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Abstract
Gaining a complete and comprehensive understanding of lung cancer nodule histological
compositions and how these tissues are represented in radiological data is important not only for
expanding the current knowledge base of cancer growth and development but also has potential
implications for classification standards, radiological diagnosis methods and for the evaluation of
treatment response. In this study we generate large scale histological segmentations of the
cancerous and non-cancerous tissues within resected lung nodules. We have implemented a
processing pipeline which allows for the direct correlation between histological data and spatially
corresponding computed tomography data. Utilizing these correlated datasets we evaluated the
statistical separation between Hounsfield Unit (HU) histogram values for each tissue type. The
findings of this study revealed that lung cancer nodules contain a complex intermixing of cellular
tissue types and that trends exist in the relationship between these tissue types. It was found that
the mean Hounsfield Unit values for isolated lung cancer nodules imaged with computed
tomography, had statistically significantly different values for non-solid bronchoalveolar
carcinoma, solid cancerous tumor, blood, and inactive fibrotic stromal tissue.
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Introduction
Molecular studies in lung cancer have demonstrated great heterogeneity in lung cancer
genetics, with some potential therapeutic targets being pursued. One factor reducing the
impact of genetic results is that the physical and structural constructs of the lung cancer
biomass have not been defined quantitatively, with there being little or no understanding of
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the imaging or histological complexity of the lung cancer biomass, especially in three
dimensions. This lack of information significantly reduces the development of new
diagnostic tests, as well as making subtle change analysis from new therapies impossible to
evaluate.

We have previously developed a unique process model system to acquire multi-modal,
volumetric, cross-registered data pertaining to resected human lung cancer nodules [1].
These multi modal datasets have include multi row detector computerized tomography
(MDCT) scans, micro-CT scans, and three dimensional pathology using a purpose built
precision tissue microtome with digital camera that is referred to as the Large Image
Microscope Array (LIMA) [2], as well as standard histopathology. All of these samples
from the same lung cancer are cross registered pixel for pixel, giving the opportunity to
describe the complexity of the lung cancer biomass. We have also published from these
datasets the precise quantification of the histopathological tissue composition of the lung
cancer biomass [3]. In this current study we utilize the developed datasets to examine the
content and relationships between tissue components of the lung cancer biomass and how
these tissues are represented in corresponding MDCT Hounsfield Units (HU).

The cellular composition of lung nodules is routinely examined for diagnosis and is
important for determining prognostic and treatment guidelines [4]. For this purpose, great
attention has been paid to the cancerous portion of the lung nodule in determining a
classification or one or more histological sub-type [5]. More recently, lung nodule
histological composition is being described and evaluated qualitatively, extending beyond
the cancerous component of the nodule to include vascular, fibrotic, and necrotic tissue [6,
7]. These studies have indicated there is a statistically significant correlation between the
proportions of necrosis and fibrosis within a lung nodule and patient outcome. This may lead
to future sub-type classifications of lung nodules extending beyond the cancerous portion to
also include non-cancerous tissues of the nodule. However, large challenges are already
faced in obtaining consistent classifications of histological sub-typing due to a large
dependence on qualitative grading approaches and small sub-sampled, two dimensional
fields for assessment of a complex three-dimensional biomass.

It is widely accepted that the radiological representation of lung nodules may be linked to
the histological sub-type, such as ground-glass opacities correlated to bronchoalveloar
carcinoma (BAC) [8–10]. What is poorly understood is if the correlation between computed
tomography HU variance and underlying tissue structure extends beyond the solid and non-
solid nodule components, to the level of cellular tissue types.

In this study we present a controlled, quantitative evaluation of the histological composition
of resected lung cancer nodules, primarily adenocarcinoma. This evaluation incorporates the
identification of the histological tissue types comprising the nodule biomass, their relative
proportions as well as the shape and interaction between the tissue type regions. We have
used segmented histopathological data to isolate HU histogram statistics for each tissue type
from MDCT, and explore the statistical separability between these histograms.

Methods
Tissue

For study inclusion, a lung nodule (estimated diameter ≤ 30 mm) suspected or positively
confirmed as primary lung cancer, requiring lobectomy resection procedure was required.
Eleven lobectomy specimens were obtained from consented human patients, as per the
protocol approved by our Institutional Review Board. Of these tissue samples, seven
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nodules were primarily lung adenocarcinoma, three nodules were squamous cell carcinomas
and one nodule was a neuroendocrine carcinoma.

Data Acquisition
The processing model, described by Sieren et al. [11] was utilized to generate a
comprehensive, volumetric datasets for each lung nodule case, consisting of cross-registered
MDCT, micro-CT and histology data (Figure 1). In brief, lobectomy specimens were
cannulated and inflation fixed at 15 cmH2O using a modification of the Heitzman fixation
approach [12]. Following fixation, MDCT data for the fixed lung lobes were collected using
a Siemens Somatom Sensation 64 MDCT scanner (Siemens Medical Solutions, Forchheim,
Germany). MDCT data scanning was performed at 120kV, 140mAs, 0.6mm collimation and
reconstructed with a B35 kernel and 300 micron isotropic voxels. The lung nodules were
then dissected from the surrounding tissue and high resolution MDCT data and micro-CT
(80 keV, 100 microA) data were obtained. A novel system, the Large Image Microscope
Array (LIMA) [2] was utilized to sequentially section and image the lung nodules. Output
from the LIMA were the nodule volume sectioned into sequential 500 micron thick tissue
sections, and a color image dataset in which the spatial correspondence between each tissue
section remained linked to the nodule volume. Each tissue section was processed using
standard histopathology to produce hematoxylin and eosin (H&E) stained histology slides.

The H&E histology slides were digitized using a ScanScope Slide digitizer (Aperio
Technology, Vista, CA) and analyzed by a surgical pathologist with subspecialty expertise
in pulmonary pathology. Analysis involved the manual segmentation of: solid grouping of
cancer cells (black), cancer cells following a non-solid bronchoalveolar carcinoma pattern
(purple), necrotic tumor (gray), active fibrosis (green), hyaline fibrosis (blue), normal airway
wall tissue (yellow) and groupings of erythrocytes (red). The results of the segmentation
were presented as a color coded tissue type map, as seen in Figure 1.

The LIMA image dataset served as the basis for non-rigid registration of the digitized
histology data, compensating for the distortion and shrinkage that occurs with standard
histopathology processing. Thus, the many histology sections for a nodule could be aligned
to the original nodule volume, as it was represented not only in the LIMA dataset (on which
the registration was based) but also the volumetric micro-CT and MDCT datasets [11].

Lung Nodule Composition from Histopathology
The segmentation of the histopathological data, generating tissue type maps for each dataset,
allowed the quantitative evaluation of the composition of the nodule. The proportions of
each tissue type were calculated by summing the number of pixels in a tissue type class and
dividing this number by the sum of pixels in all tissue type classes. An average of eleven
histopathological sections per nodule were analyzed. Figure 2 features these results,
tabulated and presented in a percentage bar graph. A wide range of distributions of tissue
type percentages occurred across the dataset.

Regional Based Histopathology Assessment
The construction of tissue type maps based on histopathology can not only be used to gain
comprehensive estimates of tissue type proportions, but may also be used for quantification
of the regional properties of each tissue type.

The histological tissue type maps were split into a series of binary masks, one for each tissue
type. Connected component analysis was conducted to label each region of each tissue type.
For each region, a number of shape descriptors were calculated and these values were
tabulated for analysis. Shape descriptors are widely used to simplify the description of
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complex objects. This is achieved by assigning a numerical value to represent a property of
the object’s shape. Area and perimeter are examples of simple shape descriptors.

The Euler number is a shape descriptor which is indicative of the number of holes with in a
region. It is calculated by subtracting the number of holes in a region from the number of
connected components [13]. For understanding the architecture of lung nodules, trends in
the Euler number can be insightful for determining which tissue types are generally
encompassing and which are encompassed. A structure that is encompassing of other
regions would have a high number of holes and hence a very negative Euler number.
Structures that exist primarily as ‘islands’ in an encompassing ‘ocean’ would have an Euler
number of zero or above.

Area to perimeter ratios have been commonly used to describe the boundary of an object.
Compactness is a shape measure which represents the spread of a region and it is calculated
as the area times 4π divided by the squared perimeter [14]. A circular object has the
maximum compactness value of one. Shapes with more complex boundaries have a
compactness value less than one. An infinitely long and narrow shape would have a
compactness value of zero.

Volumetric Histopathology Renderings of Lung Nodule Composition
The histopathologically obtained tissue type maps were also used to generate 3D
reconstructions of the tissue types within a nodule, Figure 3. Typically, the creation of 3D
reconstructions from histopathology data is challenging due to the distortion of the tissue
which occurs during the creation of a histology slide. Our unique data acquisition and
processing steps, summarized above, allow for the correction of this distortion and the
alignment of sequential histological sections in a global coordinate space. Hence volumetric
histopathological datasets could be established. Within the histopathological data, anisotropy
existed between the in-plane resolution (8.54 micron) and the separation between
subsequent sections (approximately 500 microns). Lanczos resampling was used to decrease
the in-plane resolution and cubic interpolation was used to bridge the information between
subsequent sections. A 3D surface for each tissue type was then generated via smoothed
triangular approximation. The 3D tissue type reconstructions are valuable in visualizing the
distribution of the tissue types throughout the nodule volume. These reconstructions
contribute towards gaining a comprehensive understanding of the nodules volumetric
content and the relationships between tissue boundaries.

Correlated Histopathology and MDCT
Having described and evaluated the histopathological heterogeneity in tissue types within
lung nodules, it was possible to relate this information to the MDCT representations. MDCT
data also reveals heterogeneity within lung nodules, in the graylevel, or Hounsfield Unit
(HU), however it is not known if a correlation exists between the two.

Following the registration of the histopathological tissue type maps and the radiological
datasets to the common coordinate system, a direct correspondence was established between
the voxels in the radiological data and the tissue type labels. This labeling was used to
extract out the HU values corresponding to each tissue type and statistically evaluate if a
significant difference could be found.

The tissue type map was split into a series of binary masks, one for each tissue type. Each
binary mask was resampled, using Lanczos resampling, to match the resolution of the micro-
CT, the isolated nodule MDCT dataset, and the fixed lobe MDCT dataset. As the in vivo
MDCT datasets were acquired using different scanning protocols on different MDCT
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systems and reconstructed with low resolution using differing reconstruction kernels, this
data could not be incorporated.

The binary masks were used to isolate pixels specific to a tissue type, from the radiological
data. HU histograms were found for each tissue type and the histogram statistics were
collected, including mean, median, standard deviation, skewness, and kurtosis. Ninety
values were tabulated for each histological section (6 histopathological tissue types for 3
imaging modalities providing 5 histogram statistics), Figure 4.

Only the adenocarcinoma cases were evaluated for statistical separation in HU values based
on histopathological tissue type. As only one complete dataset for squamous cell and one for
neuroendocrine carcinoma were obtained, the datasets were not large enough to calculate the
variance for these cancer types.

Linear mixed model analysis was used to compare the mean histogram parameters among
the histological tissue types. This was followed by Tukey’s test for pairwise comparison of
means between tissue types. This analysis was performed separately for each of the imaging
methods (micro-CT, isolated nodule MDCT, and fixed lobe MDCT).

Results
Across the adenocarcinoma cases, the solid cancerous tumor and active fibrosis tissue types
had the highest number of regions, 2299 and 2260 respectively. The average size of these
regions however, was quite different with the solid cancerous tumor having a mean region
size of 1.7 mm2 while the active fibrosis had a mean region size of 0.17 mm2. The number
of regions for necrosis, inactive fibrosis, cancerous tumor (non-solid BAC), and red blood
cells were 509, 448, 216 and 193, respectively. Figure 5 shows the average areas of the
tissue type regions.

A plot of the average range of Euler numbers for each tissue type, across all datasets is
shown in Figure 6. The plot clearly shows that the inactive fibrosis tissue type is the most
encompassing and that necrotic and blood regions exist exclusively as islands (as seen by
the global minimum Euler number). Solid cancerous tumor also presents as being more
encompassing overall than active fibrosis and non-solid, BAC cancerous tumor. Figure 7
shows the average compactness for each tissue type across all the nodule datasets. From this
data, necrotic regions and groupings of red blood cells have the simplest, most compact
boundaries with average compactness values of 0.68 and 0.81, respectively. On average the
inactive fibrosis regions have been found to contain the most complex boundaries, having
the lowest overall compactness value at 0.45. Cancerous regions (both solid and non-solid
BAC) and active fibrosis had comparable compactness values of 0.55, 0.49 and 0.53,
respectively.

MDCT to Pathology Correlation
From this analysis, it was found that the HU heterogeneity in the MDCT data of lung
nodules is informative for at least some tissue types. The mean HU measure provided the
greatest ability to separate the histopathological tissue classes in the MDCT data of the
isolated nodule, Table I. Statistically significant separability (p < 0.0001 to p = 0.044) was
found between the non-solid BAC cancerous tumor (−376.2 HU), red blood cells (−74.7
HU), solid cancerous tissue (−10.9 HU), and inactive fibrosis (25.9 HU) classes. Active
fibrosis and necrotic tissue regions could not be distinguished from the solid cancerous
tumor using the mean HU from the isolated nodule dataset which were −17.5 HU, −3.4 HU
and −10.9 HU respectively. Complete tabulated results for the statistical analysis of the HU
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histogram median, standard deviation, skew and kurtosis for each tissue type, in the three
datasets, is presented in the supplementary data.

The BAC cancerous tumor was easily identified as different from the other solid nodule
tissue types, due to the non-solid alveolar structural arrangement of the cancer cells. A very
high statistical difference in the mean (Table I), median, standard deviation, skew and
kurtosis of the HU values, in the micro-CT, isolated nodule MDCT and fixed lobe MDCT of
the BAC tumor was found when compared to the other tissue types (p < 0.0001).

Blood could be separated from solid cancerous tissue using the mean HU in all image sets,
median HU in the isolated nodule MDCT, HU standard deviation in the isolated nodule
MDCT and fixed lobe MDCT, the skew of the HU histogram in the isolated nodule dataset,
and the kurtosis of the HU histogram in the fixed lobe MDCT.

Inactive fibrosis could be separated from solid cancerous tissue using the HU standard
deviation in all image sets and the HU kurtosis of the micro-CT. Active fibrosis and necrosis
were the least separable from solid cancerous tumor. Active fibrosis was only significantly
different form solid cancerous tissue in the HU kurtosis of the fixed lobe MDCT. Necrosis
was not significantly different from solid cancerous tissue in any of the datasets.

Discussion
As described, the lung cancer nodule represents a complex biomass. The static organization
of histopathological tissue types within the biomass is informative for extending the current
understanding of cancer biology.

Shape descriptor features were used to evaluate the regional structure of the nodules.
Looking at the number and size of regions across the tissue types it was found that the active
fibrosis regions were small but numerous. The inactive fibrosis regions were on average of a
similar size to the solid cancerous regions, however, many more cancerous regions were
present throughout the nodule volumes. Non-solid BAC cancerous tumor had the largest
regional areas of all tissue types. The red blood cell category reflects only the larger vessels
within the tumor and not small capillaries which were too difficult to segment, hence the
proportion of blood in the nodules (Figure 2) is not indicative of the complete blood supply
within the nodule.

Using the Euler number, inactive fibrosis was found to be the most encompassing tissue
type. Solid cancerous tumor also had a large range of Euler numbers with the second lowest
global minimum. One possible explanation for this is that the fibrosis is in response to
cancer regions, with the fibrosis replacing cancer as the tumor biomass develops. The small
range and zero global minimum of the Euler numbers of necrotic regions indicated this
tissue type does not encompass other tissue type regions. This may be indicative of the
mechanism causing necrosis to occur. Were necrosis regions formed by the cell death of
only cancerous tissue, we would expect the Euler numbers for necrosis to vary in the same
extent as for solid cancerous regions. However, the near zero, very small range of Euler
numbers for necrosis indicate that necrotic regions likely occur from a lack of sufficient
blood supply to an area of the nodule, resulting in the cell death of all tissue types in that
vicinity.

As would be expected, groups of red blood cells were strongly presented as encompassed
island regions. This is indicative of the blood being contained within vessel walls and
separate from other tissue types. Regions of red blood cells were also found to have the most
compact boundaries out of the tissue types. Again, this is intuitive given the containment in
relatively cylindrical blood vessels.
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The inactive fibrosis tissue type had the lowest average compactness value indicative of
complex region boundaries, which is supported by the Euler number findings for this tissue
type. The non-solid BAC cancerous tumor regions also had relatively low compactness
values which are a reflection of the boundary of these regions following a complex alveolar
structure. The solid cancerous regions had a compactness value close to the midpoint (0.5)
which is likely to represent the random non-directed expansion of cancer cells, some being
very complex and others being compact.

These datasets present the valuable opportunity to gain insight into the complex growth
patterns of lung cancer through understanding the relationships between intermixed
histological tissue types. This in-depth analysis of histological content allows for
quantification of relative proportions of tissue types, which has future potential for
examining the link between histological proportions and patient prognosis. This could
provide insight into variations in growth rate, treatment response and time to survival.

To our knowledge, this is the first work which presents a direct, statistically significant
correlation between MDCT HU heterogeneity and histological tissue type. These
correlations were possible due to the development of a complex tissue acquisition and image
processing model which permitted the accurate registration between histology and MDCT
data.

The micro-CT dataset contained the greatest standard error in the HU due to a higher degree
of noise within the dataset. This is due to the higher resolution of the micro-CT and also the
absence of the same corrections that are built into the Siemens Somatom Sensation 64
MDCT system, on which the isolated nodule and fixed lobe MDCT data was acquired. The
raw micro-CT data was converted to HU using an air and water phantom to determine the
linear correction of grayscale values. This resulted in different HU calibrations between the
micro-CT and the MDCT image sets.

The limitation of the current study was the restriction of the MDCT data to ex-vivo datasets.
In this examination we have established the methodology for the creation of cross-registered
multimodal datasets and we have also established a valuable baseline for tissue separability
in MDCT. The greatest separability between the histological tissue types within a
radiological dataset was obtained using the mean HU in the isolated nodule MDCT dataset.
We believe this presents promising motivation, along with a tested method, to pursue further
studies in which histological data is registered to high resolution, in-vivo MDCT and
perfusion MDCT datasets, which is our future goal. In conclusion, we have performed an in-
depth analysis of the cellular composition of lung cancer nodules. This analysis has included
the detailed segmentation of solid and non-solid cancerous regions as well as non-cancerous
tissues: necrotic, fibrotic and vascular tissue. Using these segmentations we have been able
to quantitatively explore the proportions of each tissue types on a case by case basis. We
have also evaluated the complete adenocarcinoma dataset to determine characteristics of the
tissue specific regions and how they relate to each other. Using the segmented histological
data registered to corresponding computed tomography data, we have determined that
statistically significant separability using radiological HU statistics is achievable for at least
some histological tissue types.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Figure 1.
A flow diagram of the process model for generating three dimensional, cross-registered
datasets of lung cancer nodules, relating segmented histopathology content to corresponding
ex-vivo and in-vivo volumetric MDCT datasets. This process incorporated specific tissue
preparation/imaging protocols, stabilization hardware and post processing using rigid and
non-rigid registration. Featured is a sample slice from the dataset before and after
registration as well a depiction of the volumetric result following registration. The creation
of the histology based tissue type maps incorporated the manual segmentation of solid
grouping of cancer cells (black), cancer cells following a non-solid bronchoalveolar
carcinoma pattern (purple), necrotic cells (gray), active fibroblastic stroma (green), hyaline
fibrosis (blue), normal airway wall cells (yellow) and groupings of erythrocytes (red).

Sieren et al. Page 9

Lung Cancer. Author manuscript; available in PMC 2012 October 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



Figure 2.
The proportions of each tissue type for the five adenocarcinoma cases and example
neuroendocrine and squamous cell carcinomas were determined using the 3D histopathology
datasets.
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Figure 3.
This volumetric reconstruction of the segmented tissue types from an adenocarcinoma
nodule allows for a more comprehensive, qualitative understanding of the relationships
between the different tissue types and their distribution throughout the nodule volume.
Shown are the renderings of each tissue type individually (solid cancerous tumor, cancerous
tumor in a nonsolid bronchioalveolar carcinoma pattern, active fibroblastic stroma, hyaline
(inactive) fibrosis and blood) as well as combined in a comprehensive volume rendering.
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Figure 4.
A summary diagram illustrating the method for acquiring the histogram statistical measures
for each histological section. For each histological section there was a corresponding tissue
type map generated in which each color represents a particular tissue type; solid grouping of
cancer cells (black), cancer cells following a non-solid bronchoalveolar carcinoma pattern
(purple), necrotic cells (gray), active fibroblastic stroma (green), hyaline fibrosis (blue),
normal airway wall cells (yellow) and groupings of erythrocytes (red). Each tissue type map
was split into a series of binary masks, one for each tissue type. Each binary mask was
resampled, using Lanczos resampling, to match the resolution of the micro-CT, the isolated
nodule MDCT dataset, and the fixed lobe MDCT dataset and was used to isolate pixels
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specific to a tissue type, from the radiological data. HU histograms were found for each
tissue type and the histogram statistics were collected, including mean, median, standard
deviation, skewness, and kurtosis.
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Figure 5.
Graphical representation of the mean area (± SD) of the regions for each tissue type.
Regions of red blood cells, necrosis and active fibroblastic stroma are the smallest while
cancerous regions following a bronchioalveolar carcinoma structure (non-solid BAC) have
the largest region areas.
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Figure 6.
The mean (± SEM) range of Euler numbers in each tissue type, across all nodule datasets.
Also plotted is the overall global minimum Euler number. This plot reveals the trend that the
inactive (hyaline) fibrosis and cancerous tumor tissue types tend to be encompassing while
the other tissue types tend to be encompassed.
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Figure 7.
The mean (± SD) compactness values for each tissue type, across all the nodule datasets.
The red blood cells and necrosis regions have the most compact boundaries while the
inactive (hyaline) fibrosis regions are the most complex.
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