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Abstract
The Unfolded Protein Response (UPR) is an ensemble of signal transduction pathways that
respond to perturbations in the oxidative, pro-folding environment of the endoplasmic reticulum.
During the past decade, ongoing research implicated these pathways in maintaining homeostasis
of cells and organisms exposed to various stresses. Herein, we highlight recent findings regarding
the functional role of the UPR in both normal and pathophysiological processes.

The lumen of the endoplasmic reticulum (ER) provides an oxidative compartment wherein
proteins destined for secretion or insertion into cellular membranes are co-translationally
modified with sugar moieties and folded. Stresses that compromise the ER environment
impair maturation resulting the accumulation of mis-folded proteins and activation of a
stress response termed the Unfolded Protein Response (UPR)1,2. While chemicals that
inhibit N-linked glycosylation (tunicamycin) or deplete ER calcium (thapsigargin) are
frequently used to impair protein folding within the ER, environmental stresses that reduce
carbon source availability (glucose), and oxygen, which occurs under pathogenic conditions
such as cancer and viral infection, also have a direct impact on secretory homeostasis and
thereby trigger the UPR3,4. The UPR is characterized by increased transcription of genes
encoding ER molecular chaperones including BiP/GRP78 and GRP94, protein disulfide
isomerase (PDI), and the pro-apoptotic transcription factor CHOP (C/EBP homologous
protein), which is also known as growth arrest and DNA damage gene-153 (GADD153)5.
The induction of ER chaperones is in turn coordinated with a marked decrease in the rate of
overall protein synthesis and with cell cycle arrest. Inhibition of protein synthesis serves to
lower the overall rate of protein traffic into the ER, but the fact that this process is
counterbalanced by an increased synthesis of ER chaperones highlights the specificity of the
UPR. This mini-review will focus on advances in our understanding of the role of the UPR
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in determining cell fate in response to micro-environmental stresses to which cells must
respond.

Signal Transduction from the ER
Ire1 isoforms (α, ubiquitously expressed α and tissue restricted β), are composed of a
luminal domain that senses stress, a single transmembrane domain, and a cytosolic tail that
contains both a protein kinase domain and an RNase domain6, 7. Ire1 triggers increased
expression of numerous ER chaperones through activation of the X-box binding protein 1
(Xbp1) transcription factor (Figure 1). Accumulation of Xbp1 is mediated by the RNase
function of Ire1, which mediates an alternative splicing event that generates an alternative
Xbp1 mRNA that is more efficiently translated8, 9. PERK, another ER transmembrane
protein kinase activated in a manner analogous to the Ire110, catalyzes serine 51
phosphorylation of eIF2α resulting in down-regulation of general protein synthesis11, 12.
While PERK is one of four distinct eIF2α protein kinases, which includes the heme-
regulated kinase (HRI), the interferon-inducible, RNA-dependent protein kinase (PKR) and
GCN2, only PERK function is required for cellular response to ER stress. The third
signaling components are the transmembrane transcription factors ATF6α/β. While normally
tethered to the ER, upon stress, ATF6 migrates to the trans-Golgi, where it is processed by
S1P and S2P proteases to release the N-terminal DNA-binding transcription factor domain.
The latter regulates transcription of a subset of Xbp1 responsive genes due to their related
DNA binding specificities13.

Activation of both Ire1 and PERK requires dimerization via sequences within luminal
domains14. Dimerization is antagonized by the ER chaperone BiP, which physically inhibits
association. Increased levels of unfolded proteins in the ER lumen titrate BiP thereby
permitting dimerization and activation of PERK/Ire1 molecules. ATF6 is also regulated by
BiP, unlike Ire/PERK, BiP inhibits movement of ATF6 to the Golgi and thereby determines
access to activating protease activity. Thus, the chaperone to misfolded protein ratio is
considered a key determinant in UPR status.

At the interface of cell cycle progression
Activation of UPR signaling triggers a rapid arrest in G1 phase of the cell cycle. G1 phase
progression requires the activities of one or more of the D-type cyclins (D1, D2, D3) in
association with either CDK4 or CDK6 followed by activation of the cyclin E- and A-
dependent kinase CDK2. Cell cycle arrest in response to mitogen deprivation or anti-
proliferative cytokines can be achieved through degradation of unstable cyclin subunits, by
specific post-translational modifications of the CDK subunits, or via association of active
cyclin-bound CDKs with polypeptide CDK inhibitors (CKIs)15. While mitogen withdrawal
inhibits cyclin D gene expression and accelerates cyclin D1 proteolytic degradation16, UPR-
dependent signal transduction intersects with the cell cycle via PERK-dependent inhibition
of cyclin D protein synthesis and rather than accelerating cyclin D degradation17, 18.
Research utilizing genetically defined cells revealed that G1 arrest triggered by ER stress
requires PERK-dependent phosphorylation of eIF2α18. The resulting inhibition of cyclin D1
translation together with its rapid rate of proteolysis results in its nearly immediate
elimination and loss of cyclin D1-dependent kinase activity19. The ensuing cell cycle arrest
in non-tumorigenic cells is facilitated alsoby p53-dependent increases in the CKI, p21Cip1 20.
ER stress-induced growth arrest likely provides a window of opportunity or checkpoint that
prevents cells from continuing their cell division cycle under conditions in which the proper
folding and assembly of proteins are significantly compromised. Ultimately, the failure of
the UPR to re-establish proper homeostatic balance can trigger apoptosis.
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UPR and Metabolism
A primary function of the ER is post-translational folding of proteins destined for
membranes or for secretion and a key modification essential for proper folding is
asparagine-linked glyclosylation. Thus, tissues whose primary function is secretion are
particularly dependent upon UPR signaling for homeostasis. Not surprisingly, significant
pathologies in such tissues are caused by inadequacies in PERK function. Children suffering
from Wallcot-Rallison disease, a recessive disorder characterized by loss-of-function PERK
mutations, develop type I diabetes, a result of reduced beta-cell proliferation and exocrine
cell apoptosis21. This phenotype is faithfully recapitulated in conventional PERK knockout
mouse model22, 23. In addition to the pancreas, plasma cells, a B-cell whose function is the
secretion of functional antibodies depend also upon UPR components. Rather than PERK
however, plasma cells depends upon the combined activities of ATF6 and Ire1-Xbp124, 25

that function to maintain a required repertoire of ER chaperones.

Given that increased secretory demand as well as cell division requires membrane
expansion, it should not come as a surprise that UPR signaling contributes also to aspect of
lipid biogenesis. Ire1-dependent activation of Xbp1 contributes not only to chaperone
expression, but contributes to phospholipid biosynthesis via regulation choline
cytidyltransferase, a rate-limiting enzyme in the CDP-choline pathway25. Synthesis of this
enzyme in plasma cells appears to be synergistically regulated by Xbp1 and ATF624, 25.
Additionally, Xbp1 also plays a key role in the production of liver-derived plasma lipids26.

UPR signaling contributes to lipid biogenesis in the context of mammary gland during
pregnancy. Knockout of PERK in the murine mammary gland reduced free fatty acid
production and lipid deposition in the milk of nursing mice27. Perk deletion correlated with
a loss of sustained of expression of key lipogenic enzymes such as ATP citrate lyase, fatty
acid synthase, stearyl-CoA desaturase-1. Expression of these enzymes is acutely dependent
upon Sterol Regulatory Element-Binding Protein 1c (SREBP1c) a transmembrane
transcription factor whose release from ER membranes requires targeted movement to the
Golgi where it is processed by S1P and S2P proteases. PERK loss inhibits SREBP1c Golgi
processing, thereby reducing expression of key Lipogenic enzymes27.

Viral Impact on the UPR
Replication of viruses in eukaryotic cells requires the robust synthesis of viral polypeptides
that taxes the folding machinery. Accordingly, many viruses including herpes simplex virus
(HSV) and hepatitis C virus (HCV) are associated with UPR activation. This rapidly
expanding field is covered by several excellent recent reviews28, 29. Viruses are known to
both induce UPR and produce the means of inhibiting these responses. The latter might be
necessary in order to protect the host cells from ER stress-mediated death, to enable
translation of viral proteins and ensuing virus production28–32. However, in reality, a
number of examples demonstrate poorly understood specificity with regard to which UPR
branch is activated by specific viruses.

The most obvious reasons for such selectivity is likely the very need to correct the protein
synthesis-controlling and pro-apoptotic branches of the pathway in order to complete the
replication. The rapid translation of viral proteins will pose an additional problem for the
virus as it challenges the capacity of the host cell to properly fold key proteins. Accordingly,
viruses have evolved to ameliorate specific UPR branches that control translation. For
example, HSV was shown to express glycoprotein B that specifically inhibits PERK
activation33. Furthermore, HSV is also generates the γ134.5 protein that is capable of
maintaining the low levels of eIF2α phosphorylation through the phosphatase-mediated
stimulation of eIF2α de-phosphorylation34. The latter mechanism is likely required to
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safeguard against activation of other kinases capable of phosphorylation of eIF2α
independently of activated PERK (e.g. PKR)35. Yet, this kinase can be also inhibited by
proteins produced by viruses of medical importance such as HCV36.

Conversely, the flavivirus West Nile virus strain Kunjin virus can specifically activate Ire1α
but has a negligible effect on PERK37. In the latter case, synthesis of hydrophobic non-
structural proteins inhibits the anti-viral effects of IFNα/β. HCV appears to utilize an
analogous mechanism38. This relationship between induction/resolution of UPR and
responsiveness of cells to anti-viral effects of type I IFN is significant as the UPR may
negatively impact local immunity39. Although temporally detrimental for viral maturation,
activation of PERK also has a side effect of feeding into the ligand-independent pathway
that governs downregulation and degradation of IFNα/β receptor. This receptor on cell
surface mediates all cellular responses to endogenous IFNα/β or pharmaceutical IFNα used
to treat chronic viral infections such as hepatitis C and B40. The levels of this receptor are
regulated by the ligand-inducible ubiquitination and degradation of the IFNAR1 chain41.
Ubiquitination of IFNAR1 depends on IFN-induced IFNAR1 phosphorylation by protein
kinase D242–46. This pathway negatively regulates IFNα/β signaling in cells previously
exposed to IFNα/β and have likely generated a robust anti-viral response to these cytokines.
There is also an alternative basal (ligand-independent) pathway that leads to downregulation
of IFNAR1 from the surface of cells that have not been yet exposed to IFNα/β47. Because
this pathway does not require ligand, it can impair the ability of a naïve cell to respond to its
future encounters with IFNα/β.

Phosphorylation of IFNAR1 by Casein kinase 1α is key to ligand-independent turnover48, 49.
Remarkably, the ability of this kinase to phosphorylate IFNAR1 and trigger its
ubiquitination and degradation can be greatly increased in cells exposed to ER stress49.
More importantly, these UPR-induced events required activity of PERK49. The functional
outcome of this regulation is a tempered ability of already infected cell to react to its future
encounters to IFNα/β and to mount an efficient anti-viral state49, 50. Intriguingly, whereas
the induction of UPR by HCV infection in experimental models has been thoroughly
documented39, a search for upregulated markers of UPR in liver biopsy samples from
patients with chronic HCV was inconclusive51. The latter results could be explained by
localized changes that are limited to rather small clusters of infected cells at a given time52.
Future concerted efforts are required to investigate the role of UPR in hepatitis C
pathogenesis and liver injury.

Apoptotic response to the UPR
In most pathophysiological conditions activation of the UPR has cytoprotective effects, a
feature of reduced global protein synthesis with selective increased synthesis of proteins
with cytoprotective roles, cells experiencing prolonged or acute ER stress undergo ER-
initiated apoptosis. Indeed prolonged exposure of cells to tunicamycin or thapsigargin
induce apoptosis53, 54. Conversely, cells with a compromised UPR, (e.g. cells deficient for
PERK/eIF2α or IRE/XBP-1), are significantly more sensitive to ER-induced cell death than
wild-type cells presumably due to the continuous accumulation of misfolded proteins in the
ER, a process termed “proteotoxicity”55, 56. Although the mechanisms for ER-induced
apoptosis are poorly understood, but there is strong evidence that Ca2+ release from ER
stores and subsequent caspase activation, including caspase-3 and perhaps caspases 4 and 7
mediate programmed cell death under these conditions57.

Well known for their contribution to the intrinsic apoptotic pathway through the
mitochondria, bcl-2 family members are localized also to the ER. ER localized bcl-2 may
contribute to ER membrane permeability by maintaining the pro-death bak and bax in their

Diehl et al. Page 4

Gastroenterology. Author manuscript; available in PMC 2012 July 1.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



inactive conformations58. ER stress induces oligomerization of bax and bak to their active
states that can then induce an ER Ca+2 leak that triggers apoptosis. ER release of calcium is
known to activate calpains, and induce cleavage of Bid, a BH-3 only bcl-2 family protein.
Cleavage of Bid enhances its capacity to induce mitochondria membrane permeabilization,
thereby leading to cytochrome c release and activation of downstream caspases.

UPR and Autophagy
Another emerging role for an ER-dependent pro-survival pathway is the involvement of ER
and eIF2α phosphorylation in the autophagic pathway. Previous work59, 60 has established
that ER stress can activate autophagy, a highly conserved lysosome-dependent mechanism
for degrading intracellular constituents. It has been proposed that autophagy, as a pro-
survival mechanism under short-term nutrient deprivation, can counteract apoptotic
mechanisms. However, similar to UPR activation, prolonged or acute activation of
autophagy can induce clonogenic cell death61. Interestingly, several agents that induce ER
stress (e.g., proteasome inhibitors, thapsigargin, etc) induce autophagy. Extreme hypoxia
can also induce autophagy, primarily via activation of ATF462, 63. These findings establish
autophagy an important adaptive response cells use to survive ER stress, especially in the
conditions of the solid tumor microenvironment.

Tumorigenic utilization of the UPR
Accumulating evidence demonstrates activation of the UPR in solid tumors. BiP/GRP78
accumulation in malignant human breast lesions has been observed frequently64. With
regard to signal transduction from the ER, loss of Ire165, as well as its downstream target
transcription factor XBP166, compromise tumor progression and inhibit neovascularization.
Moreover, transgenic mice with directed expression of the XBP-1 spliced isoform (XBP-1s)
develop bone lytic lesions and subendothelial Ig deposition - pathologic disorders
reminiscent of multiple myeloma in humans67. PERK has also been implicated in
facilitating tumor progression. Initial work demonstrated that murine fibroblasts derived
from PERK null embryos and transformed with SV40 large/small T-antigen and Ki-RasV12
failed to grow in immune compromised mice as did human colorectal carcinoma cells
expressing a dominant-negative form of PERK68. Subsequently, deletion of PERK in
MMTV-Neu mice was found to modestly increased tumor latency, but more profoundly
inhibit metastatic spread. Furthermore, deletion of PERK in established tumors, significantly
reduced tumor progression69, 70.

In addition to involvement in tumor progression, recent work has also implicated UPR in
Inflammatory Bowel Disease, response to of the GI tract to hypoxic insult increasing
susceptibility to bacterial translocation and inflammatory response71–73. Adaptive signaling
from the UPR has even been implicated in response to alcohol consumption74 emphasizing
the role of this pathway as a sensor of both cellular and environmental stress.

Collectively, the current work supports the concept of developing inhibitors of UPR
signaling as anti-neoplastic therapeutics and potentially for a variety of diseases that impact
the secretory apparatus of the cell. However, caution must be utilized. Our understanding of
the breadth of the UPR signaling with respect to cellular and organismal homeostasis
remains limited. Efforts to dissect the molecular role of each component within cellular
contexts provide new and exciting avenues of research, but also add to the complexity of
downstream effects that must be considered when targeting pathways. As better animal
models are generated to assess the function of the UPR in various physiological and
pathological diseases, such as cancer, we will be in a position to better anticipate uses and
outcomes of targeted therapies.
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Figure 1. UPR signal transduction
ER stress signals induce UPR via promoting the activation of homologous transmembrane
protein kinases, Ire1a/b, and PERK and a transmembrane transcription factor, ATF6. These
regulators collectively transduce signals resulting in the upregulation of ER chaperones and
CHOP while simultaneously down-regulating cellular protein synthesis and including that of
the growth promoter cyclin D1 thereby inducing growth arrest.
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