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Abstract
Diverse structural and functional brain alterations have been identified in both schizophrenia and
bipolar disorder, but with variable replicability, significant overlap and often in limited number of
subjects. In this paper, we aimed to clarify differences between bipolar disorder and schizophrenia
by combining fMRI (collected during an auditory oddball task) and diffusion tensor imaging
(DTI) data. We proposed a fusion method, “multimodal CCA+ joint ICA’, which increases
flexibility in statistical assumptions beyond existing approaches and can achieve higher estimation
accuracy. The data collected from 164 participants (62 healthy controls, 54 schizophrenia and 48
bipolar) were extracted into “features” (contrast maps for fMRI and fractional anisotropy (FA) for
DTI) and analyzed in multiple facets to investigate the group differences for each pair-wised
groups and each modality. Specifically, both patient groups shared significant dysfunction in
dorsolateral prefrontal cortex and thalamus, as well as reduced white matter (WM) integrity in
anterior thalamic radiation and uncinate fasciculus. Schizophrenia and bipolar subjects were
separated by functional differences in medial frontal and visual cortex, as well as WM tracts
associated with occipital and frontal lobes. Both patients and controls showed similar spatial
distributions in motor and parietal regions, but exhibited significant variations in temporal lobe.
Furthermore, there were different group trends for age effects on loading parameters in motor
cortex and multiple WM regions, suggesting brain dysfunction and WM disruptions occurred in
identified regions for both disorders. Most importantly, we can visualize an underlying function-
structure network by evaluating the joint components with strong links between DTI and fMRI.
Our findings suggest that although the two patient groups showed several distinct brain patterns
from each other and healthy controls, they also shared common abnormalities in prefrontal
thalamic WM integrity and in frontal brain mechanisms.
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INTRODUCTION
Schizophrenia (SZ) is a psychotic disorder characterized by altered perception, thought
processes, and behaviors ; and bipolar (BP) illness is a mood disorder involving prolonged
states of depression and mania (Goodwin and Jamison 2007). These two brain diseases have
overlapping symptoms (for example reports suggest that 60% of bipolar 1 patients have
psychotic features (Goes, et al. 2007; Guze, et al. 1975)), persistent neurocognitive deficits
(Glahn, et al. 2004), similar risk genes (Bahn 2002), and co-occurrence within relatives
(Lichtenstein, et al. 2009) ; however, the common and distinct neural mechanisms
underlying these disorders remain unclear.

Many brain imaging techniques including functional MRI (fMRI), structural MRI (sMRI),
EEG/MEG and diffusion tensor imaging (DTI) provide information on different aspects of
the brain (e.g. blood flow, integrity of gray matter, integrity of white matter tracts). FMRI
can assess functional differences related to rest or neurocognition and DTI can additionally
provide information on structural connectivity among brain networks. Numerous studies
have been published directly comparing schizophrenia to bipolar disorder in one imaging
modality, such as fMRI (Calhoun, et al. 2007; Hamilton, et al. 2009; Pearlson 1997), sMRI
(Altshuler, et al. 2000; McIntosh, et al. 2005; Strasser, et al. 2005), and genetics (Bousman,
et al. 2009; McIntosh, et al. 2009). Diverse brain alterations have been identified in these
two patient groups, but with limited replicability (Fornito, et al. 2009) and generally small
sample sizes.

Although functional and structural brain studies have identified quantitative alterations in
schizophrenia and bipolar disorder, such findings have not yet provided a diagnostic
measure that is both sensitive and specific. It is likely in part that the lack of consistent
findings is because most models favor only one data type or do not combine data from
different imaging modalities effectively, thus missing potentially important differences
which are only partially detected by each modality (Calhoun, et al. 2006a). Combining
modalities may thus uncover previously hidden relationships that can unify disparate
findings in brain imaging.

Existing multimodal studies in these two patient groups have combined EEG with MRI data
(McCarley, et al. 2008; McIntosh, et al. 2006); however, to our knowledge no report has
combined fMRI and DTI data to investigate both commonalities and differences between SZ
and BP; although within each illness, these modality combinations have been examined.
Specifically, Schlosser observed a direct correlation in schizophrenia between frontal
fractional anisotropy (FA) reduction and fMRI activation in regions in prefrontal and
occipital cortices (Schlosser, et al. 2007). Wang identified abnormal perigenual anterior
cingulate and amygdala functional connectivity in bipolar disorder when combining fMRI
and DTI data (Wang, et al. 2009), suggesting that disrupted white matter connectivity may
contribute to disturbances in coordinated functional processing. All of the latter applications
were based on univariate analysis in regions of interest. Although these initial studies
combined DTI and fMRI data in a rather simplistic fashion, they demonstrated the feasibility
and potential of a multimodal fusion approach in addressing various theoretical and applied
issues of structure-function relationships (Rykhlevskaia, et al. 2008).

The complexities of SZ and BP make these diseases an ideal test bed for exploration using
joint information derived from functional-structural data fusion, although more advanced
statistical and analytical models are required to do so. Data from different imaging methods
are typically analyzed separately; however such approaches do not enable examination of
cross-information between modalities. An alternative approach, called data integration,
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combines modalities only at the moment of interpreting the result, thus not allowing for any
interaction between the data-types (Olesen, et al. 2003; Seghier, et al. 2004), e.g. using seed
areas. Such methods based on voxel-wise comparison of structural and functional maps
cannot be statistically informative, hence limiting inferences based on these data.

Another strategy based on simultaneous analysis of multimodal data is data fusion, which
includes “blind” data-driven approaches such as joint independent component analysis
(jICA) (Calhoun, et al. 2006b), multimodal canonical correlation analysis (mCCA) (Correa,
et al. 2010a; Correa, et al. 2010c), partial least squares (PLS) (Grady, et al. 2006; Martinez-
Montes, et al. 2004), linked ICA (Groves, et al. 2010) and other adaptive approaches such as
parallel ICA (Liu, et al. 2009) and coefficients-constrained ICA (Sui, et al. 2009). All of the
above are based on linear mixture models and provide complimentary perspectives on data
fusion via different optimization assumptions.

According to many previous findings in brain connectivity studies which also combined
function and structure (Camara, et al. 2010; Olesen, et al. 2003; Rykhlevskaia, et al. 2008),
it is plausible to assume the components decomposed from each modality have some degree
of correlation between their mixing profiles among subjects. Therefore, we are motivated to
propose a data-driven model that is optimized for this situation and also to have excellent
performance for achieving both flexible modal association and source separation. Among
the existing joint analysis models, joint ICA maximizes the independence of joint sources of
two or more datasets, thus the decomposed source maps are distinct from each other, but it
only allows one mixing matrix for all modalities (e.g. modalities are highly correlated, r=1);
On the other hand, mCCA allows a different mixing matrix for each modality and links two
datasets by maximizing the correlation of the inter-subject mixing profile, but the associated
source maps may not differ sufficiently in some cases, especially when the canonical
correlation coefficients are close in value (Sui, et al. 2010a). Hence, we are motivated to
combine the complementary mCCA and jICA approaches to improve the performance of the
joint source extraction. In other words, mCCA first relates two datasets with flexible linkage
(correlation), thus giving us more confidence to perform joint ICA on the associated maps,
which allows both highly and weakly correlated joint components. Figure 1 depicts four
blind data fusion methods, including the above three and our proposed scheme: mCCA
+jICA. Note that the proposed mCCA+jICA approach is distinct from our previous work in
(Sui, et al. 2010b), where spatial CCA (sCCA) +jICA is used to analyze datasets of the same
type, such as multitask fMRI data. The difference between sCCA and mCCA is illustrated in
Figure 1 for clarification.

The basic strategy of mCCA+jICA is as follows: mCCA is first adopted to link two or more
modalities by correlation maximization of the mixing profiles, see Figure 1. The two mixing
matrices are so-called canonical variants (CVs) and their associated maps (Ci, i=1, 2) may
still contain mixtures of real independent sources. Next we perform a joint ICA on the
concatenated maps [C1, C2] and further decompose the remained mixtures to [S1, S2] by
maximizing the joint independence. Hence, mCCA and jICA are complementary to one
another and if used together can relax the limitations of each. In our work we extract two
mixing matrices (A1, A2), with variable A1–A2 correlation for each component, which
provides both shared (highly-correlated) and unique (weakly-correlated) information
between modalities. In DTI-fMRI fusion, the structure-function link is reflected by this A1–
A2 correlation, which can be seen as a multivariate generalization of published reports
which correlate an FA value in one ROI for each subject to all the fMRI contrast voxels
(Avants, et al. 2010; Olesen, et al. 2003)”.

In order to reduce the redundancy of the large scale brain data and facilitate the
identification of relationships between modalities, each modality is first reduced to a
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“feature” for each subject, e.g. an fMRI contrast map from the general linear model and DTI
measures such as fractional anisotropy (FA). The fMRI contrast map depicts the cortical
regions representing the task effect in relation to an experimental baseline. FA refers to the
coherence of the orientation of water diffusion, independent of direction. It is calculated as
the fraction of total diffusion that can be attributed to anisotropic diffusion, with higher
values corresponding to a more consistent diffusion orientation (McIntosh, et al. 2008a).
Therefore, a breakdown in white matter integrity results in a lower FA. Our goal was to
simultaneously extract the group-discriminating brain activations in fMRI contrasts as well
as the abnormal white matter tracts reflected in the FA maps.

Therefore, in this paper we highlighted both similarities and differences between two
modalities across three diagnostic groups, which had not yet been attempted for a relatively
large number of subjects. Our aim was to better understand the complex distinctions at a
brain level between bipolar disorder and schizophrenia. We applied the proposed model to
164 subjects comprising 62 healthy controls (HCs), 54 SZs and 48 BPs, who were recruited
at the Olin Neuropsychiatric Research Center, Hartford and were scanned by both fMRI
(while performing an auditory oddball task) and DTI. Results were examined from several
perspectives. We found not only group-discriminating regions for each modality and each
pair-wise groups, but also spatial variations in temporal lobe and different group
relationships with regard to age effects on our dependent measures. Most importantly, we
are able to visualize an underlying function-structure network by evaluating the joint
components which have strong DTI-fMRI links. Note that some of the specific findings we
report were not obtainable from separate analysis of each modality and required a joint
analysis. The potential benefits of our approach were demonstrated both in a simulation and
an application to multimodal human brain data.

MATERIALS AND METHODS
Assumptions

We assume that the multimodal dataset Xk is a linear mixture of sources Sk and the
nonsingular mixing matrix Ak, k = 1, 2,

(1)

where Xk is in form of subjects by voxels, as shown in Figure 2; Ak is in dimension of
subjects by number of sources Mk. The columns of A1 and A2 (mixing profile of each
modality) have higher correlation only on their corresponding indices,

(2)

where r1, r2…rM can be either common or different from each other. This assumption is
more flexible compared to that of both joint ICA and mCCA. Because joint ICA requires A1
and A2 to be exactly the same; and mCCA achieves complete source separation only when
r1, r2…rM are sufficiently distinct (Li, et al. 2009a). This constraint is not always easily
satisfied, especially when the number of components M are large (e.g. >10) or the number of
datasets used in the analysis is small (e.g., two as in this case). Furthermore, due to the
potential common correlation values among r1, r2…rM, applying individual ICA within each
dataset may introduce ambiguity in feature matching via cross-correlation, as we shown in
(Sui, et al. 2010b). By contrast, the proposed mCCA+jICA model alleviates these
limitations: because mCCA makes the jICA job more reliable by providing a closer initial
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match via correlation; while jICA further decomposes the remaining mixtures in associated
maps and relaxes the constraint that mCCA has on the distinctiveness of r1, r2…rM.

Theory Development
Given that there are N subjects, typically, the number of voxels L in Xk is much larger than
N. Due to the high dimensionality and high noise levels in the brain imaging data, order
selection is critical to avoid overfitting the data. Using the minimum description length
(MDL) criterion as in (Li, et al. 2007), Mk, the number of independent components are
estimated for each dataset, Mk < N. Dimension reduction is then performed on Xk using
singular value decomposition (SVD), a scheme where small singular values of the matrix are
treated as noise/redundancy are discarded, given

(3)

where  in dimension of L × Mk, contain the eigenvectors corresponding to the significant
eigenvalues sorted from high to low in Uk; E″ contain the eigenvectors which are treated as
noise and hence omitted from the next steps of the analysis. CCA is thus performed on the
dimension-reduced datasets Yk in size of N × Mk, given by , generating two
transformed variants, D1 D2, the so-called canonical variants (CV) (Correa, et al. 2008). D1
and D2 have maximum correlation between each other, while the vectors within each are
uncorrelated and whitened. Their correlation vector c1, c2…cM is called the canonical
correlation coefficient (CCC), given by

(4)

(5)

Based on the linear mixture model, we simultaneously obtain the associated components C1
and C2 via

(6)

However, the performance of mCCA for blind source separation (BSS) may suffer when c1,
c2…cM are very close in values, which might occur frequently in applications using real
brain data, since the multimodal connection among components usually are not very high
and could be similar in value(Correa, et al. 2010b). Therefore, C1 and C2 will typically be
two sets of sources that do not represent a completely decomposed set of components.

Joint ICA is then implemented on the concatenated maps, [C1, C2], to maximize the
independence among joint components by reducing their second and higher order statistical
dependencies, as in equation (7). ICA as a central tool for BSS has been studied extensively
and many algorithms have been developed based on different patterns of cost function (Bell
and Sejnowski 1995; Cichocki A, et al. 2007; Hyvarinen 2001). We utilized COMBI
(Tichavsky, et al. 2008) in our work due to its flexibility in adapting to different source
distributions and its fast speed.
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(7)

Thus two joint independent components S1 and S2 are achieved, with their corresponding
mixing profile linked via correlation. According to (1), (6), and (7), the proposed mCCA
+jICA scheme can be summarized as

(8)

We then correlate A1 with A2, generating a correlation profile, i.e. r1, r2…rM in (2), which
could contain identical values.

Simulated data
By simulating two types of image sources as two features, we investigate the joint BSS
performance of mCCA+jICA on simulated data and compare it to that of joint ICA and
mCCA. As shown in Figure 4, eight sources are generated for each feature to simulate
images (256×256) and one-dimensional signals (1×2000) respectively, resulting in true
sources S1 (in dimension of 8×65536) and S2 (in dimension of 8×2000). Note that the source
type in 1D, 2D or 3D does not matter, the relevant factor is the final vector length. Here S1
and S2 are designed on purpose with greatly different vector length (65536 vs. 2000). This
has multiple benefits over our previous multitask fusion paper (Sui, et al. 2010b) in which
we used spatial CCA instead of multimodal CCA which requires S1 and S2 to have the same
length. The mixing matrices of each feature, i.e., A1 and A2 (in dimension of 100×8), have
diverse correlations between their corresponding columns, A1–A2 correlation = [0.99 0.07
0.36 0.63 0.20 0.23 0.79 0.36], as the ground truth listed in Figure 3. One hundred noisy
mixed images Xk are generated for each modality under each of the 11 noisy conditions via
Xk = Ik + Nk = Ak Sk + Nk, k=1, 2; where Ik is pure signal mixture and Nk is random
Gaussian noise. The corresponding mean peak signal-to-noise ratios (PSNR) are in range of
[−1 20] dB. The PSNR is a most commonly used measure of image quality after corruption
or recovery, which is defined as (9) for the jth mixture of feature k at every noisy condition.
Typical PSNR value for the acceptable image quality is about 30 dB; the lower the value,
the more degraded the image (Thomos, et al. 2006).

(9)

Three joint BSS models: jICA, mCCA and mCCA+jICA were implemented on simulated
datasets respectively under every PSNR for 10 runs. The decomposed components are
paired with the true sources via cross-correlation automatically within each feature. We
adopted three metrics to estimate the joint BSS performance:

1. the average correlation of the estimated components Ŝ with true sources S;

2. the average correlation of the estimated mixing profiles Â with the ground truth A;

3. the mean square error of the estimated A1–A2 correlation compared to the truth.

For each metric, we compared the three algorithms in two ways, i.e., under different noise
conditions and at different source indices.
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Human brain data
Participants 62 healthy controls (HC, age 38±17, 30 females), 54 patients with
schizophrenia (SZ, age 37±12, 22 females) and 48 patients with bipolar disorder (BP, age
37±14, 26 females) were recruited at the Olin Neuropsychiatric Research Center and were
scanned by both fMRI and DTI. All subjects gave written, informed, Hartford hospital IRB
approved consent. Schizophrenia or bipolar disorder was diagnosed according to DSM-IV-
TR criteria in the on the basis of a structured clinical interview (First 1995) administered by
a research nurse and review of the medical file. All patients were stabilized on medication
prior to the scan session in this study. Healthy participants were screened to ensure they
were free from DSM-IV Axis I or Axis II psychopathology (assessed using the SCID
(Spitzer 1996)) and also interviewed to determine that there was no history of psychosis in
any first-degree relatives). All subjects were urine-screened to eliminate those who were
positive for abused substances. Patients and controls were age and gender matched, with no
significant differences among 3 groups, where age: p=0.93, F=0.07, DF=2. Sex: p=0.99, χ2

=0.017, DF=2. All participants had normal hearing, and were able to perform the oddball
task successfully during practice prior to the scanning session.

The Auditory oddball task involved subjects encountering three frequencies of sounds:
target (1200 Hz with probability, p=0.09), novel (computer generated complex tones, p =
0.09), and standard (1000 Hz, p=0.82) presented through a computer system via sound
insulated, MR-compatible earphones. Stimuli were presented sequentially in pseudorandom
order for 200 ms each with inter-stimulus interval (ISI) varying randomly from 500 to 2050
ms. Subjects were asked to make a quick button-press response with their right index finger
upon each presentation of each target stimulus; no response was required for the other two
stimuli. Two runs of 244 stimuli were presented (Kiehl, et al. 2001).

Imaging parameters Scans were acquired at the Institute of Living, Hartford, CT on a 3T
dedicated head scanner (Siemens Allegra) equipped with 40mT/m gradients and a standard
quadrature head coil. The functional scans were acquired using gradient-echo echo planar
imaging (EPI) with the following parameters: repeat time (TR) = 1.5 sec, echo time (TE) =
27 ms, field of view = 24 cm, acquisition matrix = 64×64, flip angle = 70°, voxel size =
3.75×3.75×4 mm3, slice thickness = 4mm, gap = 1 mm, number of slices = 29; ascending
acquisition. Six dummy scans were carried out at the beginning to allow for longitudinal
equilibrium, after which the paradigm was automatically triggered to start by the scanner.
DTI images were acquired via a single-shot spin-echo echo planar imaging (EPI) with a
twice-refocused balance echo sequence to reduce eddy current distortions, TR/TE= 5900/83
ms, FOV= 20 cm, acquisition matrix=128×96, reconstruction matrix 128×128, 8 averages,
b=0, and 1000 s/mm2 along 12 non-collinear directions, 45 contiguous axial slices with 3
mm slice thickness.

FMRI preprocessing fMRI data were preprocessed using the software package SPM5
(http://www.fil.ion.ucl.ac.uk/spm/software/spm5/)(Friston, et al. 2005). Images were
realigned using INRIalign, a motion correction algorithm unbiased by local signal changes
(Freire, et al. 2002). Data were spatially normalized into the standard MNI space (Friston, et
al. 1995), smoothed with a 12 mm3 full width at half-maximum Gaussian kernel. The data,
originally 3.75×3.75×4 mm, were slightly subsampled to 3×3×3 mm, resulting in 53×63×46
voxels.

FMRI Feature Extraction a GLM approach using SPM5 was used to find task-associated
brain regions, labeled as contrast maps which were then used as fMRI features within our
mCCA+jICA analysis. Specifically, a GLM analysis consisted of a univariate multiple
regression of each voxel's time course with an experimental design matrix, generated by the
convolution of the task onset times with a hemodynamic response function. This resulted in
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a set of beta-weight maps associated with each parametric regressor. The subtraction of
target beta-weight map with the standard beta weight map was referred to as a “target
contrast” map, which represented the task effect in relation to an experimental baseline. We
utilized the average target effect for the AOD task.

DTI preprocessing consists of the following steps:

1. DTI Quality Check. The DTI data quality is checked for a) signal dropout due to
subject motion, producing striated artifacts on images; b) excessive background
noise in the phase encoding direction, due to external RF leakage in the MRI scan
room or to subject motion; and c) large amounts of motion in the absence of signal
dropout. If for a specific gradient direction any slice was found to have a problem,
we decided to exclude the whole volume rather than some specific slices. Our
assumption was that the presence of a large head movement in one slice
compromised the entire volume. This resulted in different number of gradients
being used for different subjects. The average number of gradient directions
dropped was 12% for healthy controls and 14% for patients with schizophrenia and
bipolar disorder (being similar for the two patient groups). FA may tend to increase
as number of gradient directions is reduced, but the bias is negligible if the
reduction in the number of gradient directions is no more than 15%, as reported in
(Ling, et al. 2010), which examined this problem via simulations. In our study, the
motion artifacts were not significantly larger in patients group.

2. Motion and eddy current correction. After the above data pruning we had one 4D
DTI volume and a table of corresponding b-values and gradient direction vectors.
Next we registered all the images to a b=0 s/mm2 image. Twelve degrees of
freedom, affine transformation with mutual information cost function was used for
image registration.

3. Adjusting the diffusion gradient direction. Two corrections were applied to the
diffusion gradients. The nominal diffusion gradients directions are prescribed in the
magnet axis frame. We rotated them to correspond to the image slice orientation.
No correction is required if the imaging slice is pure axial. A second correction
accounted for any image rotation during the previous motion and eddy current
correction step. The rotation part of the transformation found previously was
extracted, and each gradient direction vector corrected accordingly. All the image
registration and transformations were done with the FLIRT (FMRIB’s Linear
Image Registration Tool) program (FMRIB Software Library [FSL];
www.fmrib.ox.ac.uk/fsl), and the detection of outliers and data pruning was done
with a custom program written in IDL (www.ittvis.com).

DTI Feature Extraction. We used Dtifit, a tool in FSL to calculate the diffusion tensor and
the fractional anisotropy (FA) maps. The FA image was aligned to a MNI FA template with
a nonlinear registration algorithm FNIRT (FMRIB’s Nonlinear Image Registration Tool;
FSL) and was co-registered with fMRI contrast via SPM, resulting in a final 53×63×46
matrix with the voxel size of 3×3×3 mm. The FA maps were then smoothed using SPM5
with a 12 mm3 full width at half-maximum Gaussian kernel (Silver, et al. 2011).

Analysis Pipeline After feature extraction, the 3D image of each subject was reshaped into a
one-dimensional non-zero vector and stacked one by one, forming a matrix with dimensions
of 164×[number of voxels] for each modality. Then the feature matrix was normalized to
have the same average sum-of-squares (computed across all subjects and all voxels for each
modality). The normalization was needed because the AOD and FA data had different
ranges. A single normalization factor was used for each data type; thus, following
normalization, the relative scaling within a given data type was preserved, but the units
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between data types were the same (in a least-squares sense). After normalization, the data
was processed via the pipeline shown in Figure 2, i.e., dimension reduction-> multimodal
CCA-> joint ICA-> component analysis.

RESULTS
Simulations

Figure 3 illustrates the simulation results for three evaluation metrics on the whole,
displayed in three rows. For each metric, we compared three algorithms in different noisy
conditions (PSNRs, left column) and source distributions (source index, right column).
Under each noise condition (PSNR), we illustrate the averaged estimation accuracy on
sources, mixing profiles and the modal linkage respectively in figure (a), (c) and (e). It is
evident that mCCA+jICA is quite robust to noise, and its BSS performance is consistently
the best in all noise conditions. Consequently, joint ICA is the second best in source
estimation and mCCA is the second best in mixing profile estimation; mCCA+jICA also
overperforms mCCA on estimation of modal connection and their estimation errors were not
influenced much by the noise. Note that when PSNR=−1dB, i.e., noise is bigger than signal,
all three methods can still have the estimation accuracy of Ŝ and Â higher than 0.55.

For each specific joint source, we plotted the mean correlation and its standard derivation
across all noisy conditions via bars in figure 3 (b) and (d). In figure 3 (f), the true A1–A2
correlation is given via a yellow bar for every source, while the mean square error and its
standard derivation of the link estimation were plotted in red for mCCA and in green for
mCCA+jICA. Note that both very high (0.99) and low (0.07) correlation values exist in
modal connection, representing both shared and distinct parts of two features. Some sources
have very close (5 and 6, r =0.20, 0.23) or the same (3 and 8, r=0.36) low correlation values,
which is quite ordinary in real applications of brain data fusion and mCCA+jICA
consistently performs better.

We next focus on one noisy case (PSNR=6dB) in order to directly investigate the joint BSS
performance in this context. Results are presented in Figure 4, where true sources and true
modal connection are shown on the left. Joint ICA separates almost all sources accurately
especially for sources 1, 4, and 7 since their A1–A2 correlation >0.6, but failed to
decompose the 3rd source for feature 2 whose A1–A2 correlation is lower (r=0.36).
Multimodal CCA can track the modal connection more precisely than jICA, but cannot
completely decompose image sources in feature 1, particularly sources 3–6. The proposed
mCCA+jICA combine advantages of both methods and improve the performance
substantially. It succeeds in separating sources and linking them correctly in a less-
constrained condition, where there is no stringent requirement for the A1–A2 correlation.

Human brain data
Next, mCCA+jICA was applied to real fMRI and DTI data collected from 164 subjects
including three groups. Our goal was to identify the aberrant functional-structural brain
relationships in schizophrenia and bipolar disorder. Ten components were estimated for each
feature according to an improved MDL criterion (Li, et al. 2007). We summarize the results
in the following four aspects:

1) Group differences in loading parameters—Two sample t-tests were performed for
each IC on its mixing coefficients between each of the possible pair-wised groups, as shown
in Figure 5, where the components with significant group differences were summarized and
the PT means both SZ and BP. For each component, we chose 4 representative slices to
display and use different color frames for discrimination. If two independent components
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have the same frame color in both modalities they are joint components. The p values
displayed with yellow text passed a Bonferroni correction for multiple comparison
(p<0.005), others passed an uncorrected significance level (p<0.05).

The specific identified regions of the above group-discriminating components and their
abbreviations are summarized in Table 1 for fMRI (Talairach labels) and Table 2 for DTI
(white matter tracts) respectively, where the ICs with # were joint group-discriminating
components, i.e., it can differentiate groups in both AOD task and FA. The ICs with * had
highly significant p values, which passed a Bonferroni correction for multiple comparison.
To summarize the white matter results, we used the Johns Hopkins white-matter
tractography atlas (from FSL), from which 20 structures were identified (Hua, et al. 2008);
mostly these are large bundles. In Table 2, the WM tract labels, the identified volume (cc)
and the percentage that indicates the overlap of the identified regions in each WM tract are
listed in detail.

2) Group differences in spatial maps—The back-reconstruction of spatial maps for
each group was performed based on the linear mixture model as in (10),

(10)

where Sk denotes the IC maps derived by mCCA+jICA for all subjects; k represents the
modality, [·]−1 represents the pseudo-inverse of the matrix; SHC,k, SSZ,k and SBP,k are the
back-reconstructed spatial maps for HC, SZ and BP respectively. To investigate the group
variation in spatial maps, we correlated SHC,k/SSZ,k/SBP,k with Sk individually for both
modalities. The FA maps did not show large differences among 3 groups with relatively
higher correlations (r>0.8); while the fMRI maps exhibited more variations. We listed all
correlation values between the reconstructed group maps with the IC maps for fMRI in
Table 3. For display, we chose the IC that had correlation values higher than 0.5 for all
groups (to make sure that the spatial maps of all groups were consistent to some degree) and
controls were obviously different from patients in correlation values (±0.1). Hence IC 9 was
selected based on the above criteria, which shows strong activation in both superior
temporal gyrus and motor cortex.

Figure 6 displays the variation of functional spatial maps among groups. IC9 derived from
mCCA+jICA for all groups is shown on the left. On the right, the back-reconstructed group
sources SBP, SSZ, SHC and Sg common (the common activation of SBP, SSZ and SHC) are
overlaid one by one from bottom to top. For display, the components are converted to Z-
values (by dividing by the standard deviation of the source) and thresholded at |Z|>2.

3) Group differences in age effects—The derived mixing coefficients also provide a
way to investigate the relationship between the identified regions and subjects’ behavioral
data, such as age. We correlated participants’ ages with the mixing profile for each IC and
three were found to be significant: AOD_IC1, FA_IC1 and FA_IC9. The correlation values
(r) and significance level (p) were listed in Table 4 for all subjects and each group. We also
computed the 95% BCa (Bias corrected and accelerated percentile method) bootstrap
confidence interval(ci) for all the correlations by using 100 bootstrapping samples for each
group. Multiple comparisons for 40 correlations were performed using FDR correction and
the significant p values were marked as bold in Table 4. Figure 7 demonstrated the scatter
plot of age versus ICA weights, and the group linear trends in different colors and markers
for AOD_IC1 and FA_IC9; specifically, HC trend in red line, SZ trend in blue line, BP trend

Sui et al. Page 10

Neuroimage. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



in green line and trend of all subjects in black line. For FA_IC1, all groups showed
significant anti-correlation between age and FA weights, thus were plotted using one
marker.

4) Functional-structural network—We calculated the A1–A2 correlations for all
components, as listed in Table 5, which provide a measure that describes the modal linkage,
i.e., the functional-structural connection. Note that most of the correlation values are quite
significant with p<=0.005, except for IC4, which was a ventricular CSF artifact. We choose
3 representative ICs for display, whose A1–A2 correlations are moderate to high. Among
these, IC 8 had the highest A1–A2 correlation (r=0.37, p=1e-6) and was the only component
showing SZ versus BP differences in their loadings. FA_IC7 shows the most group-
discriminative loadings and FA_IC9 shows a significant correlation with age. In addition,
both AOD_IC7 (default mode network) and AOD_IC9 (temporal and motor activation)
include brain regions that are likely activated by the auditory oddball task.

Figure 8 shows the AOD component maps on the left, the FA component in the middle and
a high-level functional-structural network diagram on the right. Our goal is to evaluate the
intersection of the results with 1) for FA, known tracts, and 2) for fMRI, known gray matter
regions, and to identify which known tracts are both intersected by the regions of FA
changes and touch the regional fMRI changes. The functional lobes with large volume
activations are bordered by red solid frames; by contrast, the lobe with small volume
activations is bordered dotted blue line. Only the FA fiber tracts with more than 1 cm3

volume identified (R+L, positive+negative) were displayed. The specific Talairach and WM
labels of the three joint components are listed in table 6 for reference.

DISCUSSION
In this paper, we highlighted patterns of both similarities and differences in two modalities
(fMRI and DTI) across three diagnostic groups (HC, SZ, BP), which have not been
attempted previously for a relatively large number of subjects. Our aim was to clarify
differences between bipolar disorder and schizophrenia using functional-structural data
fusion employing an advanced analytical model. We propose a multimodal fusion method
called “mCCA+jICA”, which can work with less stringent assumptions than the previously
proposed approaches. It can also achieve higher decomposition accuracy and identify valid
links between features. Note that the mCCA+jICA approach does not increase the
computational load appreciably; however it achieves the best performance in simulations
designed to be similar to real-world brain imaging data fusion.

One of the major strengths of this model is that the combination of mCCA and joint ICA
improves the performance of joint BSS substantially under a less-constrained condition.
Specifically, in Figure 3 and 4, sources 1, 4 and 7 have higher A1–A2 correlation values,
thus joint ICA works well, in accordance with its hypothesis; consequently, the performance
of mCCA suffers from ambiguity and misinterpretation in sources 3&8, 5&6 due to the
requirement of sufficiently distinct canonical correlations; by contrast, the proposed model
mitigates the performance deficits of mCCA by using a further ICA decomposition. In
addition, the use of mCCA makes the job of jICA easier and more reliable by providing a
closer initial match. We can also define links among data via the A1–A2 correlation values.
As shown in Figure 3 (f), for sources with lower or closer A1–A2 correlations (sources
2,3,6,8), which could be the practical cases in brain imaging data fusion, mCCA+jICA
consistently performs better, and has no stringent requirements imposed on the A1–A2
correlation.
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Based on the merits of the proposed model, we applied it to a real brain data set, with 3
groups and 2 modalities. There are at least three major advantages to combining DTI and
fMRI data:

1. FMRI as a well-established neuroimaging technology, can act as a reference
framework verifying the validity of conclusions derived from the relatively newer
DTI method (Reinges, et al. 2004).

2. Such a combination may provide insights into the relationships/connectivity
between brain structure and function (Guye, et al. 2008; Skudlarski, et al. 2010).

3. Combining structural and functional brain imaging data allows for constructing
more informative, biologically plausible models and may have utility for
neurosurgical applications.

Therefore, the large dataset and the novel method together demonstrated the potential to
detect relevant brain differences between bipolar disorder and schizophrenia.

Amplitude difference
Three joint components (IC 1, 2, 8) and three modality-specific components (AOD_IC6,
FA_IC7 and FA_IC9) were identified as group-discriminating ICs, as shown in Figure 5.
We next discuss the findings for each of these in detail.

AOD_IC2 is the most significant functional component discriminating both SZ and BP from
HC, which includes dorsolateral prefrontal cortex (DLPFC), thalamus and occipital cortex.
DLPFC plays an important role in the integration of sensory and mnemonic information,
executive function, planning and regulation of cognitive function and action. Researchers
have frequently reported dysfunction and lack of functional connectivity of this region in
patients with schizophrenia (Badcock, et al. 2005; Hamilton, et al. 2009) and bipolar
disorder (Curtis, et al. 2001; Glahn, et al. 2010). The thalamus has multiple functions and is
believed to act as a relay station between many subcortical areas and the cerebral cortex. It
was also reported to be impaired in both SZ and BP (Cerullo, et al. 2009; Danos 2004). Our
results are consistent with the above findings and suggest that these deficits might be related
to shared risk factors and disease mechanisms common to both disorders. The joint FA_IC2
indicates an FA reduction in BP versus HC in the anterior thalamic radiation (ATR) that
projects from anterior and medial regions of the thalamus to frontal lobe, in agreement with
(Anand, et al. 2009).

FA_IC7 is the most significant DTI component where the identified WM fiber tracts mostly
connect frontal and occipital lobes, including ATR, inferior fronto-occipital fasciculus
(IFO), cingulum and superior longitudinal fasciculus (SLF). This finding is consistent with
several previous reports of DTI abnormalities in schizophrenia (Kubicki, et al. 2005;
Kubicki, et al. 2003; Schlosser, et al. 2007) and bipolar disorder (Wang, et al. 2009;
Yurgelun-Todd, et al. 2007), suggesting that disruptions in white matter connectivity may
contribute to coordinated brain dysfunction, especially in the frontal lobe, which is
frequently thought of as “disconnected” from other brain regions in both disorders (Heng, et
al. 2010; Williams, et al. 2004).

AOD_IC8 and FA_IC8 are joint components that can distinguish two patient groups, though
not at a high level of significance (p=0.04). In functional maps, the parahippocampal gyrus
(PH), medial frontal cortex, thalamus and visual cortex are emphasized, confirming the
results in (Hall, et al. 2009), where two brain disorders were separated by differences in
hippocampal and prefrontal cortical activation. Moreover, visual cortex impairments in SZ
versus HC are also observed, consistent with (Brenner, et al. 2009; Demirci, et al. 2009). In
FA maps, fibers associated with occipital and frontal lobes were identified, connecting the
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identified regions in AOD_IC8 in an organized network (see Figure 8), especially SLF,
forceps minor (FMIN, that connects lateral and medial frontal lobes via the genu of the
corpus callosum), and forceps major (FMAJ, that connects the occipital lobes via the
splenium of the corpus callosum). These patterns of white matter pathology offer a potential
diagnostic distinction between the two disorders. Furthermore, a similar function–structure
relationship in the visual system was reported in healthy controls by (Toosy, et al. 2004),
where the mean FA of the optic radiations correlated significantly with fMRI measures of
visual cortex activity. Together with our results, these findings support the hypothesis that
cortical fMRI response may be constrained by the external anatomical connections of white
matter fibers.

Spatial variation
The back-reconstructed components present a direct view of the spatial distribution for each
group (which can vary) and the intensities of the image (Z scores) provide a relative strength
of the degree to which the group source contributes to the overall data (Beckmann and Smith
2005). If SHC,k, SSZ,k and SBP,k are more similar to each other, they are likely to have more
overlaps with Sk; if there are deviations, it likely means spatial group variability exist in
such regions. In practice, it is hard to determine exactly to what extent the deviations
between group sources can occur, however, simulations tell us that general back-
reconstruction is quite capable of handling variations between the groups in the regions
which contribute to the extracted source, an important feature given that we don’t expect the
groups to have the same pattern. (Calhoun, et al. 2001; Erhardt, et al. 2010)

As shown in Figure 6, all three groups show higher consistence in parietal lobe (BA 7 19 39
40), primary and supplementary motor cortex (BA 3 4 6), and middle frontal gyrus (BA 10
32 46), implying that the spatial distribution of the identified regions implicated in
movement and sensory integration is similar for all subjects (Andersen and Buneo 2002).

On the other hand, more variations were observed in temporal gyrus (BA 21 22 41 42)
which is responsible for processing of auditory information, suggesting that aberrant
patterns of coherence in temporal lobe may be a cardinal abnormality in both schizophrenia
and bipolar disorder (Calhoun, et al. 2008; Chance, et al. 2008; Pearlson 1997). SZ activated
more in superior and middle temporal gyri, supported by (Calhoun, et al. 2004). BP exhibits
additional activations in insula, which has a role in emotional regulation, in accordance with
findings in (Kempton, et al. 2009; McIntosh, et al. 2008c; Pessoa and Adolphs 2011), where
insula also differentiates BP from HC and SZ. We also observed spatial deviations occurred
between individual group map and IC map. For example, BP alone shows clear bilateral
thalamic activation, while the left panel shows only the left thalamus for all subjects,
suggesting that there may be diminished prefrontal modulation of subcortical and medial
temporal structures within the anterior limbic network (e.g., amygdala and thalamus) that
results in mood dysregulation, such as bipolar illness (Blumberg, et al. 2003; Strakowski, et
al. 2005).

Age effects
Three ICs show significant correlation between subjects’ age and loadings. AOD_IC1
presents activations mainly in motor cortex (BA 1–6), accompanied by a functional
asymmetry with left dominance, see Figure 7(a), consistent with the fact that AOD task
needs participants push the button with their right fingers. Controls have a very significant
correlation r = 0.5, p=4e-5, while patient groups do not (p does not pass multiple
comparison), implying that the motor regions of HC are normally more involved in the task
with age increased (Bennett, et al. 2010), whereas patients have no such trend due to motor
system deficits (Rogowska, et al. 2004). FA_IC1, as a joint component of AOD_IC1, also

Sui et al. Page 13

Neuroimage. Author manuscript; available in PMC 2011 August 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



demonstrates significant (p=2e-08), but anti-correlation with age. Note that all groups have
low p values, suggesting all subjects have a general age-related decrease in FA values,
representing a breakdown in white matter integrity, as shown in Figure 7 (b) and Table 4.
This finding is in agreement with multiple prior reports from DTI aging research (Grieve, et
al. 2007; Sullivan and Pfefferbaum 2003). Furthermore, as illustrated in Figure 7(c) and
Table 4, SLF, corticospinal tract (CST), ATR and uncinate fasciculus (UF) are indentified in
FA_IC9; interestingly, both patient groups revealed negative correlations with age r<−0.4
while HC do not, suggesting that white matter density in these tracts decreases faster in
patients, especially for schizophrenia. Similar abnormalities in SZ were reported by
(McIntosh, et al. 2008b).

Function-structure network
Imaging structural and functional brain connectivity has the potential to reveal the complex
network of brain organization, which may reveal the pathway of information segregation
and integration, and may also underlie the clinical consequences of alterations in mental
illnesses. In Figure 8 and Table 6, we selected 3 joint components for illustration, attempting
to verify that the “linked” components do indeed correspond to FA changes in known tracts
and functional changes in distant regions connected to that tract. Note that we did not
perform the WM fiber tractography but provided a type of summary statistic. FA and fMRI
are showing different things and a strength of our method is that it can detect complicated
FA/fMRI relationships without requiring a detected direct link.

The anterior thalamic radiation is identified in all three FA components (IC7,8,9) in Figure
8, constituting a potential anatomical biomarker for these two mental illnesses. ATR carries
association fibers from anterior and medial regions of the thalamus to prefrontal cortex. This
pathway is a part of several functionally segregated thalamofronto-striatal loops(Alexander,
et al. 1990) and implicated in the pathophysiology of both BP and SZ (Sussmann, et al.
2009). These findings are also supported by neuro-pathological studies (Lewis 2000)
showing evidence of decreased thalamic projection neurons and prefrontal thalamic inputs.

AOD_IC7 demonstrates negative activations in the typical default mode network (Raichle,
et al. 2001) and positive activations in STG and IPL, which are potentially related by the
tracts shown in FA_IC7. In FA_IC7, except ATR, IFO passes backward from frontal lobe
into occipital and lateral temporal lobes; CST originates from the motor cortex to lower
motor neurons in the spinal cord, cingulum projects from the cingulate gyrus to the
entorhinal cortex(an important memory-related area in brain, that is a major input to the
hippocampus) and SLF connects all brain lobes with each other.

AOD_IC9 reflects main fMRI activations in temporal and frontal lobe, consequently,
FA_IC9 localize the breakdown of WM integrity in UF (carrying association fibers between
the medial prefrontal cortex and the anterior temporal lobe, including amygdala) and ATR
for patients, more so for bipolar. Our results support the DTI findings in (McIntosh, et al.
2008a) and (Sussmann, et al. 2009), where patients with SZ and BP show consistent reduced
integrity in the UF and ATR, implying a considerable overlap in white matter pathology,
possibly relating to risk factors common to both disorders.

Future extension
We would like to highlight additional aspects of our study. Besides the application to fMRI-
DTI data fusion, mCCA+jICA can be used to analyze various combinations of multimodal
data too, such as fMRI with EEG/MEG, or genetic data. Furthermore, this approach is not
limited to two-way fusion, but can potentially be extended to 3-way or N-way fusion of
multiple data types by replacing the multimodal CCA with multi-set CCA (Li, et al. 2009b);
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e.g., combining fMRI, sMRI and genetic data to construct a broad function-structure-
genetics network, thus arguing for widespread utilization of the proposed method.

Another interesting future direction is to further examine the subgroup differences within
patients, e.g., BPs with/without psychotic features, by applying the proposed model, which
might optimally separate a larger-sample size of BPs, though in current case we did not find
very significant differences between these two subgroups.

A possible limitation is that mCCA+jICA works on extracted features of the original
imaging data. In our case, a “feature” is a distilled dataset representing the interesting part of
each modality and tends to be more tractable than working with the large-scale original data
due to the reduced dimension, e.g. 4D fMRI data (Calhoun and Adali 2009). Hence the main
reason to use features is to provide a simpler space in which to link the data. The trade-off is
that some information may be lost. However there is considerable evidence that the use of
features is quite useful. For example, for task-related fMRI data, the contrast maps depict the
cortical regions representing the task effect in relation to an experimental baseline, which
already utilize the temporal information. In a recent PNAS paper (Smith, et al. 2009), which
used ICA on rest data and on task blobs (in the case of task blobs, even more information
was lost than we used) and they found nearly identical resting fMRI patterns from the task
blobs, motivating the use of features.

Our approach is also suitable for resting-state fMRI, we can perform an ICA on the original
4D data and then use the ICA components as input. This has been done for default mode in
the joint ICA context in multiple papers including (Franco, et al. 2008). Similar work has
also been done by (Smith, et al. 2009).

In conclusion, studies featuring combination of DTI and fMRI information prove to be
fruitful for a more informative understanding of bipolar disorder and schizophrenia. In this
paper, we developed an mCCA+jICA model that takes advantage of two multivariate
approaches and enables more flexibility in statistical assumptions, promising for wider
applications in neuroimaging community. Our application highlighted data from two
illnesses and two modalities, and was analyzed carefully to uncover multiple types of group
differences in the brain, including amplitude, spatial distribution, age effects and functional-
structural relationships. We identified several group-discriminating aspects that replicated
previous reports, implying that while SZ and BP show differences in regions including
parahippocampal gyrus and visual cortex, they also share several common abnormalities in
frontal brain mechanisms and in prefrontal thalamic white matter tracts. Such observations
add to our understanding of the neural correlates of both disorders and may have utility as
potential brain illness biomarkers.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
presents a summary of various blind data-driven methods for data fusion. Note that both
mCCA and sCCA belong to CCA, but maximize the correlation in different parts of the data.
In mCCA+jICA, mCCA automatically links two datasets via correlation between mixing
matrices; while jICA further decomposes the remaining mixtures in the associated maps.
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Figure 2.
Flow chart of the mCCA+jICA analysis process for the clinical fMRI and DTI data fusion
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Figure 3.
illustrates the whole simulation results for 3 factors and in 2 ways. The 3 factors are source
estimation (Ŝ), mixing matrix estimation (Â) and modal linkage shown by correlation
between mixing coefficients of each modality(corr(A1(:,i),A2(:,i))), which are displayed in
three rows. For each factor, we compared 3 algorithms in different noise conditions (left
column) and for each source index (right column). Under each noise condition (PSNR), we
illustrate the average of all sources’ estimation. For each specific source, we plotted its mean
estimation and standard derivation across all noisy conditions. It is indicated that mCCA
+jICA is robust for noise and source type, and its source decomposition performance is the
best.
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Figure 4.
simulation results of comparing separation performance of 3 methods 8 sources for each
simulated modality: S1 (left) and S2 (right) are designed on purpose with greatly different
final vector length (65536 vs. 2000, implying multimodal data); 100 mixtures are generated
for each PSNR, here we display PSNR=6dB. The correlations of mixing coefficients
between corresponding sources of each modality are listed in the middle, so do their
estimations. See jICA separate sources accurately except the 3rd S2 signal, while mCCA
estimates the modal connection accurately except that it can not decompose images quite
well. mCCA+jICA combine both advantages and improve the performance remarkably.
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Figure 5.
Summary of components with significant group differences in four pair-wise group
combinations. Two ICs with the same frame color in two modalities represent joint ICs.
Those p values displayed with yellow text pass the Bonferroni correction for multiple
comparison (p<0.005), others pass the uncorrected significance level (p<0.05).
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Figure 6.
Variation of functional spatial maps (AOD_IC9) among groups. Left: The AOD_IC9
derived from mCCA+jICA. Right: the back-reconstructed group sources SBP, SSZ and
Sg common (the common activation of SBP, SSZ and SHC) are overlaid one by one from
bottom to top. For display, the components were converted to Z-values and thresholded at |
Z|>2.
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Figure 7.
demonstrates the scatter plots and linear trends between subjects’ age and loading
parameters. Specifically, HC in red line, SZ in blue line, BP in green line and trend of all
subjects in black line. For FA_IC1, All groups have very significant correlation, thus were
plotted using one marker.
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Figure 8.
This figure attempts to verify that the “linked”(joint) components do correspond to FA
changes in known tracts and functional changes in distant regions connected to that tract.
Note that we did not perform actual fiber tractography but provided a type of summary
statistic. Three joint components are selected with their A1–A2 correlation from moderate to
high. On the right diagrams, functional region with a red solid line frame indicates that a
major portion of it is activated. Region with dotted line frame indicates that only small part
of it is activated. We plotted only FA fiber tracts with more than 1 cm3 volume(R+L)
activated. Abbreviations are defined below, F: frontal lobe, P: parietal lobe, T: temporal
lobe, O: occipital lobe, PH: parahippocampal gyrus, SLF: Superior longitudinal fasciculus,
CGC: Cingulum, CST: Corticospinal tract, UF: Uncinate fasciculus IFO: Inferior fronto-
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occipital fasciculus, ILF: Inferior longitudinal fasciculus, FMIN: Forceps minor, FMAJ:
Forceps major, ATR: Anterior thalamic radiation.
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Table 1

MNI Table of group-discriminating fMRI components (R/L)

IC 1# BA Vol Zmax (MNI)

Postivie

POG Postcentral Gyrus 1–3, 5, 40, 43 9.2/11.8 4.3 (−45, −20, 56)/6.0 (42, −20, 56)

PRG Precentral Gyrus 4, 6 9.7/11.3 4.4 (−36, −23, 62)/5.9 (39, −17, 59)

IPL Inferior Parietal Lobule 40 0.9/3.5 3.4 (−45, −32, 57)/5.3 (45, −35, 57)

SFG/MFG Superior/Middle Frontal Gyrus 6 1.4/3.8 3.1 (−39, −3, 55)/4.3 (27, −8, 64)

MeFG Medial Frontal Gyrus 6, 32 5.4/4.8 3.2 (0, −6, 50)/3.2 (3, −6, 53)

CG Cingulate Gyrus 24 1.0/0.4 2.9 (0, −3, 47)/2.8 (3, −1, 47)

PCL Paracentral Lobule 4, 6, 31 1.5/1.3 2.7 (0, −24, 51)/2.7 (3, −29, 65)

Negative

IFG Inferior Frontal Gyrus 47 1.9/0.5 2.6 (−48, 23, −9)/2.2 (39, 17, −8)

PCun Precuneus 7 0.6/0.2 2.3 (−3, −74, 42)/2.2 (3, −71, 39)

IC 2#* BA Vol Zmax (MNI)

Positive

IFG/MFG Inferior/Middle Frontal Gyrus 9, 11, 44–46 1.2/1.3 2.3 (−53, 10, 19)/2.3 (45, 29, 7)

Negative

PC Posterior Cingulate 29, 30 0.6/0.3 5.1 (−3, −46, 8)/4.1 (3, −46, 8)

LG Cuneus/Lingual Gyrus 17–19 5.7/5.9 4.5 (−9, −85, −11)/4.9 (3, −96, 2)

FUSG Fusiform Gyrus 18, 19, 37 1.9/1.7 4.3 (−24, −85, −13)/3.8 (21, −88, −13)

PHG Parahippocampal Gyrus 28, 30, 34, 35 2.3/1.3 4.1 (−9, −38, 5)/2.9 (15, −6, −12)

SFG Superior Frontal Gyrus 6, 10 2.8/0.4 4.0 (−3, 3, 66)/2.5 (27, 61, 5)

THA Thalamus 1.5/0.8 3.7 (−3, −14, 9)/3.3 (3, −14, 9)

STG Superior Temporal Gyrus 38 1.7/0.0 3.1 (−53, 14, −13)/NA

IC 6 BA Vol Zmax (MNI)

Postivie

STG Superior Temporal Gyrus 22 2.6/0.7 3.8 (−59, 6, 0)/2.5 (56, 3, 3)

MTG Middle Temporal Gyrus 19 0.0/1.6 NA/3.3 (39, −72, 26)

THA Thalamus 0.8/1.3 3.1 (−6, −2, 8)/3.1 (6, −5, 11)

IFG Inferior/Medial Frontal Gyrus 9–11, 44– 47 1.1/1.2 2.4 (−3, 58, 3)/2.8 (24, 28, −19)

PCun/AG Precuneus/Angular Gyrus 7, 19, 31, 39 0.4/2.4 2.2 (−15, −60, 25)/ 3.0 (36, −71, 31)

PRG Precentral Gyrus 6, 44 1.7/1.4 2.6 (−59, 0, 6)/2.6 (56, 3, 8)

AC Anterior Cingulate 25 0.1/0.1 2.6 (−3, 6, −3)/2.2 (3, 6, −3)

Negative

Cun/LG Cuneus/Lingual Gyrus 17, 18, 19 2.9/7.3 3.9 (−3, −93, 5)/4.8 (3, −96, 2)

S/MFG Superior/Middle Frontal Gyrus 6, 8–10, 46 4.6/5.1 4.0 (−39, 59, 8)/4.0 (36, 58, 3)

PHG Parahippocampal Gyrus 28, 34, 35 2.2/0.0 4.0 (−12, −1, −15)/NA

CG Cingulate Gyrus 23 1.0/0.4 2.9 (−3, −28, 26)/2.7 (3, −28, 26)

IC 8# BA Vol Zmax (MNI)

Positive
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IC 1# BA Vol Zmax (MNI)

Cun Cuneus 7, 17–19, 23, 30 14.7/11.8 5.4 (−6, −67, 9)/5.0 (3, −75, 15)

PC Posterior Cingulate 18, 23, 29– 31 4.2/3.8 5.4 (−6, −69, 12)/4.6 (6, −69, 12)

LG Lingual Gyrus 17–19 8.1/8.8 5.2 (−15, −58, 3)/4.8 (12, −64, 3)

PCun Precuneus 7, 18, 19, 31 3.9/1.9 4.6 (−3, −72, 23)/4.2 (3, −74, 26)

PHG Parahippocampal Gyrus 18, 19, 30 2.0/0.9 4.4 (−21, −52, 3)/3.1 (12, −47, 2)

FUSG Fusiform Gyrus 19, 37 1.1/0.3 3.0 (21, 59, 7)/2.5 (21, 62, 7)

Negative

MFG Middle/Medial Frontal Gyrus 10, 11 1.0/2.1 2.5 (−3, 49, −15)/2.7 (3, 46, −12)

IFG Inferior Frontal Gyrus 11, 47 0.1/0.3 2.5 (−27, 31, −19)/2.7 (24, 28, −19)

AC Anterior Cingulate 32 0.0/0.2 NA/2.2 (6, 40, −10)

THA Thalamus 0.2/0.3 2.2 (−3, −11, 12)/2.1 (3, −17, 12)
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