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Developing accurate, scalable algorithms to improve data quality is an important computational challenge associated with
recent advances in high-throughput sequencing technology. In this study, a novel error-correction algorithm, called
ECHO, is introduced for correcting base-call errors in short-reads, without the need of a reference genome. Unlike most
previous methods, ECHO does not require the user to specify parameters of which optimal values are typically unknown
a priori. ECHO automatically sets the parameters in the assumed model and estimates error characteristics specific to each
sequencing run, while maintaining a running time that is within the range of practical use. ECHO is based on a proba-
bilistic model and is able to assign a quality score to each corrected base. Furthermore, it explicitly models heterozygosity
in diploid genomes and provides a reference-free method for detecting bases that originated from heterozygous sites. On
both real and simulated data, ECHO is able to improve the accuracy of previous error-correction methods by several folds
to an order of magnitude, depending on the sequence coverage depth and the position in the read. The improvement is
most pronounced toward the end of the read, where previous methods become noticeably less effective. Using a whole-
genome yeast data set, it is demonstrated here that ECHO is capable of coping with nonuniform coverage. Also, it is
shown that using ECHO to perform error correction as a preprocessing step considerably facilitates de novo assembly,
particularly in the case of low-to-moderate sequence coverage depth.

[Supplemental material is available for this article. ECHO is publicly available at http://uc-echo.sourceforge.net under the
Berkeley Software Distribution License.]

Over the past few years, next-generation sequencing (NGS) tech-

nologies have introduced a rapidly growing wave of information in

biological sciences; see Metzker (2010) for a recent review of NGS

platforms and their applications. Exploiting massive paralleliza-

tion, NGS platforms generate high-throughput data at very low

cost per base. An important computational challenge associated

with this rapid technological advancement is to develop efficient

algorithms to extract accurate sequence information. In compari-

son with traditional Sanger sequencing (Sanger et al. 1977), NGS

data have shorter read lengths and higher error rates, and these

characteristics create many challenges for computation, especially

when a reference genome is not available. Reducing the error rate of

base-calls and improving the accuracy of base-specific quality scores

have important practical implications for assembly (Sundquist et al.

2007; Butler et al. 2008; Li et al. 2008; Medvedev and Brudno 2008;

Zerbino and Birney 2008; Chaisson et al. 2009; Langmead et al. 2009;

Simpson et al. 2009; Peng et al. 2010); polymorphism detection,

especially rare ones (Brockman et al. 2008; Li et al. 2008); and

downstream population genomics analysis of NGS data (Hellmann

et al. 2008; Jiang et al. 2009).

To improve data quality, it is well recognized that development

of accurate, scalable computational tools must parallel the rapid

advancement in sequencing technology. There are two main ap-

proaches to addressing this challenge: (1) One approach is to de-

velop improved image analysis and base-calling algorithms. This

line of work has been pursued by several researchers in the past,

including ourselves (for review, see Erlich et al. 2008; Rougemont

et al. 2008; Kao et al. 2009; Kircher et al. 2009; Whiteford et al.

2009; Kao and Song 2011). Indeed, by using more sophisticated

statistical methods, it has been demonstrated that it is possible to

deliver significant improvements over the tools developed by

the manufacturers of the sequencing platforms. (2) An alternative

approach is to correct for potential errors after base-calling has

been performed by leveraging on the fact that each position in the

genome on average is sequenced multiple times. Several methods

have been developed for this approach (e.g., see Gajer et al. 2004;

Chaisson et al. 2009; Chin et al. 2009; Qu et al. 2009; Schröder et al.

2009; Shi et al. 2009; Wijaya et al. 2009; Salmela 2010; Yang et al.

2010).

The goal of the present study is to introduce a novel, efficient

computational method for the latter approach. Our error-correction

algorithm is called ECHO, and it has the following notable features,

most of which are unique to our method:

1. Whereas previous reference-free error-correction algorithms

(Chaisson et al. 2009; Schröder et al. 2009; Shi et al. 2009;

Salmela 2010) typically rely on the user to specify some of the

key parameters, of which optimal values are typically unknown

a priori, ECHO automatically finds the optimal parameters and

estimates error characteristics specific to each sequencing run.

2. ECHO is based on a probabilistic framework and can assign

a quality score to each corrected base. Quality scores are useful

and sometimes necessary in downstream analysis.

3. Previous reference-free error-correction algorithms (Chaisson

et al. 2009; Schröder et al. 2009; Shi et al. 2009; Salmela 2010)

for short-reads are based on k-mer or substring frequencies.

ECHO instead relies on finding overlaps between reads. Despite

being more computationally intensive, this approach retains

more of the information contained in the reads without ag-

gregating away potentially useful relationships. Although error

correction based on read overlap has been tried previously with
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Sanger reads (Batzoglou et al. 2002), ECHO differs from previous

works in that it is specialized for high-throughput short-reads.

4. ECHO explicitly models heterozygosity in diploid genomes and

allows one to process diploid data in a novel way. Specifically,

for each length-l haplotype (or short read) in the input data,

ECHO can infer a likely length-l genotype sequence from which

the haplotype may have originated, and position-specific

quality scores can be assigned to each genotype. For each input

short read, this approach provides a way, in the absence of

a reference genome, to detect the bases that originated from

heterozygous sites in the sequenced diploid genome and to

infer the corresponding genotypes.

ECHO performs error correction by first finding overlaps between

reads. This procedure requires not only computational consider-

ations to handle the enormous number of reads typically gener-

ated by NGS platforms, but also requires an effective method to

filter out false overlaps. ECHO achieves this by imposing a maxi-

mum error tolerance in the overlaps and a minimum overlap

length. These stringent requirements typically filter out many of

the potential false overlaps, provided that the genome is not repeat

rich. However, the optimal error tolerance and overlap requirement

are usually unknown a priori. Whereas previous error-correction

algorithms require the user to specify the key parameters, which

may greatly affect the performance of the algorithm, ECHO auto-

matically determines the optimal values for the error tolerance and

minimum overlap length by utilizing assumptions on the coverage

distribution of the reads.

Once ECHO determines the relevant parameters and finds the

overlaps between reads, it estimates the error characteristics of the

data using an expectation-maximization (EM) procedure. Our

statistical approach attempts to accurately model the error be-

havior of the sequencing platform. This is in contrast to other er-

ror-correction algorithms that typically use an error threshold or

coverage cutoff, which may not be statistically motivated. Fur-

thermore, in ECHO, error modeling is performed for each input

data set to characterize more effectively the unique properties of

different sequencing runs. Utilizing the read overlaps and the error

characterization, ECHO performs error correction on the reads

using a maximum a posteriori procedure. Because the sequencing

behavior is modeled statistically, meaningful quality scores can be

assigned to the bases of the corrected reads.

Repeats in the genome are challenging to handle since they

may lead to false overlaps. In general, ECHO is less sensitive to

repeats than are previous error-correction methods that rely on

k-mer or substring frequencies. By retaining the relationships among

reads more explicitly, rather than computing aggregate statistics

on substring frequencies, ECHO is better able to handle repeat

patterns in the genome. However, the obstacles imposed by repeat

regions are still significant, and more sophisticated methods that

incorporate additional information will be necessary to overcome

these challenges adequately.

To test the performance of our algorithm, we consider real

short-read data generated by Illumina’s Genome Analyzer (GA) I

and II, as well as synthetic short-read data simulated to mimic GA’s

error characteristics. For GA, most of the sequencing errors are

miscall errors (as opposed to indels), with the property that the

error rate generally increases toward the end of the read. We show

that ECHO is able to improve the accuracy of previous error-cor-

rection methods by several folds to an order of magnitude,

depending on the sequence coverage depth and the position in the

read. In particular, provided that the sequence coverage depth is

moderate to high (roughly, 15 or higher), ECHO remains effective

throughout the entire read length, typically reducing the error rate

at the end of the read from over 5% to under 1%.

ECHO can process relatively small genomes such as that of

yeasts or fungi on a desktop computer. To demonstrate this point

and to show that ECHO is capable of coping with nonuniform

coverage that may arise in real data, we apply our method on a real

whole-genome yeast data set.

In addition to the improvement in data quality, we also ex-

amine here the effects of error correction on de novo assembly.

Assembly is particularly challenging when the sequence coverage

depth is low to moderate, and it may benefit considerably from the

improved data quality delivered by error correction. In this study,

we show that performing error correction as a preprocessing step

facilitates de novo assembly significantly.

A software implementation of the algorithm described in this

work is publicly available at http://uc-echo.sourceforge.net under

the Berkeley Software Distribution License.

Methods
In this section, we describe our error-correction algorithm ECHO,
which is divided into two stages: (1) neighbor finding, and (2)
maximum a posteriori error correction. Since we assume that the
reference genome is not available, we first devise a clustering algo-
rithm to find ‘‘neighboring’’ reads that presumably cover the same
region of the genome. Upon finding the putative neighbors of each
read, we then correct for sequencing errors by using a maximum
a posteriori estimation procedure for each base of the read.

Neighbor finding

In a sequencing run with a moderate-to-high coverage depth, each
position in the genome on average is sequenced multiple times.
The basic idea behind error correction is to leverage on this re-
dundant information. When there is a reference genome, identi-
fying the reads that cover the same region can be done via ‘‘read
mapping’’ (Li et al. 2008; Langmead et al. 2009; Li and Durbin
2010). However, in the absence of a reference genome, the task
of identifying neighbors becomes more challenging. Below, we
devise a neighbor-finding algorithm based on hashing, rather
than an explicit search of all pairs of reads, which would be com-
putationally prohibitive. The approach is similar to the one in
Batzoglou et al. (2002) to find overlaps between reads. However,
their method is geared toward Sanger reads, whereas ECHO is
specialized for short-read data, which requires different computa-
tional considerations.

In a preprocessing step, we first augment the set of reads with
their reverse complements. For a given keyword length k, we iterate
through the reads and their complements, and create a hash table
mapping each k-mer to the reads that contain it, along with the
position in the read where the k-mer occurs. If a k-mer occurs
multiple times in a read, for computational efficiency we record
only the position that is closest to the beginning of the read; this
choice is motivated by the fact that, for the Illumina platform,
early cycles of a sequencing run generally have higher quality than
do later cycles. (If the read is instead a reverse complement that was
added in the preprocessing step, we keep the position that is closest
to the end of the read, which would have higher quality than the
beginning.) Assuming k to be a constant, this hashing stage re-
quires expected O(Nl) time, where N is the number of input reads
and l is the read length.

Once the hash table mapping k-mers to the reads is con-
structed, we consider more thorough alignments to construct an
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adjacency list connecting neighboring reads together. We run
through the k-mers, and for each one, consider its associated set of
reads. For every pair of reads, we do a simple alignment to assess
the quality of the overlap between the two reads. Figure 1 illus-
trates how the two reads are aligned given a common k-mer. We use
e to denote the fraction of errors in the overlap, i.e.,

e =
m

v
;

where m is the number of mismatches in the overlap and v is the
length of the overlap. The ‘‘score’’ of an overlap is defined as 1/e,
and it is used to select the best alignment from among several
possible alignments between two reads. Further, we require that
the overlap length be greater than the minimum overlap parameter
v* and that the fraction of errors in the overlap e be less than e*, the
error tolerance:

1. v $ v*, the overlap length must be at least the minimum re-
quired overlap length v*.

2. e # e*, the fraction of mismatched bases is less than the error
tolerance e*.

The two threshold parameters v* and e* are selected automatically
in ECHO, as described below in Parameter selection.

In practice, the best alignment for the overlap between two
reads involves aligning together their common k-mer, since it al-
ready provides k matching bases. In this case the alignment is
given immediately by the position of the k-mer itself. Using this
method, an alignment between a pair of reads is found in O(1)
time. When two reads share multiple common k-mers, the scoring
method described above is used to select the best alignment, and
only the best alignment is kept in the adjacency list. In the case of
ties, the alignment with the greatest overlap length is chosen.

Looking only at common k-mers between reads is typically
sufficient to find overlaps, because for a small enough k, the
chance that two truly overlapping reads do not have any common
k-mer in the overlap is small, provided that the sequencing error
rate is low. Both reads only need an error-free stretch long enough
to cover the k-mer in the overlapping region for the reads to have
a common k-mer. Given a relatively low error rate, this occurs with
high probability. A similar idea is also utilized in Rasmussen et al.
(2005) and Jokinen and Ukkonen (1991). Although the current
implementation does not allow for indels in the overlaps, it would
be straightforward to generalize this alignment step to accommo-
date for indels at the expense of greater computational cost.

With Bmax denoting the maximum number of reads associ-
ated with a single k-mer (i.e., the size of the largest bin in the hash
table) and K denoting the total number of k-mers, the neighbor
finding stage requires O Nl+KlB2

max

� �
time. Here, O(Nl) is the time

required for the hashing stage, and O KlB2
max

� �
is the time needed

to process the reads associated with every k-mer, where counting
the number of mismatches in an overlap takes O(l) time and there
are at most B2

max pairs of reads to consider for each k-mer. There are
times when the number of reads that contain a given k-mer is
abnormally large, e.g., when the k-mer is a substring of a repetitive
region or the coverage of the genome is highly nonuniform. In our
algorithm, we put a cap on the k-mer bin size in the hash table,

such that the reads associated with a k-mer with an extreme number
of overlaps are not corrected. This approach allows us to avoid
correcting reads that belong to highly repetitive regions, for which
the assumptions on overlaps become more tenuous.

Parameter selection

In ECHO, three parameters are required for finding the overlaps
between reads: k, the keyword length; v*, the minimum overlap
length; and e*, the threshold on the fraction of allowed errors in
an overlap. The keyword length k must be chosen to balance two
effects:

1. If k is too small, the number of reads associated with each k-mer
will be very large. This exacerbates the running time during the
neighbor-finding stage because it is quadratic in the number of
reads associated with each k-mer.

2. If k is too large, we might miss a significant portion of the true
overlaps between reads, since it is only when two reads share
a common k-mer that we even consider computing an overlap
between them.

The selection of k depends on the expected error rate of the reads;
e.g., k needs to be small enough to ensure that two overlapping
reads have a good chance of possessing a common error-free
stretch of length k. We find that choosing k = bl/6c, where l is the
read length, retains a high probability of two overlapping reads
sharing a common k-mer, while not being too small as to signifi-
cantly increase the running time.

Note that k is used only in a heuristic to find overlaps quickly.
We do not consider k-mer distributions as in other error-correction
techniques and, hence, an accurate choice of k is not essential as
long as it errs on the side of caution. We show in the Results that
the performance of the algorithm is robust with respect to the
choice of k.

In contrast, selecting the thresholds v* and e* appropriately
has a more significant impact on the performance of the algo-
rithm. If v* and e* are too strict, then neighboring reads that
should be linked together are missed. If they are too lenient, then
reads that do not truly overlap will be mistakenly linked together.
Because the performance of the error-correction algorithm de-
pends greatly on the accuracy and correctness of the read overlaps,
it is important to select v* and e* carefully.

The idea behind finding appropriate v* and e* relies on the
assumption that the coverage at a given position of the genome
approximately follows a Poisson distribution, given that the reads
are sampled uniformly at random from the genome. Given the set
of overlaps between reads, which we infer without the use of
a reference genome, we can compute the empirical coverage dis-
tribution for every position, assuming that reads overlap because
they come from the same region of the genome. Note that this
assumption on the overlaps and the coverage distribution becomes
less accurate as the genome structure becomes more repetitive,
which may cause false overlaps to be inferred more frequently.

We adopt the following approach to find v* and e* that pro-
duce an empirical coverage distribution most closely resembling
a Poisson distribution: Given a fixed overlap requirement v�0 and
error tolerance e�0; we find the Poisson distribution that minimizes
the total variation distance between the empirical distribution and
the Poisson distribution. Figure 2 illustrates the total variation
distance between the Poisson distribution and the empirical dis-
tribution. By running the neighbor finding algorithm on a grid
search, we select the parameters v* and e* that have the minimum
total variation distance. As a grid search is typically computa-
tionally intensive, for efficiency we perform the neighbor finding
algorithm only on a subset of the data. Although the empirical

Figure 1. Illustration of the alignment of two reads by identifying
a common k-mer in the overlap. The boxes labeled by K denote a common
k-mer between the two reads. The symbol 3 denotes a sequencing error
that would preclude a common k-mer from occurring in the immediate
area. However, as long as the error rate is low enough and the overlap is
sufficiently long, a common k-mer will exist with high probability.
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coverage distribution may not exactly resemble a Poisson distri-
bution, we find that using it as a guide selects v* and e* coherent
with the assumptions on the read coverage distribution.

Maximum a posteriori error correction for haploid genomes

The neighbor-finding stage produces the putative overlap re-
lationships between reads. Here, we formulate a maximum a pos-
teriori estimation procedure for error correction. In the Illumina
platform, most of the sequencing errors are miscall errors (as op-
posed to indels), with the property that the error rate generally
increases toward the end of the read. For ease of exposition, we
consider only the case for the original reads; the procedure for the
reverse complements is analogous. We assume that miscall errors
are made independently within each read and also across different
reads. To be more precise, we assume that each base in a given read
is distributed as a multinomial distribution with parameters that
depend on the position of the base within the read and the true
corresponding base in the original genome. If the true base at po-
sition m of a given read is b, the probability that it is called as b9 is
denoted by F

mð Þ
b;b9
: Following Kao et al. (2009) and Kao and Song

(2010), we refer to F mð Þ= F
mð Þ

b;b9

� �
b;b92 A;C;G;Tf g

as the confusion matrix

for position 1 # m # l, where l is the read length. It gives the
probability that the true base is miscalled as another base given its
position in the read. We later provide an EM procedure for esti-
mating F(m) for 1 # m # l.

Let r denote a read, and suppose that the base at position m of
r, which we denote rm, originated from position i of the genome
S. In the absence of any sequencing error, read r will be identical to
the substring H [ Si�m+1:i+l�m, where l is the length of the read, and
Sa:b denotes the substring of S from position a to position b, in-
clusive. In other words, H is the ‘‘perfect’’ read that r would be if
there were no sequencing errors. The entry F

mð Þ
b;b9

in the confusion
matrix F(m) is defined as

F
mð Þ

b;b9
=P rm = b9 j Hm = bð Þ; ð1Þ

the probability that the mth position of read r is called as b9 given
that the true base is b. Note that F(m) is indexed by m, the called-
base’s position in the read. This is critical because the Illumina
platform suffers from progressively worse accuracy toward the
ends of its reads and, hence, it is essential to model this behavior
statistically.

We use the following model for the distribution on observed
reads:

1. Bases are distributed uniformly at random in the genome:

Si ; Unif A;C;G;Tf g: ð2Þ

2. Every base is called independently, and the distribution on the
called base depends on its position in the read and the true base:

rm j ðHm = bÞ; Multð1; F
mð Þ

b;A ;F
mð Þ

b;C ;F
mð Þ

b;G ;F
mð Þ

b;T Þ: ð3Þ

Based on this model, we obtain the posterior distribution

P Hm = b j rm = b9ð Þ =
1
4 F

mð Þ
b;b9

1
4 + a2 A;C;G;Tf gF

mð Þ
a;b9

; ð4Þ

which gives the probability that, given we observe base b9 in a read,
the true base is in fact b (which may or may not be the same as b9).

Now we use the assumption that overlaps of neighboring
reads cover the same positions in the genome. For every position
belonging to a particular overlap, we consider every read that
contributes to the overlap. Each read provides its own base-call for
that position, which is used to ‘‘sharpen’’ the posterior distribution
described in Equation 4.

Let V = f(b1, p1), . . . g be the multiset of base-calls and their
corresponding positions in reads that overlap with position m in
read r. The posterior of Hm to be base b is then given by

f r;m bð Þ=
1
4

Q
(b9,p9)2V

F
p9ð Þ

b;b9

+a2 A;C;G;Tf g
1
4

Q
(b9,p9)2V

F
p9ð Þ

a;b9

h i : ð5Þ

The maximum a posteriori (MAP) estimate of Hm is then

HMAP
m = arg max

b2 A;C;G;Tf g
f r;m bð Þ: ð6Þ

This MAP estimate of Hm is taken as the base at position m in
read r. We perform this maximum a posteriori correction for all the
reads in the data set. The procedure for handling a reverse com-
plement read is analogous to the aforementioned steps.

Coverage checks

An abnormally large set of overlapping reads usually indicates
nonuniform coverage or that the reads are sampled from a re-
petitive region, and suggests that our assumptions on overlapping
reads most likely do not hold. From the overlaps found in the
neighbor finding stage, we have an estimate of the expected cov-
erage m, as described in the Parameter selection. If the coverage at
a position is greater than m + a

ffiffiffiffi
m
p

(a standard deviations greater
than the average coverage), we do not perform a correction. Our
empirical study suggests that the precise value of a does not gen-
erally affect the accuracy of the algorithm; 4 # a # 6 is typically
effective. This ‘‘filtering’’ allows ECHO to be robust against parts of
the genome that have repetitive structure or have highly non-
uniform coverage. We refer to this filtering as a ‘‘coverage check,’’
because it ensures that the estimated coverage for a read looks
reasonable before correction is attempted.

Quality scores

Providing an accurate measure of per-base quality has practical
importance. For instance, MAQ (Li et al. 2008), a widely used read-
mapping algorithm, utilizes base-specific quality scores to produce
mapping quality scores and to call variants. A widely adopted

Figure 2. Illustration of the empirical coverage distribution compared
with the Poisson distribution. The empirical distribution is drawn with
a dashed line and the Poisson distribution is drawn with a solid line. The
total variation distance is the shaded area between the two distributions
divided by two. ECHO finds the Poisson distribution minimizing the total
variation distance to the empirical distribution to find the optimal set of
parameters v* and e*.
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definition of quality score is that used in phred (Ewing and Green
1998); it is a transformed error probability of a base, defined more
precisely as follows: Let er,m denote the probability that rm, the mth
base of read r, is erroneously called. Then, the phred quality score
qr,m for rm is given by

qr;m = � 10 log10 er;m: ð7Þ

Since ECHO provides an estimate of the posterior probability
of each base, the error probability er,m of base rECHO

m ; where rECHO

denotes the ECHO-corrected read, can be estimated by

er;m = 1� f r;m r ECHO
m

� �
; ð8Þ

where fr,m (�) is defined as in Equation 5. The phred quality score for
rECHO

m is then obtained by using Equation 8 in Equation 7.

Generalization to diploid genomes

In this section, we show how our approach can be generalized to
handle short reads from diploid genomes, in which case the main
challenge lies in distinguishing heterozygotes from sequencing
errors. We use the same neighbor-finding algorithm as in the hap-
loid case, but modify the maximum a posteriori error-correction
step as described below. Again, our exposition refers to the original
reads; the case for reverse complements is analogous.

The unordered genotype at a given position of a diploid ge-
nome is either a homozygote or a heterozygote. We use Hom = {{A,
A}, {C, C}, {G, G }, {T, T }} to denote the set of homozygous genotypes
and Het = {{A, C}, {A, G}, {A, T }, {C, G}, {C, T }, {G, T }} to denote the
set of heterozygous genotypes. The set of all possible genotypes is
denoted by G = Hom [ Het.

Given a length-l haplotype sequence r = (r1,. . .,rl) 2 {A, C, G,
T }l, let D = (D1,. . .,Dl) 2 Gl denote the true unphased genotype
sequence in the diploid genome from which r originated. Our goal
is to assign a length-l unphased genotype sequence D(r) to each
read r, such thatD(r) is as close to D as possible. For each position m
in r, we assume that the two alleles in D are equally likely to be the
source of the mth nucleotide rm. Hence, sequencing errors at that
position are characterized by the following generalized confusion
matrix

C mð Þ= C
mð Þ

g;b

� �
g2G;b2 A;C;G;Tf g

:

C
mð Þ
a;a0f g;b =Pðrm = b j Dm = fa; a0gÞ= 1

2
F

mð Þ
a;b + F

mð Þ
a0 ;b

� �
;

where {a, a9} is the true genotype, b is the base at position m in read
r, and F

mð Þ
ð�;�Þ is defined as in Equation 1.

We use h to denote the prior probability that a given site in the
diploid genome is heterozygous. Then, for a particular genotype
g 2 G, the prior is

P gð Þ=
1�h

4 ; if g 2 Hom;
h
6 ; if g 2 Het:

�

That is, given the zygosity, we assume the uniform distribu-
tion over all possible genotypes. Analogous to the haploid case, the
posterior distribution is given by

P Dm = g j rm = bð Þ =
C

mð Þ
g;b P gð Þ

+g 02GC
mð Þ

g 0 ;bP g 0ð Þ
:

Let V = f(b1, p1), . . . g be the multiset of base-calls and their
corresponding positions in reads that overlap with position m in
read r. Then, the posterior of Dm being genotype g is

f d
r;m gð Þ=

P gð Þ
Q

(b9,p9)2V
C

p9ð Þ
g;b9

+g 02G P g 0ð Þ
Q

(b9,p9)2V
C

p9ð Þ
g9;b9

h i ;

and the maximum a posteriori estimate of Dm is

DMAP
m = arg max

g2G
f d

r;mðgÞ:

In ECHO, this MAP estimate is taken to be the inferred geno-
type corresponding to position m of read r. As in the haploid case, if
the estimated coverage at a particular position is much greater than
the expected coverage, the maximum a posteriori estimate is not
used and instead the algorithm outputs the genotype {rm, rm},
analogous to not correcting the base in the haploid case.

Let D(r) = (D1(r),. . ., Dl(r)) be the sequence of genotypes esti-
mated by ECHO for read r. The error probability for Dm(r), the ge-
notype at position m of D(r), is

er;m = 1� f d
r;m Dm rð Þð Þ;

and Equation 7 can be used to compute the quality score forDm(r).
Incidentally, note that the above algorithm for the diploid case
with h = 0 reduces to the algorithm described earlier for the haploid
case.

Estimating confusion matrices

If a reference genome is available, the confusion matrices F(m), for
1 # m # l, may be estimated by first aligning reads to the reference
genome, treating mismatches as errors. However, this estimation
can be biased, since mismatches may also originate from single
nucleotide polymorphism or structural variations. Another method
of estimating the confusion matrices is to use a control lane that
sequences a known genome. This method avoids the potential
biases caused by variations between the sampled genome and the
reference genome, but this solution is costly and error characteris-
tics can still differ between different lanes or runs.

Based on our probabilistic model, in which the true bases in
the genome are unobserved latent variables, we adopt the EM al-
gorithm to estimate confusion matrices. The advantage of the EM
algorithm is that estimation can be performed without a reference
genome. To start the estimation of F(m), for 1 # m # l, we first
obtain the overlapping relationships between reads with the pa-
rameters k, v*, and e* as described in Neighbor finding and Pa-
rameter selection. Then, we fix the neighbor relationships and
apply the EM algorithm, with the initial confusion matrix having
0.99 in the diagonal and 0.01/3 for all off-diagonal entries. The EM
algorithm typically terminates after a few iterations.

Results
In this section, we evaluate the performance of our algorithm

ECHO and compare it with previous error-correction methods. In

particular, we consider the Spectral Alignment (SA) algorithm used

in the preprocessing step of the de novo assembler EULER-USR

(Chaisson et al. 2009). This error-correction algorithm is based on

examining the k-mer spectrum of the input reads (Pevzner et al.

2001; Chaisson et al. 2004). Because SA is sensitive to the choice of k,

for each experiment we ran SA over a range of k and selected the

k that generated the optimal results (this was typically around k = 15).

SHREC (Schröder et al. 2009) is a recent error-correction al-

gorithm based on a generalized suffix trie data structure; it essen-

tially considers the substring spectrum of the input reads, i.e., a
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range of k-mers where k is over a given interval. It requires the user

to specify the size of the genome, and we provided it with the true

genome size for each data set we considered. Further, SHREC has

a parameter called ‘‘strictness,’’ with the default value being 7. For

coverage depths c <40, SHREC failed to run with the default pa-

rameter value, so we used the largest value less than seven that the

program accepted. As discussed in the Methods, ECHO automati-

cally chooses its parameters k, v*, and e*.

In addition to the improvement in data quality, we also ex-

amine the effects of error correction on de novo assembly.

Data and experiment setup

We tested the performance of our method on both real and sim-

ulated data over a range of coverage depths. Specifically, the fol-

lowing data sets were considered:

D1 (PhiX174)

We used standard resequencing data of the PhiX174 virus. The

76-bp reads were obtained from the Illumina GA-II platform, with

the viral sample in a single lane of the flow cell. The length of the

PhiX174 genome is 5386 bp, and the short-read data had a cover-

age depth of around 210,000. In our experiments, various coverage

depths were obtained by sampling without replacement from the

actual data set. We used Illumina’s standard base-calling software,

Bustard, to produce base-calls. To create labeled test data, we

aligned the reads against the reference genome and regarded every

mismatch as a sequencing error.

D2 (D. mel.)

Another real data set we used is that of D. melanogaster inbred line

RAL-399, sequenced and assembled by the Drosophila Population

Genomics Project (DPGP, http://www.

dpgp.org/). The short-reads were down-

loaded from the NCBI Sequence Read

Archive (http://www.ncbi.nlm.nih.gov/

Traces/sra/sra.cgi). The data consisted of

36-bp reads sequenced on the Illumina

GA I platform and base called by Bustard.

The overall coverage depth of the data set

was roughly 13. To create a labeled test

set, we aligned the reads against the ge-

nome assembly (release 1.0) produced by

DPGP. Then, we selected the reads that

mapped to chromosome 2L and regarded

mismatches as sequencing errors.

D3 (Simulated D. mel.)

In the test described above in D2, errors in

the assembled genome (i.e., differences

between the assembled genome and the

true genome) may confound the assess-

ment of the accuracy of error-correction

algorithms. To avoid this potential prob-

lem, we generated 76-bp simulated reads

from a 100-kbp or a 5-Mbp region of

chromosome 2L of the RAL-399 inbred

line mentioned above. To simulate each

76-bp read, we chose a starting position

uniformly at random from the chosen

region or its reverse complement, and

introduced errors by selecting a random ‘‘error template’’ as fol-

lows: First, we selected a read randomly from the PhiX174 data set

D1 and aligned it to the PhiX174 reference genome to determine

the positions of errors. Then, we took that error template and

added errors to the simulated Drosophila read at the corresponding

locations. The miscalled base was determined according to the

position-specific empirical confusion matrices estimated from the

PhiX174 data, because the ‘‘error template’’ from the sampled

PhiX174 read only provides the positions of errors. This approach

allowed us to simulate more realistic error patterns; e.g., the cor-

relation of errors in a read and the clustering of errors on a subset of

the reads. Our simulation method permitted miscall errors, but no

indels.

D4 (Simulated human data with repeats and duplicated regions)

To evaluate the performance of ECHO on sequences with repeats

and duplicated regions, we generated 76-bp reads from a 250-kbp

region of human chromosome 16 known to have a duplicated gene

(Martin et al. 2004). More specifically, the region spans chromo-

somal coordinates 20,240,000–20,490,000 of the GRCh37 refer-

ence assembly of chromosome 16, downloaded from the NCBI

Genome database. We followed the same procedure as in D3 setup

to introduce errors into reads randomly selected from the 250-kbp

region.

D5 (Simulated diploid data)

To generate a known diploid genome, we took the 100-kbp region

mentioned in D3 and mutated each base with probability 0.001,

with the new base drawn uniformly at random from the alternative

bases. To simulate each 76-bp read, we followed the same pro-

cedure as in D3 to add errors to a randomly sampled read from the

diploid strands and their reverse complements. For this diploid

Table 1. Error rates for haploid data before and after running error correction

By-base error rate (%) By-read error rate (%)

Data Cov Uncorr SA SHREC ECHO Uncorr SA SHREC ECHO

(D1) PhiX174 5 1.00 0.72 0.81 0.45 31.27 21.13 25.36 15.49
10 0.99 0.83 0.64 0.38 29.48 18.48 21.27 10.16
15 1.01 0.72 0.65 0.27 28.85 17.48 19.75 8.55
20 1.00 0.81 0.66 0.25 28.00 17.35 18.53 7.97
25 1.08 0.96 0.64 0.30 28.33 18.23 18.35 8.75
30 1.02 1.00 0.56 0.25 28.02 17.82 17.86 8.18

(D2) D. mel. 13 2.93 2.93 2.57 1.15 48.85 48.85 25.68 16.99
(D3) Simulated D. mel. 5 0.96 0.91 0.58 0.53 15.60 15.59 15.94 11.25

10 0.98 0.91 0.52 0.36 12.34 12.34 13.38 3.78
15 1.00 0.92 0.50 0.21 12.52 12.51 12.74 1.84
20 0.99 0.90 0.49 0.10 12.58 12.58 12.57 0.89
25 1.00 0.93 0.50 0.10 12.71 12.70 12.49 0.86
30 0.99 0.93 0.50 0.09 12.79 12.79 12.45 0.88

(D4) Simulated human 5 1.01 1.00 0.68 0.61 26.94 15.62 18.06 12.52
10 1.01 1.00 0.60 0.41 27.13 13.15 15.58 6.02
15 1.00 1.01 0.53 0.28 27.08 13.15 13.07 5.53
20 1.01 0.99 0.53 0.27 27.06 13.23 12.86 5.57
25 1.00 0.98 0.52 0.27 26.93 13.33 12.73 5.77
30 1.00 0.97 0.53 0.26 26.95 13.45 12.84 5.88

See Table 2 for the actual numbers of corrected and introduced errors. (Cov) Sequence coverage depth;
(Uncorr) uncorrected reads; (SA) spectral alignment method used in EULER-USR (Chaisson et al. 2009);
(SHREC) method introduced by Schröder et al. (2009); (ECHO) our error correction method. ‘‘By-base’’
error rate refers to the ratio of the total number of incorrect bases in the reads to the total length of the
reads. ‘‘By-read’’ error rate corresponds to the ratio of the number of reads each with at least one
miscalled base to the total number of reads. The read length for D1, D3, and D4 was 76 bp. The read
length for D2 was 36 bp.
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data set, the sequence coverage depth is given by Nl
L ; where N de-

notes the number of reads, l = 76, and L = 100,000.

D6 (Saccharomyces cerevisiae)

This real data set consisted of 7.1 million reads from the whole-

genome sequencing of a laboratory-evolved yeast strain derived

from DBY11331 (Gresham et al. 2008), Accession Number

SRR031259 in the NCBI Sequence Read Archive. Because the yeast

strain differed slightly from the S. cerevisiae reference genome, we

created a new assembly using MAQ (Li et al. 2008) and the standard

reference sequence. We used this newly assembled genome to

evaluate error-correction performance in our experiments. The

data set contained single-end 36-bp reads from the Illumina GA II

platform, covering all 16 chromosomes and the mitochondrial

DNA of S. cerevisiae. The overall coverage

depth of the data set was roughly 21.

Error-correction accuracy
for haploid genomes

We compared the error-correction accu-

racy of SA, SHREC, and ECHO on the data

sets described in the previous section. Be-

cause the output of SHREC is partitioned

into ‘‘corrected’’ and ‘‘discarded’’ reads, we

measured the performance of SHREC by

considering only the corrected reads.

Following, we use the term by-base

error rate to refer to the ratio of the total

number of incorrect bases in the reads to

the total combined length of the reads.

We also consider the by-read error rate,

which corresponds to the ratio of the

number of reads with at least one mis-

called base to the total number of reads.

Table 1 shows the by-base and by-read

error rates for haploid data sets D1–D4 before and after running the

three error-correction algorithms. On all data sets, ECHO was more

effective than SA and SHREC at reducing the error rates. In general,

SA did not seem effective at reducing the by-base error rate. SHREC

was more effective than SA, whereas our algorithm improved on

SHREC by several folds on both real and simulated data. Table 2

shows the numbers of corrected errors and introduced errors, as

well as the gain, for the same data sets after error correction. The

gain is defined as the number of corrected errors minus the number

of introduced errors, divided by the number of actual errors, in the

same manner as in Yang et al. (2010). As the table shows, the gain

for ECHO was substantially higher than that for SA or SHREC.

Observe that all three algorithms generally improved the by-

read error rates noticeably, with ECHO being more effective than

Table 2. Numbers of corrected errors and introduced errors after running error correction

# Corrected Errors # Introduced Errors Gain %

Data Cov SA SHREC ECHO SA SHREC ECHO SA SHREC ECHO

(D1) PhiX174 5 78 43 148 2 0 0 28.1 15.9 54.8
10 196 181 328 109 0 0 16.3 34.0 61.5
15 300 288 605 64 0 0 28.8 35.1 73.8
20 376 363 811 169 0 0 19.2 33.6 75.2
25 476 509 1043 320 1 0 10.8 35.1 72.0
30 558 618 1245 524 0 0 2.1 37.6 75.8

(D2) D. mel. 13 0 2,931,051 5,098,551 0 1,919,856 40,684 0.0 12.2 61.1
(D3) Simulated D. mel. 5 1682 1813 3226 1401 26 0 5.8 36.9 44.9

10 4083 4272 7701 3346 17 0 7.5 43.4 63.5
15 6304 7220 14,235 4999 11 11 8.9 47.8 78.6
20 8317 9539 18,395 6453 12 45 9.4 47.9 89.2
25 10,304 11,916 22,355 8577 16 22 6.9 47.7 89.6
30 12,195 14,232 28,012 10,481 21 27 5.8 47.8 90.6

(D4) Simulated human 5 4082 4658 5419 3870 1047 365 1.7 28.5 39.9
10 10,117 10,805 15,833 9834 1189 713 1.1 38.0 59.7
15 14,950 17,220 27,881 15,120 397 830 �0.5 44.8 72.1
20 19,731 23,190 37,933 19,013 444 886 1.4 45.1 73.4
25 24,228 28,954 46,191 23,169 585 714 1.7 45.5 72.9
30 29,038 34,912 55,706 26,758 722 491 3.1 45.7 73.9

These results correspond to the results in Table 1. ‘‘# Corrected Errors’’ is the number of errors in the reads that were corrected. ‘‘# Introduced Errors’’ is the
number of bases in the reads that were correct but were miscorrected by the error correction. Gain is defined as (#Corrected Errors� #Introduced Errors)/
(#Actual Errors).

Figure 3. Position-specific by-base error rates for 76-bp PhiX174 data D1. (A) Error rates before and
after applying the three error-correction algorithms for sequence coverage depth 30. Spectral align-
ment (or SA) (see Chaisson et al. 2009) and SHREC (Schröder et al. 2009) are able to improve the error
rate in intermediate positions, but they both become less effective for later positions. In contrast, ECHO
remains effective throughout the entire read length, reducing the error rate at the end of the read from
about 5% to under 1%. (B) Error rates before and after running ECHO with varying coverage depths.
ECHO’s ability to correct sequencing errors improves as the sequence coverage depth increases. A
coverage depth of 15 seems sufficient to control the error rate throughout the entire read length.
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both SA and SHREC. It is interesting that

while SA only moderately improved the

by-base error rate, it was effective at im-

proving the by-read error rate.

To compare the performance of the

three error-correction algorithms in more

detail, we examined the position-specific

by-base error rates; i.e., the by-base error

rate at position i is the ratio of the number

of reads with an incorrect base at position i

to the total number of reads. For PhiX174

data D1 with experiment setup with se-

quence coverage depth 30, see Figure 3A,

which illustrates the position-specific by-

base error rates before and after applying

the error-correction algorithms. It is well-known that the error rate

of the Illumina platform generally increases toward the end of the

read, reaching as high as 5% in the example shown. Although SA

and SHREC were able to reduce this effect to a certain degree, they

both became less effective for later positions. In contrast, ECHO

remained quite effective throughout the entire read length. In par-

ticular, the error rate at the end of the read was reduced from about

5% to <1%.

We considered the effect of coverage depth on the perfor-

mance of our algorithm. Figure 3B shows the position-specific by-

base error rates before and after applying ECHO on PhiX174 data

with varying sequence coverage depths. At a coverage depth of 15,

the error rate could be controlled throughout the entire read

length, resulting in only a slight increase in the error rate toward

the end of the read.

Although ECHO improved on the other error-correction

methods on the simulated human data set D4 (see Tables 1, 2), the

improvement was not as pronounced as for the Drosophila and

PhiX174 data sets. This demonstrates that ECHO is most effective

on genomes with limited repetitive structure. Although the read

overlap approach might be less susceptible to repeat regions than a

k-mer spectrum method, it does not adequately overcome this ob-

stacle. Further work is required to handle repeat regions, which are

common in more complex genomes, such as mammalian genomes.

Whole-genome error correction

To evaluate the performance of ECHO on whole-genome data, we

ran an experiment on the yeast data D6. Results from the experi-

ment are shown in Tables 3 and 4. The performance of all evaluated

error-correction algorithms was noticeably worse for this data set

than for the others. Closer examination of the data revealed that

the mitochondrial DNA (mtDNA) had much higher coverage than

the other chromosomes, 2103 compared with 19.53. Because

ECHO compares a read’s estimated coverage to the estimated cov-

erage over the entire genome, nearly every read from the mtDNA

was not corrected. This contrasts with SHREC, which does not ac-

count for such drastic differences in coverage across the genome.

This suggests that although ECHO assumes uniform coverage of the

genome when determining its parameters, when it encounters data

with highly nonuniform coverage, it avoids confusion caused by

the nonuniform coverage by requiring the reads to pass the coverage

checks described earlier. It should be noted that repetitive structure

would also cause a read not to pass the coverage check, which would

cause ECHO to be more conservative around repeat regions.

To better quantify the performance of the error-correction

algorithms, we divided the data set into two groups: reads that

passed the coverage checks and those that did not. Restricted to

those reads that passed the coverage checks (i.e., the reads on

which error correction was actually attempted), ECHO was able to

reduce the by-base error rate from 1.28% to 0.83% (which corre-

sponds to about 35% improvement), while reducing the by-read

error rate from 17.3% to 8.4%. Hence, ECHO’s performance on this

restricted read set was almost as good as that for the other real data

sets (e.g., D1 and D2). By comparison, for the reads on which

SHREC attempted error correction, it was able to reduce the by-base

error rate from 0.89% to 0.79% (which corresponds to about 11%

improvement), while reducing the by-read error rate from 14.8% to

10.6%. SA did not make any error correction on this data set.

Figure 4 shows the gain for ECHO and the coverage along

chromosome 1. As mentioned before, the gain corresponds to the

number of corrected errors minus the number of introduced errors,

divided by the number of actual errors. The plots illustrate that

when the coverage increases significantly, the gain tends to drop.

This is because the reads from these positions generally do not pass

the coverage checks ECHO imposes.

Table 4 illustrates that SHREC corrected about 1.5 times more

bases than did ECHO, but the number of errors introduced by

SHREC was 41 times greater than that introduced by ECHO. As

a result, the gain for ECHO was higher than that for SHREC. Because

of the coverage checks it performs, ECHO was more conservative in

correcting reads coming from highly covered regions of the ge-

nome. We expect this to be an advantageous feature of ECHO, as

a high estimated coverage is often indicative of repeat structure.

Robustness with respect to the choice of the keyword length k

In the Methods, under Parameter selection, we provided a rough

guideline for choosing the keyword length k in the neighbor

Table 3. Error rates for the whole-genome yeast data D6

By-base error rate (%) By-read error rate (%)

SHREC ECHO SHREC ECHO

Before After Before After Before After Before After

Entire D6 0.90 0.83 0.90 0.71 14.9 10.8 14.9 10.9
Conditional

D6
0.89 0.79 1.28 0.83 14.8 10.6 17.3 8.4

SA results are not shown because it did not perform any error correction
for this data set. ‘‘Conditional’’ refers to the subset of data on which error
correction was performed by each algorithm. Specifically, for ECHO it
refers to the reads that passed the coverage checks. For SHREC, it refers to
the reads that did not get discarded.

Table 4. Numbers of corrected errors and introduced errors after running error correction on
the whole-genome yeast data D6

# Corrected Errors # Introduced Errors Gain %

Data SHREC ECHO SHREC ECHO SHREC ECHO

Entire D6 743,434 out
of 2,302,181

498,588 out
of 2,302,181

502,726 12,087 10.5 21.1

Conditional D6 743,434 out
of 2,236,313

498,588 out
of 1,393,181

502,726 12,087 10.8 35.8

SA results are not shown because it did not perform any error correction for this data set. As explained in
Table 3, ‘‘Conditional’’ refers to the subset of data on which error correction was performed by each
algorithm. Gain is defined as (#Corrected Errors � #Introduced Errors)/(#Actual Errors). In general,
ECHO is more conservative than SHREC. See Figure 4 for position-specific gain information.
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finding algorithm. Here, we show empirically that the perfor-

mance of ECHO with the suggested setting k = [l/6], with l being

the read length, is comparable to the performance of the algo-

rithm with the optimal k that maximizes the error-correction

performance.

For this study, we subsampled reads from data D3 to create

a data set consisting of 25,000 reads of length 76 bp. This corre-

sponds to a sequence coverage depth of 19. The average by-base

error rate in the simulated reads was around 1%. For each given k,

we used the method described in Parameter selection to determine

v* and e*. These parameters, k, v*, and e*, were then used to per-

form error correction on the reads. For the simulated data we

considered, the value of k that led to the largest improvement in

the error rate was k = 7, in which case, ECHO reduced the error rate

from 1% to 0.107%. By comparison, the associated error rate for k =

[l/6] = 12 was 0.109%, which is comparable to the optimal case.

Error-correction accuracy for diploid genomes

As described in the Methods, ECHO can handle diploid data as well

as haploid data. Recall that ECHO explicitly models heterozygosity

in diploid genomes and has a parameter, denoted h, corresponding

to the probability that a given site is heterozygous. Setting h = 0

reduces the model to the haploid case. Neither SA nor SHREC ex-

plicitly models diploidy, so they may be compared with the case of

h = 0 in our model.

We tested the methods on simulated

diploid data D5. In simulating the diploid

genome, the probability of heterozygos-

ity was set to 10�3 for each site. Table 5

shows a summary of error-correction re-

sults on diploid data D5. As in the haploid

case, SA was not effective in reducing the

by-base error rate, though it was able to

reduce the by-read error rate reasonably

well. SHREC significantly improved on

SA in terms of the by-base error rate,

whereas their by-read error rates were

comparable. ECHO with h = 0 improved

on both SA and SHREC by several folds

for coverages 30 and higher. For these

coverage depths, ECHO reduced the by-

read error rate from around 27% to about

2%. The improvement in the by-base error rate was equally sig-

nificant in proportion. For h > 0, ECHO displayed accuracy greater

than that for h = 0, demonstrating the utility of explicitly modeling

the diploidy of the genome.

Table 6 shows the detection accuracy of heterozygous sites in

the diploid data. The precision and recall are shown for varying

levels of coverage and for both h = 10�3 and h = 10�4. Precision and

recall are commonly used performance measurements in infor-

mation retrieval tasks. In this context, precision is the number of

correctly called heterozygous sites divided by the number of all

called heterozygous sites (including incorrectly called heterozy-

gous sites), and recall is the number of called heterozygous sites

divided by all true heterozygous sites.

Every genotype called by ECHO is given a quality score. As

illustrated in Table 6, we can trade off recall for higher precision by

filtering based on quality. These results demonstrate that, with

high enough coverage, ECHO provides a reliable reference-free

method of detecting bases that originated from heterozygous sites

and inferring the corresponding genotypes.

Effects on de novo assembly

Intuitively, improved data quality should facilitate assembly. To

assess the effects of various error-correction methods on de novo

assembly, we used Velvet (Zerbino and Birney 2008) to carry out

the assembly. Like many other de novo assembly algorithms,

Velvet is based on k-mers and the associated de Bruijn graph

representation. In each experiment, we used k = 39 and automatic

coverage cutoff, and provided Velvet with the true expected

coverage.

The data sets we considered were real PhiX174 data D1 and

experiment setup and simulated data D3 from a 5-Mbp region of

D. melanogaster ; the former experiment was repeated 20 times,

while the latter was repeated twice.

For the PhiX174 data set, Velvet was run on the following four

sets of short-reads:

1. Uncorrected reads, corresponding to the original simulated

reads.

2. Error-corrected reads processed by SA, SHREC, or ECHO.

For the simulated D. melanogaster data sets, Velvet was also run on

the following set of short-reads, in addition to the above four sets:

Perfect reads, corresponding to the error-free reads from which

the uncorrected reads were simulated.

Figure 4. The gain of ECHO and the position-specific coverage for
chromosome 1 of the yeast data D6. Each plot uses bins of 1000 bp. The
top plot shows the gain of ECHO, defined as the number of corrected
errors minus the number of introduced errors, divided by the number of
actual errors. The bottom plot shows the position-specific coverage.

Table 5. Error rates for diploid data D5 before and after error correction

By-base error rate (%) By-read error rate (%)

Cov Uncorr SA SHREC

ECHO with h =

Uncorr SA SHREC

ECHO with h =

0 10�4 10�3 0 10�4 10�3

10 1.02 1.22 0.58 0.40 0.35 0.34 27.58 13.15 15.45 5.47 5.30 4.83
20 1.02 1.12 0.54 0.21 0.16 0.16 27.22 12.83 13.27 2.84 2.02 1.88
30 1.01 1.10 0.52 0.10 0.08 0.08 27.17 13.02 13.01 2.04 1.06 1.10
40 1.00 1.01 0.50 0.10 0.07 0.08 27.12 13.21 12.76 1.99 1.16 1.17

(h) Prior probability of heterozygosity used in ECHO. See the caption of Table 1 for a full description of
notation. In computing the error rate of ECHO for h > 0, we compared the genotype assigned by ECHO
with each short-read with the true genotype sequence in the diploid genome from which the short-read
originated. Errors in SA, SHREC, and ECHO for h = 0 were computed in the usual way by comparing with
the true haplotype. The read length was 76 bp.
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The results for PhiX174 are shown in Table 7, where ‘‘Max’’ denotes

the maximum contig length, and ‘‘N50,’’ defined in the caption, is

a statistic commonly used to assess the quality of de novo assem-

bly. Larger values of Max and N50 indicate better assembly quality.

For nearly all sequence-coverage depths, note that using ECHO-

corrected reads led to the largest Max and N50 values.

The assembly results for simulated 5-Mbp D. melanogaster data

are summarized in Table 8. There was a clear advantage to per-

forming error correction prior to assembly, and error correction

produced an appreciable improvement over uncorrected reads. In

addition to Max and N50, we assessed the assembly quality using

the following two new measures:

1. SeqCov1000 is the percentage of the genome covered by the

contigs of length $1000 bp.

2. Error1000 is the percentage of the total number of assembly

errors (measured by edit distance from the true genome, with a

penalty of 1 for mismatch, insertion, or deletion) in those

contigs with length $1000 bp, with respect to the total length

of those contigs.

For coverage depths $20, SeqCov1000 values for all three error-

correction methods were comparable to that for perfect reads.

As Tables 7 and 8 illustrate, the key advantage of ECHO is its

consistency; i.e., the performance of ECHO is consistently good for

all coverage depths and all data sets, while the other error-correction

methods seem more erratic (e.g., see the performance of SHREC in

Table 7, and the performance of SA in Table 8 for coverages $20).

Running times

We ran the three error-correction algorithms on simulated data

from the D. melanogaster reference sequence to compare their

running times. We fixed the sequence coverage depth at 20 and

varied the genome length to adjust for different quantities of reads.

Errors were added to the reads in the same way as in D3. All ex-

periments were done on a Mac Pro with two quad-core 3.0 GHz

Intel Xeon processors and 14 GB of RAM. SA and ECHO each used

only a single core, whereas SHREC was allowed to use all eight

cores.

Shown in Table 9 is a summary of

running times. Since our algorithm needs

to determine the parameters v* and e*, its

running time is divided into two parts:

parameter selection time, shown in pa-

rentheses, and the running time for

neighbor finding and error correction. Al-

though our algorithm is slower, note that

its running time is within the range of

practical use. On the whole-genome yeast

data D6 discussed earlier, SA took 6 min

and SHREC took 37 min, while ECHO

took 260 min. (Recall that SA did not make

any error correction on this data set.)

If the entire adjacency list for the

overlaps between reads can be stored in

memory, the running time of ECHO

scales linearly in the number of reads,

provided that k is chosen large enough

such that the number of reads that con-

tain a given k-mer scales linearly in the

coverage depth. In our experiments, ECHO

was given k = bl/6c = 12.

On the other hand, if the available amount of memory is not

sufficient, our implementation first partitions the read set into

smaller subsets. Then, successively, for the partitioned reads the

adjacency lists for the read overlaps are constructed and then

Table 6. Heterozygous site detection efficiency for simulated diploid data D5

Unfiltered Quality $ 20 Quality $ 30 Quality $ 40

h Cov Precision Recall Precision Recall Precision Recall Precision Recall

10�3 10 0.97 0.77 0.99 0.59 0.99 0.48 1.00 0.37
20 0.90 0.96 0.92 0.93 0.93 0.90 0.95 0.88
30 0.82 0.99 0.85 0.99 0.86 0.99 0.88 0.97
40 0.83 0.99 0.86 0.99 0.88 0.99 0.88 0.99
50 0.84 0.99 0.86 0.99 0.87 0.99 0.88 0.98
60 0.85 0.98 0.87 0.98 0.88 0.97 0.89 0.97

10�4 10 0.99 0.69 0.99 0.48 1.00 0.37 1.00 0.27
20 0.91 0.94 0.93 0.90 0.95 0.88 0.95 0.83
30 0.84 0.99 0.86 0.99 0.88 0.97 0.89 0.96
40 0.84 0.99 0.87 0.99 0.88 0.99 0.89 0.98
50 0.85 0.99 0.87 0.99 0.88 0.98 0.89 0.98
60 0.86 0.98 0.88 0.97 0.89 0.97 0.89 0.97

The precision and recall of the genotypes called by ECHO when modeling a diploid genome are shown.
Precision is the number of true positives over the sum of true positives and false positives. Recall is the
number of true positives divided by the number of positives. A true positive is a correctly identified
heterozygous site. A false positive is a homozygous site mistakenly classified as a heterozygous site. The
number of positives is the number of actual heterozygous sites. Every genotype called by ECHO is given
a quality score. The ‘‘Unfiltered’’ column shows the results when all called genotypes are considered.
‘‘Quality $ x ’’ shows the results when only genotypes with quality scores greater than x are considered.

Table 7. De novo assembly results for uncorrected and corrected
PhiX174 data D1

Coverage Reads N50 (bp) Max (bp)

5 Uncorrected 219.4 401.5
SA 238.0 422.4
SHREC 148.5 246.2
ECHO 261.2 475.7

10 Uncorrected 841.2 1452.4
SA 1005.7 1629.6
SHREC 608.6 1017.9
ECHO 1246.4 1833.7

15 Uncorrected 2561.4 2704.7
SA 3095.8 3126.9
SHREC 2014.5 2369.8
ECHO 3345.6 3386.7

20 Uncorrected 3725.9 3773.3
SA 4551.3 4569.5
SHREC 4179.2 4179.2
ECHO 4706.7 4706.7

25 Uncorrected 4747.5 4747.5
SA 5208.6 5208.6
SHREC 5215.6 5215.6
ECHO 5335.7 5335.7

30 Uncorrected 5224.1 5224.1
SA 5337.1 5337.1
SHREC 4855.5 4855.5
ECHO 5337.1 5337.1

The length of the PhiX174 genome is 5386 bp. This experiment was re-
peated 20 times, and Velvet was used to carry out the assembly in each
case. (Max) The maximum contig length; (N50) a statistic commonly
used to assess the quality of de novo assembly. It is computed by sorting
all the contigs by their size in decreasing order and adding the lengths of
these contigs until the sum is >50% of the total length of all the contigs.
The length of the last added contig corresponds to the N50 value. A larger
N50 indicates a better assembly. For nearly all sequence coverage depths,
the largest Max and N50 values were observed for the assembly carried
out using ECHO-corrected reads.
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merged in a tree-like fashion. Error correction is then performed on

the reads while reading in only a small portion of the adjacency list

at a time, reducing memory usage significantly. Using this ap-

proach and assuming the number of repeat regions in the genome

is not too high, the running time of ECHO scales approximately as

O(N log N ), where N is the number of reads.

Discussion
In this study, we introduced a new reference-free error-correction

algorithm, ECHO, for correcting sequencing errors in short reads.

It has several important novel features. One advantage of ECHO

over previous methods is that it does not rely on the user to specify

many of the key parameters; this is an important feature since the

optimal parameter values for given input data are typically un-

known to the user a priori. Without the

need of a reference genome, ECHO effi-

ciently clusters those reads that may have

originated from the same region of the

genome, and automatically sets the pa-

rameters in the assumed model. Moreover,

being based on a probabilistic framework,

ECHO can assign a quality score to each

corrected base; we are not aware of any

other reference-free error-correction algo-

rithm that also does this.

Another novel feature of ECHO is

that it explicitly models heterozygosity in

diploid genomes. This allows for the de-

tection of bases that originated from

heterozygous sites in the sequenced

diploid genome and to infer the corre-

sponding genotypes without using a

reference genome. We leave as future

research utilizing this information in

downstream computational problems,

including polymorphism detection and

assembly.

The improvement in data quality

delivered by our algorithm is most pro-

nounced toward the end of the read,

where previous methods become consid-

erably less effective. In the Illumina plat-

form, the error rate generally increases

toward the end of the read. However,

provided that the sequence coverage

depth is sufficiently high, ECHO is able to

control the error rate to stay at <1%

throughout the entire read length (see

Fig. 3A,B). This suggests that one possible

way to obtain longer reads for a given

error tolerance is to allow the sequencing

machine to run beyond that tolerance

level and then apply an error-correction

algorithm afterward to reduce the error

rate. This kind of strategy should help to

relax the limitation on the read length

imposed by the imperfectness of the

chemical process.

Similar to previous error-correction

algorithms, ECHO is typically most ef-

fective on genomes without complex

repeat structure, such as bacterial and other nonmammalian ge-

nomes. Although ECHO has several mechanisms to avoid cor-

recting repetitive regions, such as ignoring reads with an abnor-

mally large number of overlaps and setting the minimum overlap

high enough such that the coverage distribution is Poisson dis-

tributed, repetitive regions still lead to a greater number of false

overlaps, thus confounding the error-correction process.

As an application to de novo assembly, we demonstrated that

error correction can provide significant improvements in the

quality of the resulting contigs. In particular, we showed that for

low-to-moderate coverage depths, performing error correction

prior to assembly may significantly improve the quality of de novo

assembly. It will be interesting to explore whether reference-free

error correction may facilitate de novo transcriptome assembly

(Birol et al. 2009).

Table 8. De novo assembly results for simulated data D3 from a 5-Mbp region
of D. melanogaster

Coverage Reads N50 (bp) Max (bp) # Contig1000 SeqCov1000 Error1000

10 Uncorrected 840.0 4796.0 1400.5 41.5% 0.009%
SA 1283.0 6514.5 1835.0 63.9% 0.005%
SHREC 996.0 5315.5 1625.0 50.8% 0.094%
ECHO 1194.5 7338.5 1798.0 60.8% 0.006%
Perfect 1721.5 10,044.0 1871.5 75.4% 0.000%

15 Uncorrected 4476.0 20,978.5 1293.5 95.0% 0.004%
SA 9732.0 40,215.5 740.0 98.8% 0.001%
SHREC 7838.0 40,424.0 866.0 98.2% 0.015%
ECHO 10,698.0 40,739.0 669.0 99.0% 0.001%
Perfect 13,847.0 48,053.5 532.5 99.4% 0.000%

20 Uncorrected 29,377.0 96,954.0 291.5 99.8% 0.001%
SA 80,231.0 233,239.0 107.0 100.0% 0.000%
SHREC 80,847.5 225,311.0 104.0 100.0% 0.001%
ECHO 95,977.5 242,397.0 81.0 100.0% 0.000%
Perfect 114,364.0 312,355.0 67.0 100.0% 0.000%

25 Uncorrected 158,180.5 483,918.5 53.0 100.0% 0.000%
SA 799,798.5 1,232,231.5 13.0 100.0% 0.000%
SHREC 951,499.0 1,260,863.5 11.5 100.0% 0.000%
ECHO 931,249.0 1,260,863.5 10.5 100.0% 0.000%
Perfect 951,499.0 1,391,995.0 8.5 100.0% 0.000%

30 Uncorrected 895,733.5 1,399,461.5 8.0 100.0% 0.000%
SA 3,598,579.0 3,598,579.0 2.5 100.0% 0.000%
SHREC 4,266,643.0 4,266,643.0 1.5 100.0% 0.000%
ECHO 4,266,643.0 4,266,643.0 1.5 100.0% 0.000%
Perfect 4,266,643.0 4,266,643.0 1.5 100.0% 0.000%

Assembly was performed using Velvet with k = 39 and automatic coverage cutoff. Uncorrected reads are
the original simulated reads. To correct for sequencing errors, we used SA, SHREC, and ECHO prior to
assembly. Perfect reads correspond to the error-free reads from which uncorrected reads were simu-
lated. Max and N50 are as explained in Table 7. SeqCov1000 is the percentage of the genome covered
by contigs of length $1000 bp. Error1000 denotes the percentage of the total number of assembly
errors (measured by edit distance from the true genome, with a penalty of 1 for mismatch, insertion, or
deletion) in those contigs with length $1000 bp, with respect to the total length of those contigs.

Table 9. Comparison of running times, in minutes, for simulated data with 76-bp reads

N, Number of reads in the input data

Method 104 105 106 2.5 3 106 5 3 106

SA 0.03 0.36 4.59 12.44 26.69
SHREC 0.19 1.48 17.00 39.52 90.64
ECHO (1.52) 0.67 (7.48) 5.37 (19.97) 56.03 (42.55) 143.95 (78.2) 300.77

The experiments were performed on a Mac Pro with two quad-core 3.0 GHz Intel Xeon processors and
14 GB of RAM. SA and ECHO each used only a single core, whereas SHREC was allowed to use all eight
cores. For ECHO, the numbers shown inside the parentheses correspond to the running times of pa-
rameter selection.
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The method described in this study may be improved in a few

ways. (1) In parameter selection, we assumed that the number of

neighbors that overlap with any particular position in a given read

is Poisson distributed. In practice, this may not be a very good

assumption, and using a different distribution for fitting might

lead to better choices of v* and e*. (2) Instead of using a subset of

reads randomly chosen from the input set of reads, it may improve

parameter selection if the subset is chosen more judiciously; e.g.,

by filtering out the reads with repeats. (3) The short-reads gener-

ated by most NGS platforms come with base-specific quality scores,

but ECHO currently does not utilize that information. It is possible

to incorporate per-base quality scores into ECHO, thereby further

improving its accuracy. (4) Our current implementation of the

neighbor-finding algorithm assumes that indel errors are rare, as is

the case for the Illumina platform. For the sequencing platforms

with high indel error rates (e.g., Roche’s pyrosequencing technol-

ogy), the alignment step in the neighbor-finding algorithm needs

to be generalized to include indels. However, the overall idea un-

derlying ECHO is still applicable.
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