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Anomalous diffusion has been observed abundantly in the plasma membrane of biological cells, but
the underlying mechanisms are still unclear. In general, it has not been possible to directly image
the obstacles to diffusion in membranes, which are thought to be skeleton bound proteins, protein
aggregates, and lipid domains, so the dynamics of diffusing particles is used to deduce the obstacle
characteristics. We present a supported lipid bilayer system in which we characterized the anoma-
lous diffusion of lipid molecules using single molecule tracking, while at the same time imaging
the obstacles to diffusion with atomic force microscopy. To explain our experimental results, we
performed lattice Monte Carlo simulations of tracer diffusion in the presence of the experimentally
determined obstacle configurations. We correlate the observed anomalous diffusion with obstacle
area fraction, fractal dimension, and correlation length. To accurately measure an anomalous dif-
fusion exponent, we derived an expression to account for the time-averaging inherent to all single
molecule tracking experiments. We show that the length of the single molecule trajectories is criti-
cal to the determination of the anomalous diffusion exponent. We further discuss our results in the
context of confinement models and the generating stochastic process. © 2011 American Institute of
Physics. [doi:10.1063/1.3596377]

I. INTRODUCTION

Transport in the plasma membrane of biological cells is
essential to many protein mediated signaling events and so
there is great interest in understanding the biophysical mech-
anisms controlling diffusion. Over the past two decades, sin-
gle particle and single molecule tracking (SMT) has arisen
as a powerful method to study the transport of membrane
constituents.1–3 It reveals dynamic subpopulations and opens
the possibility of studying the full statistical distributions of
the transport process. Anomalous subdiffusion has been found
to be common in the plasma membrane4–6 with important im-
plications for protein complex formation7 and it implies that
the plasma membrane is a complex and crowded environment.

Several mechanisms have been suggested as the source
of the observed anomalous subdiffusion: obstruction by the
membrane skeleton and its bound proteins,6 inclusion or ex-
clusion from lipid domains,8 binding to immobile traps,9, 10

or a combination of the above.11, 12 Single particle tracking
experiments to date could not directly image the obstacles to
diffusion but only deduce their physical properties from the
diffusion data.

The primary purpose of this work is to correlate single
molecule tracking data with the obstacle properties in a
system where we can image the obstacles directly with
high resolution. We performed single molecule tracking in a
2-component phase separated lipid bilayer on a solid support.
The two bilayer components were 1,2-distearoly-sn-glycero-
3-phosphocholine (DSPC) and 1,2-dioleoyl-sn-glycero-3-
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phosphocholine (DOPC). Although supported lipid bilayers
lack some features of a real cell membrane, their utility as an
experimental platform has increased our understanding of cell
membrane organization and dynamics.13–16 Most importantly
to our study, the supported bilayer allows imaging the submi-
cron, gel phase domain obstacles with nanometer resolution
using atomic force microscopy (AFM). We do not suggest
that the obstacles in cell membranes are gel phase domains;
in fact they are proteins, protein aggregates, and regions of
ordered lipids. The lipid domains in our system function
simply as area excluding obstacles, whose size and density
can be easily controlled and imaged. They are analogous to
the polymers and nanoparticles used to model the obstructed
diffusion of the cell interior.17, 18 Parallel to the experiments,
we used the AFM images as input into lattice Monte Carlo
simulations to gain further insight into the results and statis-
tics of the experiments. Our complementary results on the
structure and dynamics of an obstructed membrane system,
provide guidelines by which diffusion data can be used
to determine the source of anomalous subdiffusion in cell
membranes where the obstacles cannot be directly imaged.

A. Anomalous diffusion

Normal Brownian diffusion in two dimensions can be
characterized by a single parameter, the diffusion coefficient
D, which is the proportionality constant between a particle’s
mean-square displacement(MSD) 〈r2〉 and time lag t ,

〈r2〉 = 4Dt. (1)
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If some mechanism leads to a different power law dependence
of 〈r2〉 on t , the diffusion is termed anomalous and it is char-
acterized by two parameters,19, 20 the transport coefficient �

and the anomalous diffusion exponent α,

〈r2〉 = 4�tα. (2)

The factor of 4 in Eq. (2) is unnecessary, but is chosen that
in the case α = 1, � = D. If the mechanism hinders diffusion
and α < 1, we call it anomalous subdiffusion. Sometimes, the
fractal dimension of the random walk, dw , is used in place of
the anomalous diffusion exponent, where α = 2/dw . Diffu-
sion may be anomalous over all times, such as diffusion on
an infinite fractal21 or in the presence of an infinite hierarchy
of binding sites,10 or it may only be transiently anomalous
becoming normal at sufficiently long times,

〈r2〉 =
{

4�tα t � tC R

4Dt t � tC R
. (3)

The crossover time tCR depends of the nature of the obstruc-
tions and D of the system.

If anomalous subdiffusion stems from obstacles, perco-
lation theory connects obstacle characteristics and subdiffu-
sive behavior22, 23 where the obstacles are characterized by an
area fraction C, a percolation threshold Cp, and a correlation
length ξ . Cp is the obstacle area fraction at which the ob-
stacles connect into a network that spans the entire surface.
The correlation length ξ is approximately the length scale of
the obstacles;23 on larger scales the surface is homogenous.
For C < Cp, there are long range paths available to diffusing
molecules. As the obstacle area fraction increases toward Cp,
ξ , and tCR increase, and α and D decrease. At the percolation
threshold, C = Cp, all long range paths have been closed off
by obstacles, D → 0, tCR → ∞, ξ → ∞ and α = const . The
value of α at the percolation threshold depends on the fractal
nature of the obstacles,21 but is close to 0.7.

II. MATERIALS AND METHODS

Materials and Methods are provided in the supplementary
material.24

III. RESULTS

A. Obstacle characterization

The primary benefit of performing this study on mica
supported lipid bilayers is that the structure of the obstacles
can be studied with suboptical resolution using AFM.25, 26

We take advantage of the fact that in a phase separated
lipid bilayer, the DSPC rich, gel phase domains protrude
∼1.8 nm higher than the surrounding DOPC rich, fluid
phase, providing the necessary height contrast for AFM to
characterize the gel domain obstacles. Although we have not
quantified the resolution in our AFM images, typical values
are 0.1 nm in the vertical direction and 1.0 − 3.0 nm in the
image plane.27 Figure 1 shows representative images for
different domain area fractions.

The first characterization is the domain area fraction
C, which is calculated by counting the number of pixels in

FIG. 1. Representative AFM images for the four highest domain area frac-
tions studied. Scale bars are 1 μm. Slight differences in contrast are due to
varying levels of instrument noise and background. Additional images are
shown in Fig. 6 of the supplementary material (Ref. 24).

an image above a selected height threshold. Figure 1 in the
supplementary material is an AFM line scan illustrating the
thresholding procedure.24 For each composition, between
five and eight images were recorded from different areas of
the sample and the average domain area fraction (C) and
standard error were calculated.

A more detailed characterization, which depends on the
size and shape of the obstacles is the pair correlation func-
tion C(r ), which is the probability of finding two fluid phase
patches a distance r apart.28 At distances less than the cor-
relation length ξ , C(r ) decreases with a power law depen-
dence on the fractal dimension D f of the fluid phase regions,
in the same way that the density of a fractal object scales with
length,23 ρ(L) ∼ L D f −2. For r � ξ , C(r ) equals the average
fluid phase area fraction Cfluid,

C(r ) =

⎧⎪⎨
⎪⎩

1 r = 0

r−(2−D f ) r � ξ

Cfluid r � ξ

. (4)

Note that Cfluid = 1−C, where C is the obstacle area fraction
based on simple thresholding of the AFM images. D f and ξ

are both determined by the size and shape of the fluid regions
and both influence the diffusive behavior of molecules in the
fluid. This is only one possible definition of D f . We use it
because it has been used to effectively characterize the type
of two dimensional objects we see in phase-separated lipid
bilayers.29 For a normal, two-dimensional object, D f = 2 and
for a line D f = 1. Fractal objects have a D f between these
limits, typically in the range of 1.4 − 1.7.

C(r ) was calculated using the fast Fourier transform.24

Figure 2 shows for each composition a decrease in C(r ) and
then a plateau near the fluid area fraction as expected from
Eq. (4). However, another plateau at small length scales ap-
pears because at distances smaller than the obstacle-obstacle
separation, the fluid is unobstructed. This has also been
observed for multicenter diffusion limited aggregates.29 At
low fluid area fraction, a depletion zone, caused by the area
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FIG. 2. Pair correlation curves for each obstacle area fraction. All curves are
an average from 5 to 8 images. C(r ) is calculated up to a maximum of one
half the image size. For some compositions this was 4 μm and for the others,
adequate images were obtained only for 2 μm scans. Horizontal dashed lines
show the average fluid phase area fraction, Cfluid = 1−C, and are based on
the measurements of obstacle area fraction.

excluded by large gel domains, appears before C(r ) reaches
the average fluid area fraction.

Equation (4) allows the fractal dimension of the fluid
region to be estimated by the slope of log[C(r )] at the
inflection point. We find that as the fluid phase area fraction
decreases (obstacle area fraction increases), D f decreases
(Table I). This means that the fluid regions are becoming
more elongated and tortuous. The correlation length ξ was
estimated to be the point where C(r ) = Cfluid. ξ increases
with increasing obstacle area fraction as would be expected
for an object approaching a percolation threshold.

B. Mean-square displacement

Using the raw position versus time data recorded in sin-
gle molecule tracking and diffusion can be quantified in a va-
riety of ways. Probability distributions of displacements can
reveal dynamic subpopulations or anomalous diffusion and
have been used in a number of studies.30–33 We use the MSD
for two reasons. First, with direct AFM images of the mem-
brane obstacles, there is no reason to assume that there are
two distinct dynamic populations. Second, there is no gen-
eral form for the probability density in the case of a per-
colation cluster.21 Figure 3(a) shows the ensemble averaged
mean-square displacement as a function of time lag for each
obstacle density.

TABLE I. Fluid phase area fraction Cfluid, fractal dimension D f , and corre-
lation length ξ . Cfluid is reported in terms of (1-C) to allow easier comparison
with the AFM and MSD data which are reported in terms of C.

Cfluid D f ξ [μm]

(1-0.27) 1.81 0.15
(1-0.36) 1.75 0.31
(1-0.51) 1.56 0.66
(1-0.60) 1.41 0.62
(1-0.72) 1.35 0.62

(a)

(b)

FIG. 3. Ensemble averaged mean-square displacement. (a) The symbols are
experimental data and the solid lines are least square fits to Eq. (5). (b) Sim-
ulated data, presented on the same timescale as the experimental data. The
error bars are the standard deviation between the MSD calculated on differ-
ent AFM images. The inset is the full log-log representation of the simulated
MSD data and the shaded region shows the time range over which the data
were fitted with Eq. (2).

C. Sensitivity of fitting

A simple least square fit of the MSD to Eq. (2), implies an
intercept 〈r2(t = 0)〉 = 0, but experimental uncertainty and
error introduces a non-zero intercept. Martin et al. showed
that the non-zero intercept can complicate the analysis of log-
log MSD data, where a non-zero intercept was manifest as
apparent subdiffusion.34 Therefore we used a linear analysis
of the MSD, but we found that the value of the anomalous dif-
fusion exponent was very sensitive to the y-intercept. Includ-
ing the intercept as a fitting parameter, in addition to adding a
third fitting parameter, could result in a value of α that differs
from the simple case by 20%. Therefore we needed a modified
version of Eq. (2) to quantitatively account for the intercept.

It has been shown that two additional terms should be
added to account for the non-zero intercept in the MSD,35, 36

which leads to the following form for the MSD:

〈r2〉 = 4�tα + 4(�x)2 − �off, (5)

where � and α are the free parameters.
The term 4(�x)2, accounts for the localization pre-

cision of the experiments; in all cases we used 4(�x)2

= 0.0038μm2 (see supplementary material24). �off is an
offset introduced by the time averaging during each expo-
sure. Goulian and Simon showed that for normal diffusion
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TABLE II. Diffusion parameters obtained from least square fits of Eq. (2)
and Eq. (5) to the simulated and experimental MSDs, respectively.

� [μm2/sα] α

C Expt. Simulation Expt. Simulation

0 4.15 ± 0.27 4.22 0.97 ± 0.03 0.99
0.27 2.33 ± 0.06 2.57 ± 0.14 0.87 ± 0.01 1.00 ± 0.02
0.36 2.19 ± 0.02 2.26 ± 0.15 0.85 ± 0.003 0.96 ± 0.03
0.51 1.55 ± 0.003 1.92 ± 0.08 0.86 ± 0.001 1.00 ± 0.02
0.60 0.78 ± 0.01 0.72 ± 0.02 0.77 ± 0.004 0.84 ± 0.01
0.72 0.16 ± 0.0001 0.23 ± 0.04 0.56 ± 0.0003 0.59 ± 0.06

�off = 4Dtill/3, where till is the exposure time of each
image.35 We do not assume normal diffusion, so we need
a more general expression for �off where α is allowed to
vary. We followed the same procedure but introduced the
anomalous diffusion exponent α and the resulting analysis
is presented in the supplementary material.24 We find that
the offset due to time averaging is �off = 8�(till)αδ(α),
where δ(α) is approximated by the polynomial δ(α)
	 0.2573α2 − 0.5688α + 0.4859. We fit Eq. (5) to the
experimental MSD up to the fourth data point (n = 4). The
resulting fit parameters � and α are presented in Table II.
We used standard methods to calculate the error in the MSDs
and estimate the error in the fit parameters (see supplementary
material24).

Figure 3(b) shows MSD curves from the simulated tra-
jectories. Except for the unobstructed diffusion case which
was scaled to match, the similarity between the experimen-
tal and Monte Carlo MSD curves is non-trivial. The inset of
Fig. 3(b) shows that at very short times, diffusion is normal
for all obstacle area fractions. Only at intermediate times the
curves diverge and become anomalous. The length scale at
which the MSD becomes anomalous corresponds to the tran-
sition in C(r ) (Fig. 2) from a plateau at small r to a fractal
region at intermediate r . For most AFM images, this occurs at
r ∼ 0.02 μm or at a point on the MSDs of 〈r2〉 ∼ 4
× 10−4μm2.

The diffusive behavior depends on the timescale, so to
compare simulated diffusion parameters with experiment, the
simulated MSDs must be fit over the same timescale as the
experimental MSDs. The shaded band in the inset of Fig. 3(b)
shows the time range over which the simulated MSDs were fit
with Eq. (2). We use Eq. (2) for the simulated data, instead of
Eq. (5), because there are none of the uncertainties that made
Eq. (5) necessary for the experimental data. The measured
values are presented in Table II.

D. Anomalous diffusion exponent

The degree of anomaly of a subdiffusive process is char-
acterized by the anomalous diffusion exponent α, defined in
Eq. (2). The primary aim of this work was to correlate anoma-
lous diffusion with lipid bilayer structure, so we start by com-
paring α to obstacle area fraction in Fig. 4(a) (the relationship
between � and the obstacle area fraction is presented in the
supplementary material24). In a pure fluid DOPC bilayer

(a)

(b)

FIG. 4. (a) The anomalous diffusion exponent as a function of obstacle area
fraction. The dashed line is 2/dw with dw given in Saxton (Ref. 37) . (b) The
dependence of the anomalous diffusion exponent on the fractal dimension of
the fluid phase.

(C = 0), α ∼ 1, showing normal diffusion. With increasing
gel domain area fraction, the diffusion becomes gradually
subdiffusive until α decreases more sharply near C = 0.7,
suggesting a percolation threshold near C = 0.7. The rapid
decrease of α near the percolation threshold is charac-
teristic of a critical point and has been observed in other
simulations.37 Figure 4 shows that the experimental values of
α are systematically lower than those from simulations. We
believe there are two reasons for this (see Sec. IV). Percola-
tion theory21 predicts at the percolation threshold, α ∼ 0.7,
but in both the simulations and experiments α ∼ 0.58 at
the highest area fraction. The AFM images (Fig. 1) suggest
that we are still below the percolation threshold, but they
also reveal small and completely enclosed fluid regions.
Although the highest obstacle area fraction may be below
the percolation threshold, some fluorescent tracers may be
completely confined and contributing to a lower value of α.

E. Correlating dynamics with structure

With high resolution images of the lipid domain obsta-
cles, we can correlate the anomalous diffusion behavior with
more than just the obstacle area fraction. Figure 4(b) shows
the dependence of α on the fractal dimension of the fluid
phase. The so-called AO conjecture23 relates the anomalous
diffusion exponent to the fractal dimension at the percolation
threshold as αD f 	 4/3. Near the percolation threshold, we
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FIG. 5. Log-log plot of 〈r2〉/t versus t . The solid lines are simulated data.
The solid lines with error bars are experimental data. The vertical dashed lines
are tC R from AFM analysis of the domain structure (Table I). Experimental
MSDs were truncated when errors became very large.

find αD f 	 0.75 in poor agreement with the AO value of 4/3.
This is not too surprising as we believe α may be especially
low at the highest obstacle area fraction due to small and en-
closed areas of fluid.

We can also test whether the crossover time and length
scales from the MSDs predict the correlation lengths deter-
mined independently via AFM (Table I). This is something
that in general has not been possible experimentally. For the
two lowest obstacle area fractions, ξ is below the length scale
of the experiments and according to the simulations the nor-
mal long range behavior has already been reached at the ex-
perimental timescale. For the three highest area fractions, ξ

from the AFM images is within the experimental length scale.
Figure 5 shows the MSD data in a way that more clearly re-
veals transitions between dynamic regimes. A negative slope
signifies α < 1 and where diffusion is normal, the plot is a
constant. Figure 5 also shows tCR based on the AFM obstacle
analysis via ξ 2 = 〈r2〉tCR . For C = 0.51, the crossover time
is near the low end of the experimental timescale, but the
transition can be seen in the simulated data at t ∼ 0.02 s. To
match experimental timescales, the simulated MSDs were fit
for 0.04 < t < 0.13 s, which explains why α ∼ 1 even for
a relatively high obstacle area fraction of C = 0.51. If the
simulated MSD was fit for 0.0036 < t < 0.0144 s, α = 0.86.
For C = 0.60 the experimental and simulated MSDs show
a transition near t ∼ 0.6 s, which does not agree with the
tCR ∼ 0.09 s from the domain structure. If we only had the
MSD data, as in typical experiments, we would predict an ob-
stacle correlation length of 1.4 μm, which is 2-fold greater
than measured by AFM. For C = 0.72 where tCR is well
within the experimental timescale, the agreement is quite
good between the experimental and simulated MSDs and the
tCR prediction.

IV. DISCUSSION

These results tell us several things about correlating
anomalous diffusion with bilayer obstacle structure. The first
is that the anomalous diffusion exponent follows the expected

dependence on obstacle area fraction (Fig. 4(a)). We also find
a similar relationship between α and the fractal dimension
of the fluid phase (Fig. 4(b)). In cases where the obstacles
to diffusion cannot be imaged, these results might be used
to estimate the obstacle area fraction or fractal dimension. In
terms of predicting the correlation length of the obstacles, the
results were mixed. Only in the case of the highest obstacle
area fraction, C = 0.72, do we find good agreement between
the correlation lengths determined via AFM and SMT. This
result suggests that it may be difficult to measure the length
scale of the bilayer obstacles given the diffusion data alone,
even when the MSDs show a clear transition, such as in the
case of C = 0.60 (Fig. 5).

A persistent discrepancy between the experimental and
simulated data was the systematically lower experimental val-
ues of α compared to the simulations. There are two factors
that may have contributed to this difference. First is the choice
of timescale over which the simulated MSDs were fit with
Eq. (2). For C = 0.27, 0.36, and 0.51, the simulations give
values of α close to one when fit over the experimental
timescale, 0.04 < t < 0.13 s. If the simulated MSDs are fit
over a lower time scale, 0.0036 < t < 0.0144 s, α is 5%14%
lower. For these three compositions, the simulations predict
a crossover time close to the lower limit of the experimental
timescale, 0.035 s, which makes the value of α very sensi-
tive to the fitting timescale. Considering this effect, the ex-
perimental α values are still systematically lower than the
simulations.

The other explanation for the lower experimental α val-
ues is artifactual. Single particle tracking generates a distribu-
tion of trajectory lengths limited by photo-bleaching, blink-
ing, and trajectory crossings. The error in the MSD depends
on the length of the trajectory NT and the frame number n,38

so we expect greater variance in � and α for short trajectories.
For each experimental trajectory, we calculate the time aver-
aged MSD and fit it up to n = 4 with Eq. (2). We used Eq. (2)
because �off in Eq. (5) was determined only for 0 ≤ α ≤ 1,
and in this case the precise value of α is less important than

FIG. 6. Distribution of experimental anomalous diffusion exponents at C
= 0.27 gel phase area fraction. NT is the number of frames in a trajec-
tory. There are 185 trajectories, the shortest are four frames in length and
the longest 36 frames. α < 0 should be interpreted with caution; see text for
discussion.
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FIG. 7. Distributions of simulated α values for different trajectory lengths
for obstacle area fraction C = 0.27. α was obtained by a fit of Eq. (2) to
the trajectory’s MSD up to 5�t . To match the statistics and timescale of the
experiments, here 1�t = 9000 simulation time steps. NT is the length of
trajectories in units of �t . The vertical lines are the average values, α.

the overall distribution. Figure 6 shows α versus the trajec-
tory length for C = 0.27. As expected, the variance in α is
greatest for the shortest trajectories. For the shortest trajecto-
ries n = NT = 4, it is even possible to get unphysical values
of α < 0; short trajectories looping back to the starting posi-
tion result in such a value, showing that analyzing MSDs with
n ∼ NT is meaningless.

It is surprising that not only does the variance in α in-
crease for short trajectories, the mean value systematically de-
creases. To show that this is not an experimental artifact, we
cut the simulated trajectories into shorter, 5, 10, 20, and 100
step trajectories to match the timescale and statistics of the ex-
perimental trajectories. We coarsened the timescale, such that
1�t in the new short trajectories is 9000 original Monte Carlo
steps. We fit the time averaged MSD for the short trajectories
up to n = 5 to Eq. (2). Figure 7 shows the α distribution for
C = 0.27. The distribution for low NT is very broad and the
mean has shifted to a lower value. The mean for NT = 100 is
α = 0.98, close to the simulated value reported in Table II and
for NT = 5, α = 0.87, close to the experimental value. The
downshift in α even occurs in the unobstructed case.24 Thus,
systematically lower values of α in the experiments also stem
from the predominance of short trajectories.

These results highlight the importance of the n/NT ra-
tio when analyzing single molecule tracking data. It is critical
when the magnitude of diffusion parameters are being used
to classify trajectories or compare diffusion between differ-
ent cells. For contrasting different modes of diffusion (e.g.,
for a certain cell type), either the same n/NT ratio should
be used in both the cases or a classification scheme based on
simulations39 should be used.

A. Confinement models

Hop diffusion is a powerful model to describe obstructed
diffusion in cell membranes.40–42 In many cell types, lipids
and proteins diffuse in confined regions of 30-700 nm and
then hop to a neighboring region with compartment size and
residence time determined based on MSDs. Although our

system (Fig. 1) does not resemble the classic fence and picket
model, we can interpret our results in terms of hop diffusion
as many of the same dynamic features are observed. The cor-
relation length ξ in our system , which is in the range of 150-
620 nm, is on the same scale as compartment sizes observed
in cells.43 The residence time in the hop diffusion model can
be compared to the crossover time tCR. Previous work has
demonstrated the importance of time resolution in MSD data
to understand the obstacle or confinement structure.41, 42, 44

With 35 ms time resolution in our experiments, we can
observe the transition from anomalous to normal diffusion
only for correlation lengths ξ > 600 nm. In the hop diffu-
sion model, the residence time depends on the size of the
confinement region and on the probability that the tracer
crosses from one region to a neighbor. Similarly, tCR depends
on the correlation length ξ and the fractal dimension D f of
the fluid phase. Thus, D f is analogous to the fence crossing
probability as illustrated in Ref. 42 where a larger barrier
makes the MSD more anomalous. Murase et al.43 also found
that oligimerization of DOPE enhanced confinement and
attributed this to the increased interaction between the larger
oligomer and the anchored membrane proteins. We expect a
similar dependence on species size in our system, as percola-
tion thresholds normally decrease with diffuser size.29, 45

As our results can be interpreted both in terms of per-
colation or hop diffusion, we suggest analysis of MSD data
such as in Fig. 5 as a universal method to probe obstacle
structure. If data suggesting a particular structure is available,
it should definitely be used to aid the analysis of diffusion
data. In many cellular systems, the structure of obstacles is
unknown and probably diverse.12 Without any assumptions,
the correlation length can be interpreted as the length scale
of the obstructions in the system. To interpret the anomalous
diffusion exponent, simulations may be helpful to estimate the
fence crossing probability or fractal dimension.

B. Stochastic models

Related to the question of the underlying mecha-
nism behind anomalous diffusion in cells is the ques-
tion of the stochastic process. Several stochastic processes

FIG. 8. Ensemble-averaged MSD (red) and time-averaged MSD for the four
longest trajectories (NT ≥ 30) (black) in the C = 0.59 sample.
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lead to anomalous diffusion, including percolation, frac-
tional Brownian motion and the continuous-time random
walk (CTRW).21 It has been demonstrated that single par-
ticle diffusion data can determine the underlying stochastic
process.46–48 Lubelski et al. showed that the ergodicity break-
ing inherent to some CTRW processes, leads to different
time-averaged and ensemble-averaged MSDs.46 Therefore,
we show (Fig. 8) the full ensemble-averaged and time-
averaged MSDs for the four longest trajectories (NT ≥ 30)
in the C = 0.59 sample. Even the longest experimental tra-
jectories vary around the ensemble averaged MSD. We do not
observe the large systematic decrease in transport coefficient
for the time-averaged MSDs and trend toward α = 1 expected
for a CTRW. Although the experimental trajectories are short
compared to simulations, this suggests that we are not observ-
ing a CTRW with a power law distribution of waiting times.
Our direct AFM data suggests a percolation type process, but
in a system where the underlying mechanism is unknown, this
could be a valuable piece of evidence.

V. CONCLUSION

Single molecule tracking is a valuable tool to probe
subdiffusive behavior of membrane constituents and thereby
understand the organization of the plasma membrane. The
challenge is to reveal the underlying mechanisms causing
anomalous subdiffusion. We have presented an experimen-
tal system where single molecule tracking quantifies the
subdiffusion and concurrently AFM images the obstacles.
Our results demonstrate the opportunities and limitations of
using single molecule tracking data to deduce the obstacle
structure. We believe that the greatest challenge in single
molecule tracking is to measure over long times, as short
trajectories (NT < 10) can lead to erroneous predictions of
the anomalous diffusion exponent. Limited temporal range
also limits the length scale of obstacles that can be detected as
a transition from anomalous to normal diffusion. The typical
single molecule resolution of 35 ms allows observation of a
transition for ξ ≥ 620 nm. Without better data, it will be diffi-
cult to apply more advanced statistics to discriminate between
various stochastic processes driving anomalous subdiffusion.
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