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Summary

Despite the use of standardized protocols in, multicentre, randomised clinical trials (RCTS),
outcome may vary between centres. Such heterogeneity may alter the interpretation and reporting
of the treatment effect. Below, we propose a general frailty modelling approach for investigating,
inter alia, putative treatment-by-centre interactions in time-to-event data in multi-centre clinical
trials. A correlated random effects model is used to model the baseline risk and the treatment
effect across centres. It may be based on shared, individual or correlated random-effects. For
inference we develop the hierarchical-likelihood (or h-likelihood) approach which facilitates
computation of prediction intervals for the random effects with proper precision. We illustrate our
methods using disease-free time-to-event data on bladder cancer patients participating in an
European Organization for Research and Treatment of Cancer (EORTC) trial, and a simulation
study. We also demonstrate model selection using h-likelihood criteria.

Keywords
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1. Introduction

In this paper we focus on multi-centre trials with time to event endpoints. We are interested
in investigating potential heterogeneity in outcomes between centres. In this context, the use
of proportional hazards (PH) frailty models with random effects, rather than PH models with
fixed (centre) effects, are useful [1-4].

Our approach is to model: (a) the between-centre variation in the baseline risk and (b) the
treatment effect across centres [2, 5], using random effects. Thus, our model incorporates a
random centre effect and a random treatment-by-centre interaction. These two random
components (or frailty terms) have usually been assumed to be independent [2, 5]. However,
independence may be un-necessarily restrictive [6-8]. In particular, Legrand et al. [4] has
recommended using correlated random effects. Furthermore, our approach also models



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Haet al.

Page 2

individual-specific frailty terms [9-11], because covariates specified in the protocol, or
involved in the minimization procedure [12, p.71], may not account for all prior differences
between patients. Thus, by deploying classical frailty concepts, we hope to improve
conventional strategies for analyzing RCTSs trials.

Usually, inference in frailty models requires a marginal-likelihood approach, whereby the
random effects are integrated out of the joint density consisting of response variables and
random effects. This may involve the evaluation of analytically intractable integrals over the
random effect distributions. To avoid these difficulties, several methods (e.g. Monte Carlo
EM and Markov chain Monte Carlo) have been suggested [13, 14], but these remain
computationally intensive, particularly when the number of random components is large or
when their correlation structure is modelled [15-19].

Another important issue is that of estimating the standard errors for the prediction of random
effects, which is required in order to construct 100(1 — )% prediction intervals. Plots based
on these intervals are useful, especially when investigating the heterogeneity of random
centre and treatment effects. However, estimating the standard errors of random effects
using “plug-in” methods, such as empirical Bayes (EB, [13, 20]), may underestimate the true
variability of the estimated random effects. Thus, the development of an integral method of
inference for frailty models is required.

Accordingly, we propose a unified method of inference within the h-likelihood framework
[21-23]. The h-likelihood consists of data, parameters and unobserved random effects, and
obviates integration over the random-effect distributions. Thus, the h-likelihood can be used
directly for inference on random effects, while the marginal likelihood cannot because it
eliminates them by integration. The h-likelihood approach also gives a statistically efficient
estimation procedure for various random-effect models [11, 19, 24-26]. We derive, via the
h-likelihood approach, improved methods for estimating the standard errors of the predictor
of the random effects and the frailty parameters. In particular, we emphasize inference on
the random effects rather than on just estimating the frailty parameters. Predictions and their
intervals are useful in investigating heterogeneity over centers. We illustrate the
methodology by analyzing time to first recurrence in patients with bladder cancer from an
EORTC trial [27] and by a simulation study. We also employ the data to illustrate model
selection using criterion [11] based on h-likelihood.

The paper is organized as follows. In Section 2 we review a formulation of frailty models,
present an extension, and show how to interpret the random-effect terms. The h-likelihood
estimation procedure for fitting the model is derived and an improved method for estimating
the standard-error of the frailty parameters is proposed. Next, a new prediction method for
random effects is proposed in Section 3. The new method is illustrated using the bladder
cancer data set in Section 4. A simulation study is conducted to evaluate the performance of
the proposed method in Section 5. And, finally, we discuss the approach in Section 6. The
technical details are given in Appendices.

2. The model and estimation

2.1. Model formulation and interpretation

In general, suppose that data consist of right censored time-to-event observations collected
from g centres. Let Tj; (i=1, ..., q,j = 1, ..., nj, n = X n;) be the survival time for the jth
observation in the ith centre (or cluster) and let Cj; be the corresponding censoring time.
Then observable data become yjj; = min{Tj;, Cjj} and djj = I(Tj; < Cj;), where I(-) is the
indicator function.

Stat Med. Author manuscript; available in PMC 2012 July 30.
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Denote by v; a s-dimensional vector of unobserved log-frailties (random effects) associated
with the ith cluster. Given vj, the conditional hazard function of Tj; is of the form

Aij(tlvi)=A0(Dexp(;;), (1)
where 2g(-) is a unknown baseline hazard function,
'7ij=~Yijﬁ+Zij"i

is the linear predictor for the hazards, and Xjj = (Xjj1, ---, xijp)T and zjj = (Zjjg, -+ zijs)T are p x
1 and s x 1 covariate vectors corresponding to fixed effects g = (6, ..., ,Bp)T and log-frailties
vj, respectively. Here zjj is often a subset of xjj. Alternatively, it may be the constant (unity)
representing a cluster effect on the baseline hazard [13]. In this paper, we assume the normal
distribution for v;:

Vi~ No(0, ) ),

which is useful for modelling multi-component [11, 28] or correlated frailties [13, 29]. Here
the covariance matrix X = Z;(¢) depends on 6, a vector of unknown parameters. We note
that the formulation of model (1) is actually the same as that of VVaida and Xu [13] but that
their covariance matrix for Z; is diagonal [8].

Equation (1) includes some well-known models. Let vjg be a random baseline intercept
(representing the random baseline risk) and let vj; be a random slope (i.e. random treatment
effect or random treatment-by-center interaction). If in model (1) zj; = 1 and v; = vjq for all i,
j, it becomes a random intercept or shared model [30, 31] with

1 i ;.
nij—x[jﬁ'HlO, 2

where vjg ~ N (0, Z;) with Z, = 0’3 for alli. Let g, be the effect of primary covariate Xjj;
such as the main treatment effect and let S, (M =2, ..., p) be the fixed effects corresponding
to the covariates Xjjm. Our two random components lead to a bivariate model [8, 32] with

])
nij=vio+(B1+vi)xij1 + E BinXijm

m=2 (3)

which is easily derived by taking zj; = (1, xijl)T and vj = (vip, vi1) T in (1). Here

e )=m{(5) Z=( o )
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Model (3) allows a correlation term, p = gg1/(6go1), between two random effects (v and viq)
within a centre and potentially extends the independent frailty model in which p =0 [2, 5].

Furthermore, we note the model (1) may be asymmetric (or unbalanced) as it does not
contain a generic individual-specific frailty term, vj; to match the individual-level fixed

effects, xjj. Following Ha et al. [11], the one-component model (1) with nij=X,-Tj/3+z,4Tjw can be
extended easily to a two-component model with

_Ta, (DT (), T (2
7]!,]_~\ijﬁ+«.ij Vi +A.I'j V,'ja (4)

2 . 1 2 .
where +{" and ‘f’l(j) are independent, and z j) and Zgj) are random-covariate vectors
. 2 . . .
corresponding to vE]) and VSJ-), respectively. In fact, the model (4) can be written as in (1) by

. mr @t T 1 @7 .
taking zij=(z;; ,z,-j) ) and vi=(v; ,v;7") . Thus, the extension of results from one-

component model (1) to two-componént model (4) is straightforward [11, 21].

In order to interpret the fixed and random effects, we consider model (3) with a single
binary-treatment indicator, Xjj. Then,

Aijf(tvio, vitsxij)=Ao(Dexp{vio+(B1+vi )xij}.
Now, the time-dependent relative risk for treatment becomes

_ Ao(expl{vio+(B1+vi) - 1}
Ao(Hexp{vio+(B1+vi1) - 0}

¥ij(tlx=1, x=0) =exp(B1+vi1),

which is free of time t and holds for all patients in centre i. Here exp(51) is the usual
expression for the relative risk in a standard PH model. Thus, w;j(tjx = 1, x = 0), represents a
random multiplicative divergence from the standard relative risk in a PH model which is
homogeneous with respect to centres. Note that exp(51 + vjp) is often called the treatment
hazard ratio in the ith centre [2, 5]. We also have that

exp(Bi+vi1)

- =eXplvi1).
exp(B1) pCva)

Thus vj; means the random deviation of the ith centre from the overall treatment effect.
Similarly, in order to interpret vio we consider the model without the covariate x;;

Aij(tlvio)=Ao(t)exp(vip)

whence,

Stat Med. Author manuscript; available in PMC 2012 July 30.
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Ao(Dexp(vip) _

oexp(0) o Pt)

wiji(H=

which is free of time t and holds for all patients in centre i, and vjg represents the random
deviation of the ith centre from the overall underlying baseline risk.

2.2. H-likelihood estimation

We now show how to derive the h-likelihood estimation procedure for fitting a correlated
semiparametric model (1) and also propose how to obtain valid standard-error estimates for
frailty parameters (i.e. dispersion parameters).

Since the functional form of Jy(t) is unknown, following Breslow [33], we approximate the

baseline cumulative hazard function Ao(t)=f(’,/lo(u)du by a step function with jumps at the
observed death times [23, 34];

Ao(t)= Z Aok,

kiygy <t

where y) is the kth (k =1, ..., D) smallest distinct death time among the yj;’s, and Aok =
20(Y(k)-

Following Ha et al. [23], the hierarchical log likelihood (h-likelihood) for frailty models (1)
is defined by

h=h(B, v, Ao, 0)=Zf1i_,i+zfzi,
ij i (%)

where

201=20i{logAo(vij)+mijt — ZAAo(vij)exp(ij)}
ij ij 1]

=§d(k)10g/10k+z5iﬂ7ij—21101\-{ > eXP(ThJ‘)},
: =

k (i.)eRw)

C1ij = €1ij(B, Ao; Yij, dijlvi) is the logarithm of the conditional density function for y;; and dj;
given v;,

£a=(6:,)= — 2 logdet(2r Y O))] - %v;Z,w)“ v

is the logarithm of the density function for v; with parameters 0, Ag(:) is the baseline

cumulative hazard function, and 7:=x;,8+z;;vi. Here = (B1, ..., Bp)T, v=0v] ... vZ)T, Ao =
(Aot - /IOD)T, d(k) is the number of deaths at y() and Ry = R(y() = {(i, J) : Yij = Yo} is the

Stat Med. Author manuscript; available in PMC 2012 July 30.
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risk set at y(). In (5) log likelihood of the ith cluster is the logarithm of the joint density of
(vi, i) and vj, where y; = (yia, ..., Yin;) ' @nd &; = (i, ..., din))". As the number of Jgys can
increase with the number of events, the function 1y(t) is potentially of high dimension.
Accordingly, for estimation of (5, v) Ha et al. [23] proposed the use of the profiled h-
likelihood h™ from which /g is eliminated:

h =h]nln=jo :Z[TU-‘—Z&’.’
if i

(6)
where

d

ji\()I((;Bs Ve,
Z(i.j;ek(“ exp(liij)

are solutions of the estimating equations, dh/dig =0, for k =1, ..., D. Note here that

Z,;;ﬁijzz,-j[‘fJ"AU:ﬁn:de(k)log‘lw+Z,~j‘5"ﬂ7f1 - de(k) does not depend on Ag. Thus Lee
and Nelder’s [21-22] h-likelihood procedure for hierarchical generalized linear models
(HGLMs) can be extended to the frailty models based on h* [11, 19]. Here, for the
estimation of frailty parameters 6 we use an adjusted profile h-likelihood [18, 35], pﬁ,v(h*)
defined in (A2); the details for estimation procedure are given in Appendix A.

We have shown that the approximated standard-error estimates for £ are obtained from the
inverse of —22h*/a(8, v)2, given in (7) [18, 23]. In this paper we propose that the
approximated standard-error estimates for 4 are directly obtained using the inverse of
~&pg ()1 36?; the technical details are given in Appendix B. We also show the
performance of these estimates by simulation below. Some conceptual differences between
h-likelihood and other estimation methods for frailty models (1) are described in Appendix
C.

3. Prediction of random effects

J(h* B, v)=—

In HGLMs location parameters and dispersion parameter are asymptotically orthogonal [21].
Thus, very recently Lee and Ha [36] showed that a proper standard-error (SE) estimate for
the prediction interval of random effects v can be computed from the inverse of the
information matrix for (4, v) based on the h-likelihood. Here, the SE becomes the squared
root of the approximation of the conditional mean-square error of prediction (CMSEP) of
Booth and Horbert [37]. This is a general measure of predictive uncertainty and, following
Lee and Ha [36], its extension to frailty models is straightforward as shown below.

In frailty models (1), as in HGLMs, location parameters (5, 1g, v) and frailty parameters
are asymptotically orthogonal. For a moment, assume that 4 is known. Accordingly, we need
only focus on (8, v) after eliminating Aq i.e. by using h”™. Following Ha et al. [23] and Ha and
Lee [18], the asymptotic covariances for £ and v — v are obtained from the inverse of
information matrix, J(h™; g, v) = —&2h"™1 (5, v)?2, of g and v based on h™:

| X"wrx  XTwWZ

0*h* |0paBT  &*h* |oBov”
\Z"wx Z'wrz+U ) @

O*h* JovopT 82h* [vovT

Stat Med. Author manuscript; available in PMC 2012 July 30.
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where X and Z are the n x p and n x g model matrices for § and v whose ijth row vectors are

5 -1 -1 -1
xiTj and :,T, respectively, U=~ a'fl/a"zzz :BD(ZI Zq ), and the weight matrix
W* = W*(8, v) is given in (B4). Here, BD(:) denotes a block diagonal matrix. This means
that the SEs of vV — v can be computed from the information matrix, J in (7), of the profile h-
likelihood h™.

Letyo, = (y", o")T and y=(8", ,1g>T. Here y and ¢ are the vectors of yj;’s and dj;’s,
respectively. Following Booth and Horbert [37], the CMSEP based on y, and  is defined
by

CMSEP=E,[ {("(¢) — v}{v(¥) — V}Tlvo],

where V () =V (y)|,=, and V () is the solution to &h/&v = 0 for a given . Note here that v
(w) = E(v]y,) asymptotically. Along the lines of Lee and Ha [36], J(h™; 4, v)"1 = J(h™; 5,
v)*1|5=ﬂj v = v gives the first-order approximation to the CMSEP, leading to a SE for v — v:

CMSEP=var, (v]y,)+D())

~ ((=0%h/ovovT )™ +(@V | Var@)F71 o) M, ®

=bottom right hand corner of J(/* ;E,’ﬂ_l
- -1
={(Z"TW*Z+U) - (ZTW*X)(XTW*X) 1(XTW*Z)} PR ©)

where var,,(vlyo} = E[{V () = VHV () = V}'lyo] and D(y) = E[{V () = V () HV(w) — V
()} lyo] is a nonnegative correction that accounts for the variability of parameter estimates
. Here oVl gy = — (—Phiavav™) ™1 (—2hivayT)|y= v. For the SE of prediction of random
effects Vaida and Xu [13] and Othus and Li [20] used the EB method based on conditional
posterior distribution of v given y,, leading to

-1
vary (vly,) = (=0°h/ovov) |, (10)

which corresponds to the first term on the right hand side of (8) [21, 37]. The EB method
can underestimate the SE of vV — v because it ignores the term above, D(y), which accounts

for the inflation of the CMSEP caused by estimating y=(8", 1] )" [36, 37]. Following Lee
and Ha [36], for the 95% h-likelihood and EB prediction intervals for v we use

7 — 1.96SE(W — v), 7+1.96SE(V — v)},

where V are obtained from (Al). Here the estimated h-likelihood and EB standard errors,
SE(V — V), are also obtained from the square roots of (9) and (10), respectively.

Stat Med. Author manuscript; available in PMC 2012 July 30.
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The duration of the Disease Free Interval (DFI) in non muscle invasive bladder cancer
patients, treated in various centres in Europe, is analysed. The DFI is defined as the time
from randomization to the date of the first recurrence. Patients without recurrence at the end
of the follow-up period were censored at their last date of follow-up. Patients were enrolled
in 7 studies conducted by the EORTC [27]. For simplicity of analysis, we consider only 410
patients from 21 centres included in EORTC trial 30791 (Table 1). The two covariates of
interest are: CHEMO xij; (0=No, 1=Yes) and TUSTAT xij, (0=Primary, 1=Recurrent).
Notice that x;j; is the main treatment covariate. Patients with missing values for X, were
excluded. The numbers of patients per centre varied from 3 to 78, with mean 19.5 and
median 15. Of the 410 patients, 204 patients (49.8 per cent) without recurrence were
censored at the date of last follow up.

For the purpose of analysis, we consider the three submodels of (3):
M1 (Cox): Cox model without frailties (basic hazard),
M2 (Indep): Cox models, with two independent frailty terms (p = 0),
M3 (Corr): Cox models, with two correlated frailty terms (o # 0).

Models M2 and M3 contain the random baseline risk vjg and the random treatment-by-centre
interaction term, vj1Xjj1. The models were fitted using SAS/IML. The results are summarized
in Table 2. In all three models the two fixed effects (8;, j = 1, 2) are significant. In particular,
the use of chemotherapy (CHEMO = 1) significantly prolongs the time to first recurrence as
compared to patients who do not receive chemotherapy (CHEMO = 0): see also [4]. The two
nested models (M1 and M2) ignoring random components or their correlation show similar
results for f; (j = 1, 2). However, the absolute magnitude and SE of the estimate for the main
treatment effect £, in M1 and M2 are smaller than those for the correlated model (M3). In

M2 and M3, the variances ( o and o) indicate the amount of variation between centres in
the baseline risk and in the treatment effect, respectively. Here, the estimate of aﬁ is

relatively larger than that of a%. This does not seem surprising since differences in outcome
according to treatment effect are typically smaller than differences due to patient
characteristics which often vary across centres. However, care may be necessary in
comparing the two variances because these two values should not be interpreted on the same
scale.

Moreover, the correlated model M3 explains the degree of dependency between the two
random components (i.e. the random centre effect vy and the random treatment-by-centre
interaction v4). The estimate of p (» = —0.893) gives a large negative value, indicating that
the two predicted random components (Vo and V) have a strong negative correlation. It is
clear from the plot (not shown) of V; against v that as vjg increases (i.e. the baseline risk
increases), vj; decreases. Note here that exp(vj1) represents the ratio of treatment hazard rate
in the ith centre (i.e. exp(f1 + vij1)) to overall hazard rate (i.e. exp(1)). In particular, the
estimate of 1 in M3 is negative; we see that a decreasing value of vj; corresponds to an
increased treatment effect. Thus, the negative correlation leads to the conclusion that
treatment confers more benefit in centres with a higher baseline risk. This is consistent with
the findings by Turner et al. [6] and Rondeau et al. [8] in the context of meta-analysis.

Figure 1 compares SE estimates of h-likelihood (HL) versus EB under M3. As expected, the
EB estimates are smaller than HL estimates in both vjp and vjq, leading to a lower coverage
probability of prediction interval than the nominal level. Accordingly, below, we conduct

Stat Med. Author manuscript; available in PMC 2012 July 30.
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detailed analyses of the random effects using HL. Figure 2 shows the estimates and 95%
prediction intervals for the random effects in the 21 centres using M3. It shows the
variations of the two random components (vjg, vj1) over centres, ordered by the number of
patients entered. In particular, Figure 2(a) shows that centres 12 and 19 provide the highest
and the lowest baseline risk, respectively. From Figure 2(b) we see that the corresponding
centres give lowest and highest treatment hazards, respectively, which leads in this case to a
negative correlation (p = —0.893), as shown in Table 2.

Figures 2(a) and 2(b) also give the prediction intervals for the random baseline risk (vjp) and
the random treatment-by-centre interaction (vjq), respectively. Overall, the lengths of the
intervals are seen to decrease as the number of patients per centre increases, particularly for
Figure 2(a): see also [13]. Figure 2(a) indicates substantial variation in the baseline risk
across centres. However, Figure 2(b) shows overall homogeneity in the effect of treatment
across centres, that is, there is little treatment-by-centre interaction in this data set. Thus, in
this multicentre trial there is little difference in the treatment effects across centres and the
treatment is shown to be effective, while there appears to be substantial variation in the
baseline risk of DFI across centres. These results suggest that the treatment effect may be
generalized to a broader patient population as in the findings by Yamaguchi and Ohashi [2].

In addition, the prediction intervals for the log treatment hazard rates (i.e. bj; = 1 + vij1) in
the different centres are also useful to check the variations over centres. Similarly, the 95%
prediction interval of bj; is given by

{bi1 — 1.96SE(bi — bir), bii+1.96SE(b;; — bi1)),

where bj1 = fi1 + Vip and SE(bi1 — b1 )= \/var(b;; — b;1). Here var(bj; — bjy) = var(fy) +
var(Vi; — Vi1) + 2cov(f1, Vi — vi1) is obtained from J71 in (7). Figure 2(c) shows wider
interval lengths than in Figure 2(b) due to the additional variance and covariance terms, but
again confirms there is little difference in the treatment effects over centres.

4.2. Model selection

A thorough analysis will involve us in enlarging the potential model space beyond M1, M2
or M3. We consider a number of extensions below and show how to select an appropriate
model using a Akaike information criterion (AIC) [11] based on the focussed extended
restricted likelihood (ERL, [35]);

AIC(T})=T:+2p,.

Notice that 7);= — 2pg...(h") is a deviance based on the ERL pﬂyv(h*) in (A2) which eliminates
(8, v) from h”, the profile h-likelihood from which the nuisance function 1o(t) has already
been eliminated. Thus, 7'} is a function only of the frailty parameters 6 and AIC(T},) is used
to select the frailty structure best supported by the data. Here pt is the number of frailty
parameters (i.e. the parameters governing the frailty distribution), not the number of all

fitted parameters or frailties. Notice that the focussed AIC(T))) is a sharper model selection
tool than the more usual unfocussed AIC [11].

Recall that vjg and vj; are the random baseline risk and random treatment effect of the ith
centre, respectively. For the purpose of analysis, we consider the following five models

Stat Med. Author manuscript; available in PMC 2012 July 30.
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including M1-M3, 4jj(tlv) = Zo(t) exp(njj) with »;j allowing several frailty structures in

models M2—-M5: Here (vjg, Vij1) ~ BN means that vy ~ N(O, or(z)), vi1 ~ N(O, oﬁ) andp =
Corr(vio, Vi1); (Vip, Vi1) ~ IN also means BN with p = 0.

M1 (Cox):n;j=P1x:j1 +B2%ij2,

M2 (Indep):mj:([ﬁ] +vi1 )x;jl +[32x,-‘,‘3+v,»0, with (vjp, vi1) ~ IN.
M3 (Corr):m; j=(B1+vi1)xij1 +B2Xi j2 +vio, with (vip, vi1) ~ BN.
M4 (B):1;;=PB1 xij1 +B2Xi jp+vio, With vig ~ N(0, 073),

MS (T):m;j=P1 Xij1 +Baxijp+vit Xiji, With vip ~ N(0, 07),

where B and T denote random baseline risk and random treatment effect, respectively. Here
M3 is our full model and the others are various simplifications of it by assuming null
components, i.e. M1 (vig = 0, vi; = 0), M2 (p = 0), M4 (vj; = 0) and M5 (vjg = 0). For ease of
comparison and ranking of candidate models, we have set the smallest AIC to be zero and
the other AIC values are shifted accordingly. In Table 3 we report the AIC differences, not
the AIC values themselves. The deviance from model M2 is very similar to that obtained in

M4 because in M2 the variance of the vj; is very small, i.e. Ef ~ 0in Table 2. If the AIC
difference is larger than 1 the choice can be made [38, p.84]. Under this empirical criterion,

we note that AIC(T’;) selects M4 as an appropriate model; its estimation results are also
presented in Table 2. In particular, it clearly rejects more complex models M2 and M3 than
M4, indicating that it reflects model complexity properly [11].

However, the Tj; may also depend on the individual-specific random effects as in Ha et al.
[11]. If this is the case, some of the observed variation between centres is attributable to the
heterogeneity between patients. We account for this properly, by introducing an appropriate
patient-specific frailty component. Let vjj be the random effects of the jth patient in the ith
centre, satisfying vjj ~ N (0, 62). The extra random term Vij, which is matched with
individual-level event time Tj; and fixed effect x;;, can be viewed as modelling heterogeneity
between patients at the individual patient level [9]. Accordingly, we consider the following
additional models:

M6 (I):Uij:ﬁlxijl +ﬁ2.x,-j2+v,-j, with Vij ~ N(O, 0'2),
M7 (B+1):17;=B1 xij1 +B2.Xi o +vio+vij, With vig ~ N(0, 075) and v;j ~ N(0, 072),
M8 (T+I):7],'j=ﬂ1 Xijl +ﬁ2.\‘;]’2+\’,‘| Xij1tVij, with Vit ~ N(O, O"]") and Vij ~ N(O, (Tz),
M9 (Indep+I):77[j=(,61 +vi1 )x,'j] +ﬁ2.\”,~j2 +Viot+vij, with (vjp, vi1) ~ IN and Vij ~ N(O, 0’2),
M10 (COIT+I)Z77,'J'=(ﬂ1 +\’,-1)xl-j1 +B2x,~‘,-z+v,~0+v,-‘,‘, with (_\’,'(), V,‘l) ~ BN and Vij ~ N(O, 0'2),

where | denotes individual random effect. Now, M10 is the full model which combines
models M3 and M6 and the others are various simplifications of it as before, i.e. M9 (p = 0),
M8 (vijg = 0), M7 (vj; = 0) and M6 (vjo = 0, vj1; = 0). Note that M6 has independence between
the survival times within centres. However, comparing model M6 with M4, M6 is rejected.
We also see that additional random effects vj; for B, T, Indep and Corr do not lead to any

improvement in deviances. Here, the AIC(T;) again rejects the additional complexity
implied by models M7-M10. Thus, for the bladder-cancer data set the focussed AIC chooses
M4 as the best model among those considered. Under M4 the predicted random effects (i.e.
random baseline risks) and 95% prediction intervals for each centre are plotted in Figure 3.
It shows substantial variations in the baseline risk over centre as evident in Figure 2(a). In
particular, the three centres (12, 16) and 19 stand out as having the highest and lowest
baseline risks, respectively. Note that although we report the SEs of the s, one should not
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use them for testing o2 = 0 [13]. Now we are also interested in testing the hypothesis

Hy:5=0, no centre effect (i.e. no variation in random-baseline risk). Such a null hypothesis
is on the boundary of the parameter space, so that the critical value of an asymptotic

(x2+x7)/2 distribution is 2.71 at 5% significant level [25, 39, 40]. The difference in deviance
(—2p, (h™) in Table 3) between M1 and M4 is 3.2(> 2.71), indicating that the centre effect is

significant, i.e. o3>0.

5. Simulation study

Numerical studies, using 200 replications of simulated data, were conducted to evaluate the
performance of the proposed method. Here we consider the two interesting models (2) and
(3), which correspond to M4 and M3, respectively. The structure of bladder-cancer data in
Table 1 is assumed in order to generate the data from each model. That is, the simulated data
structures consist of the total patients n = 410 coming from 21 centres, with the number (n;)
of different patients.

Firstly, data are generated from the model (2) with 1p(t) = 1 and the two different binary
covariates, the main treatment xjj; and Xij;

Aij(tlvio)=exp{B1 xij1 +B2Xijp+Vio}.

Here xjj; and x;j, are generated from a Bernoulli distribution with success probability 0.5,
respectively. The corresponding true parameters are 1 = —0.5 and 8, = 0.5. The random

effects vjg are also generated from N(O, (rf)) with (r:‘)=0.2 and 1.0. The corresponding
censoring times were, respectively, generated from exponential distribution with parameter
values empirically determined to achieve approximately the right censoring rate in each
centre of Table 1.

For the 200 replications we computed the mean, standard deviation (SD), the mean of the

estimated SE for ﬁ] (i=1, 2) and &, respectively. The corresponding SEs are, respectively,
obtained from J71'in (7) and {-&p, (h*)/892} L in (B2). The results of fitting the model (2)

are summarized in Table 4. Here, to save space we report only the results about a(z,:l which

give similar results to (T;‘;=0.2. Overall, the h-likelihood estimates of f;j and 0(2) perform well
even though the simulated data consist of somewhat high censoring. In Table 4 SD is the
estimates of the true {var(&)}/2, and SEM is the average of SE estimates for &, where

E=(Bo, B1, a(z,)r. Our SE estimates work well as judged by the very good agreement between
SEM and SD.

Next, data were generated from the model (3) with Ag(t) = 1:

Aij(tvio, vin)=exp{B1xij1+B2xi o +vio+vir Xiji ). (11)

The random effects vjg and vj; are generated from the bivariate normal distribution with four

combinations of frailty parameters; (o3, o7, )=(0.2,0.2, -0.5), (1.0, 1.0, -0.5), (0.2,0.2,0.5)
and (1.0, 1.0, 0.5), leading to op; = —0.1, —0.5, 0.1, 0.5, respectively. The remaining
simulation schemes including (xjj1, Xjj2) and (81, f2) are the same as before. The results of
fitting the model (3) with p = —0.5 are also given in Table 4. Though not reported here, we
found the similar results for p = 0.5. Overall, our approach again works well. However, the
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estimates of the frailty parameters ( o3, o3, ooy) are slightly biased when the variances are
large as in (o3, )=(1.0, 1.0).

In addition, we investigated the performance of our h-likelihood procedure when the normal
assumption of log-frailties vjg and vj; in (11) is violated. For linear mixed models Ha et al.
[41] and Verbeke and Lesaffre [42] have shown that misspecifying the normal random-
effect distribution has little effect on the fixed effects estimates. Following Verbeke and
Lesaffre [42], for simplicity we consider a mixture (Johnson and Kotz, [43, p.73]) of two
bivariate normal distributions. That is, v; = (Vig, vi1)" are generated from one of the
following two cases:

—03) ( 0.11 —0.07 03\ ( 011 —0.07
.l . . . l . . .
Case]'zN{( 0.1 )( ~0.07 0.19 )}+2N{( 0.1 )( ~0.07 0.19 )}

08\ ( 036 -0.18 08\ ( 036 -0.18
.l . . . l . . .
Casez'2N{( 0.4 )( -0.18  0.84 )}+2N{< ~0.4 )( ~0.18  0.84 )}

Two non-normal distributions with Cases 1 and 2 have been chosen such that E(vj) = 0 and
such that var(v;) equals the random-effect variance-covariance parameters in the first and
second settings given in M3 of Table 4, respectively. Note that Cases 1 and 2 produce
unimodal and bimodal distributions, respectively (not shown). The results in the third and
fourth settings given in M3 of Table 4 again confirm that the h-likelihood method gives
robust results for the estimation of parameters, particularly for g, when the distribution of
frailty is misspecified.

The SAS/IML program for a correlated model (11) with a simulated data set is available
from the website: http://stat.snu.ac.kr//hglmlab.

6. Discussion

We have shown that the proposed method provides a unified framework for the inference.
The data-directed simulation results have demonstrated that our procedure performs well for
the estimation of parameters, including the estimated SEs. Using h-likelihood, we have also
shown how to investigate potential sources of the heterogeneity related to treatment effect
over centres in multi-centre clinical trial. The proposed method can be also employed when
studying such heterogeneity in a meta-analysis [8] which combines survival data from
different clinical trials.

The heterogeneity of treatment effect could also arise in other situations besides treatment-
by-centre interaction. For example, it could arise in the case that the treatment effect affects
the variances of the frailty terms [44]; a simple dispersion model is a model (2) with

vio ~ N(0, o3,) allowing a regression model for o, given by logo,=yo+y1x:1 Where Xijy is a
main treatment covariate. Pan and MacKenzie [45, 46] have developed appropriate
structural dispersion methods for testing this hypothesis in the repeated measures setting
with Gaussian response variables and with and without random effects. Thus, we are
currently working on an extension of our method to models with structural dispersion.

In the data set in Section 4 we coded the main treatment as Xjj; = 0, 1 to indicate control or
treatment group. However, the coding of xij1= + Lmay give a flexible covariance structure
for the random effects [6, 8]. Though not reported here, both codings give similar estimation
results for all random-effect models (M2-M10) considered and select M4 as the best model.
Furthermore, we investigated how the small size (e.g. nj = 3) of some centres in Table 1
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influences the inference results. Here, the centres, centre numbers 1 and 2, with less than 4
patients were combined into one new centre. We have also observed (not shown) that the
results obtained from fitting a correlated model (M3) under the combined data set are very
similar to those of M3 in Table 2.

The focussed AIC(T;) in Section 4.2 is a criterion for the frailty parameters only and it
cannot be used for model selection involving the g parameter because the restricted

likelihood T7; eliminates the 5. However, if § is the subject of the model selection process we
may use the AIC based upon an adjusted profile h-likelihood p,(hp) in (C1) [11]. Thus, there
is clearly scope for further research on the development of a criterion for selecting the best
model globally. We have ignored missing covariates in the data set analysed because their
frequency is too small (i.e. 4/414=1%), but the original data set with 7 studies includes more
missing covariates. The development of h-likelihood methods for frailty models allowing for
missing covariates would be an interesting topic for future work.
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Appendix A

H-likelihood estimation procedure

With h™ in (6) we estimate the fixed parameters (5, §) and random effects v as follows. Ha et
al. [23] further showed that given 6 the estimation of z = (87, v7)T is obtained by solving

oh* Oh |

F_E «l():ji()_ ' (A1)

Here the first partial derivatives, oh/3r, are given by the simple forms:

oh Oh -1 .
£=Z(5U — pij)x;; and $=Z(6ij = Hij)Zij = Zi vi(i=1,...,9),
ij t

where wjj = Ao(yij) exp(zij). Next, for the estimation of the frailty parameters 6, we use Lee
and Nelder’s [21] adjusted profile h-likelihood [18] which eliminates (5, v) from h*, defined

by

. 1 J(h*,
pr(h“):[h* - —logdet{ (#57) H | ,
2 (271') -~ (A2)

where 7= 7(6) = (67(0), v1(0))T and J(h™; 7) = —8?h"1 32 is an information matrix for z with a
detailed form in (7). The restricted maximum likelihood (REML) estimator for & are
obtained by solving iteratively
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dp-(h*)

80 (A3)

Note here that

op(h") 1 -10% g 9y ! 1 (=07
0 °“(Z ae) 2' (69 b Gl b

& P

where = = BD(Zy, ..., Zg) is the g x g block diagonal matrix and /= J(6) = J(h"; 1)|=;().
Note also that in implementing (A3) we allow the &/ 99 term [18, 24, 26]; the computations
of the 8190 term including the &/ 80 term are given in Appendix B.

In summary, the estimates of r and 0 are obtained by alternating between the two estimating
equations (A1) and (A3) until convergence is achieved [18, 23]. The two equations are,
respectively, solved using the Newton-Raphson method with the corresponding Hessian
matrices, —8°h*/ar2 and —&p, (h")/992. After convergence, we directly compute the
estimates of var(z — 7) and var(é) using the inverses of —82h*/8:2 and —&p, (h")/ 962,
respectively.

Appendix B
The computation of —02p, (h*)/062

The adjusted profile h-likelihood in (A2) can be expressed as
(p+9)

1 _
pr(h)=h - 510gdet(])+ Tlog(27r'),

where 7= (8T, VT, 7 = h"|= ; (9 = h*(2(6), 6) and J = I(h"; D)|= (9 = I(z (6), 6). Since

Op-(h ):6h B ltr f‘la_'] ,
96, 96, 2 6, ®B1)

we have

_Pp () Oh 1{{_7_1017_161 *J )

26,00, 96,00, 2 26," 90, 96,00, 82)

We now show how to compute equation (B2). Following Lee and Nelder [22] and Ha and
Lee [18], we allow for &i/86, in computing the two equations, (B1) and (B2), but not for g5/
36;. Then we have
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since (8h™/&v)), = ¢ = 0: see also Appendix 2 of Ha et al. [23]. Along the lines of Appendix C
of Lee and Nelder [21], we can show that

(_)F__(_()3Iz’)_] (_ P )l
a0, — 2 b, ) |\ =7

- Z™Wz+U) U,

. , -1 -1 -l
where I is given in (B3), U =X ! and U,=az [06,= - (32/39,-)2 . From these
results the first term on the right hand side (RHS) of (B2) becomes

() - (85) ()
06,060, — 06,00 a6,0v 06,

g _10Y <135, 1 PY N 1T &
=—u(Z BT E - 5 Bk |+ 5T UL U( ),

where U/=02U/06,00,=—U,0)"/06)) =" " @Y /000Uy @) /06,000y

From (7) we have

A_( xX'wx  x"wz )

ZTWX ZTWz+U (B3)

where W = W)= i0) = =W *(¢(6), 6). Note here that following Appendix B of Ha and Lee
[18], W* = W*(8, v) is given by

W'=W; - W2, (B4)

where Wy = dlalg{Ao,J exp(rij)} is the n x n diagonal matrix with AO,J Ao(y”) and W, =
(W3M)C~Y(W3M)T is the n x n symmetric matrix. Here W5 = diag{exp(r;j)},

C=d1ag{d(k)/,10k} is the D x D diagonal matrix, and M = (My, ..., Mp)T is the n x D indicator
matrix whose (ij, k)th element is 1 if yjj > y() and 0 otherwise. Notice that AOij and Jo also
depend on (B, v) only and that the corresponding matrix forms are available in Ha and Lee
[18]. Thus, the two derivatives in the second term on the RHS of (B2) are computed as
follows:

PT

ol [ XTW.X X"W.z _
90,0,

96, \ ZTWX ZTW.Z+U.

XTw' x X"W’'z
) and ( rs rs

7'W. X Z'W.Z+U,
W, =" W /6,00, are calculated by the following procedures.

Here W.=0W /86, and
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w5 ) o)A@
a0, {6, | "av a6, )/ W\ "av )\aw,)f '
since &W™/86, = 0, and
PW (v [(PW\[ v\ (oW*\[ &V
69,093:{(6_6,-)(W)(6_95)+( v )(69,-665)} =
where
53%: —Z"Wz+Uy " {(ZTW;Z+U;)%+U;%+U;'§} ,
and &W"/av and 2W*/av2 can be calculated by repeatedly differentiating (B4) with respect
tov.
Appendix C

Comparison of different estimation methods

Ha et al. [19, 23] have showed that the profile h-likelihood h™ in (6) is proportional to the
penalized partial likelihood h, [PPL, 17], which uses the partial likelihood [47-48] for 4jj in
h; h* = hp + constant. The h-likelihood and PPL procedures are the same for the estimation
of f and v, given frailty parameters 0, but are different for that of 4. For the estimation of 6,
the h-likelihood method uses the restricted likelihood p/;,\,(h*), whereas the PPL method uses
an adjusted profile h-likelihood

1 J(hpiv)
pv(hp):[h,,—zlogdet{ (2; ) }J| K cn

where J(hp; v) = —92hp/9\/2, which is a Laplace approximation to the marginal likelihood
[19]; notice that py(hp) — py(h™) = constant. However, the PPL ignores the &v/80 term in
solving the score equations dp(hp)/&0 = 0; this leads to an underestimation of the
parameters and/or SEs, particularly when the cluster size n; is small [14, 18, 19].

Recently, the penalized maximum likelihood approach [8], which penalizes the baseline
hazard Ag(t) in marginal likelihood, has been proposed for the inference of parameters, but it
can not directly use for inference of frailties because it eliminates them by integration as in
standard marginal-likelihood approach [13, 34]. Furthermore, Bayesian approaches [4, 7]
have been also suggested. Legrand et al. [4] proposed a Bayesian approach using a Laplace
integration technique to approximate the marginal posterior density, z(d]y, 9); it can be
shown that under uniform priors (i.e. flat priors) for g and 9, log{=(ély, 6)} ~ p/g,v(h*). Thus,
we see that the h-likelihood method is equivalent to Legrand et al.’s method under uniform
priors - a choice, however, which is unlikely to be adopted in practice by Bayesians.

Stat Med. Author manuscript; available in PMC 2012 July 30.



1duasnuey Joyiny vd-HIN 1duasnuey Joyiny vd-HIN

1duasnuey Joyiny vd-HIN

Haet al.

Page 19

Komarek et al. [7] also proposed to use a Markov chain Monte Carlo algorithm but in an
accelerated failure time model with Gaussian random effects.
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Figure 1.
Standard error (SE) estimates of empirical Bayes (EB) versus h-likelihood (HL) analyses for
random effects in the bladder cancer data; (2) vg and (b) v4 in correlated model (M3).
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Figure 2.

Random effects of 21 centres in the bladder cancer data and their 95% prediction intervals,
under correlated model (M3); (a) baseline risk (vig); (b) treatment-by-centre interaction (vj1);
(c) log treatment hazard ratio (bj; = 51 + vj1). Centres are sorted in increasing order of
number of patients.
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Figure 3.

Random baseline risks (vjp) of 21 centres in the bladder cancer data and their 95% prediction
intervals, under the final model (M4). Centres are sorted in increasing order of number of
patients.
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Deviance results: AICs for selecting frailty structures in the bladder cancer data

Table 3

Model Ty o AIC(T))
M1 (Cox) 21962 0 12
M2 (Indep) 21930 2 20
M3 (Corr) 21927 3 37
M4 (B) 21930 1 O
M5 (T) 21942 1 12
M6 (1) 21956 1 26
M7 (B+l) 21923 2 13
M8 (T+l) 21935 2 25
M9 (Indep+l) 21923 3 33
M10 (Corr+l) 21921 4 51

Page 25

AIC, differences where the smallest AIC is adjusted to be zero; T, random treatment effect (vj1); I, individual random effect (vij); Indep, B & T are

independent; Corr, B & T are correlated; 7;= — 2{p-(h")};p;, the number of frailty parameters.
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