used on a whole chromosome—and thus genome-wide—for

a limited number of individuals. A second important drawback of

the MCMC method in comparison to Relate and BEAGLE is that it

does not take LD into account. Unfortunately, it is not trivial to

correct for LD in the multi-individual case on unphased data. For

data sets where it is important to take LD into account, one could,

however, implement the method for phased data. In this case, it is

fairly straightforward to use the same principle for LD correction as

used in Relate. This would potentially also make the method sig-

nificantly faster. Hence, it might be a good future approach for

dealing with larger data sets, especially as algorithms for phasing

improves.

However, even taking these drawbacks into account, the new

method provides a substantially novel approach for analyzing

genetic data, and a new accurate method for identifying rare dis-

ease-causing mutations. It should find applications, in particular

for the mapping of rare diseases, for which only few cases can be

obtained, but in which one or a few mutations are causing the

disease. It might provide a strong alternative to genome-wide as-

sociation mapping for populations with small effective population

sizes, such as the Greenlandic Inuit population.
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