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Suppressive Mechanisms in Monkey V1 Help to Solve the
Stereo Correspondence Problem

Seiji Tanabe, Ralf M. Haefner, and Bruce G. Cumming
Laboratory of Sensorimotor Research, National Eye Institute, National Institutes of Health, Bethesda, Maryland 20892

Neurons encode the depth in stereoscopic images by combining the signals from the receptive fields in the two eyes. Local variations in
single images can activate neurons that do not signal the correct disparity (false matches), giving rise to the stereo correspondence
problem. We used binocular white-noise stimuli to decompose the responses of monkey primary visual cortex V1 neurons into the
elements of a linear–nonlinear model (via spike-triggered covariance analysis). In our population of disparity-selective neurons, we find
both excitatory and suppressive elements in many of the neurons. Their binocular receptive fields were aligned in a specific push–pull
manner for disparity. We demonstrate that this arrangement reduces the responses to false matches but preserves the responses to true
matches. The responses of the cells to the noise stimuli were well explained by a linear summation of the elements, followed by a
nonlinearity. This model also explained the shape of independently measured disparity-tuning curves, although it overestimated the
response magnitude. This study constitutes the first direct physiological evidence for the contribution of suppressive mechanisms to
disparity selectivity. This new mechanism contributes to solving the stereo correspondence problem.

Introduction
The different geometric positions of left and right eyes lead to
small differences between the images on the two retinae (binoc-
ular disparities). These disparities are used by the visual system to
infer depth. A central challenge consists in identifying corre-
sponding features in the two eyes, called the stereo correspon-
dence problem (Julesz, 1971; Marr and Poggio, 1979). Visual
neurons suffer from the problem that responses to noncorre-
sponding images (false matches) can be as large as those to correct
matches (Cumming and Parker, 1997, 2000).

The disparity-energy model has been widely used to explain
the disparity tuning of neurons in the primary visual cortex (V1)
(Ohzawa et al., 1990; DeAngelis et al., 1991; Fleet et al., 1996; Zhu
and Qian, 1996). This model passes the image through linear
filters in each eye and then passes the binocular sum through an
output nonlinearity. It is a member of a widely used class of
linear–nonlinear (LN) models (Hunter and Korenberg, 1986;
Marmarelis et al., 1986; Sakai et al., 1988; Schwartz et al., 2006).
The original disparity-energy model placed strong constraints on
the linear filters: there were exactly two parallel elements (a
quadrature pair), both of which are excitatory. Both elements
used the same rule (e.g., a simple translation) to apply a dis-
parity between left and right eye filters: a receptive field (RF)

disparity. These two elements elegantly capture many proper-
ties of disparity-selective neurons. However, such a simple
model is inevitably an approximation; understanding how real
neurons deviate from this approximation has helped clarify
how they compute disparity.

The energy model responds best (on average) to stimuli with a
disparity that matches the RF disparity. Nonetheless (as with
many other detectors), in any one image, stronger activation may
be produced by a disparity that does not match (Cumming and
Parker, 1997, 2000). This means that, in a neural population of
various RF disparities, the neuron with the incorrect RF disparity
may respond the strongest to a given image. It is therefore unclear
how the correct depth can be inferred from a population of such
neurons (Fleet et al., 1996). Recent work from our group has
suggested that responses to false matches may be attenuated by
adding elements to the original model (Read and Cumming,
2007; Haefner and Cumming, 2008; Tanabe and Cumming,
2008).

To characterize these putative elements with as few assump-
tions as possible, we analyzed the spiking responses of neurons in
the primate V1 with a spike-triggered covariance approach (de
Ruyter van Steveninck and Bialek, 1988; Touryan et al., 2002;
Horwitz et al., 2005; Rust et al., 2005; Schwartz et al., 2006). We
find that neuronal responses are characterized by a combina-
tion of both excitatory and suppressive elements. Further-
more, filters of the elements are arranged in a way that results
in a suppression of neuronal responses to false matches. We
show how the combination of excitatory and suppressive ele-
ments helps to reduce the problem of false matches in the
stereo correspondence problem.

Materials and Methods
Subjects. Two male rhesus macaques (Macaca mulatta) were used in the
experiments. We implanted a head-restraining post, scleral search coils
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in both eyes, and a recording chamber over the operculum of V1. Surgical
procedures were done under general anesthesia and sterile conditions.
All protocols were approved by the Institutional Animal Care and Use
Committee and complied with Public Health Service policy on the hu-
mane care and use of laboratory animals.

The subjects perched on a primate chair, with their head fixed. They
viewed a separate CRT monitor (Eizo Flexscan F980) with each eye
through a haploscope. Their task was to maintain the conjugate eye
position within a box of 0.8 � 0.8° for 2.1 s, at the end of which a liquid
reward was delivered. Stimuli were generated on a Silicon Graphics Oc-
tane workstation. Gamma correction was used to linearize the luminance
response. The mean luminance was 42 cd/m 2, contrast was 99%, and the
frame rate was 96 Hz. To minimize the impact of any onset transient, the
stimulus was displayed continuously between trials, and only frames
occurring after fixation had been maintained for at least 100 ms were
used.

Recording. A tungsten microelectrode (typically 1.0 M� at 1 kHz;
Alpha Omega) was lowered through the dura on each recording session.
Voltage signals were amplified (Bak Electronics), bandpass filtered
(0.1–10 kHz), and stored to disk (Datawave Discovery System). Spike
waveforms were recorded at 32 kHz sampling rate. Single-unit isolation
was checked offline with custom-built software.

On isolation of a single unit, we characterized the ocular dominance,
orientation tuning, direction selectivity, and spatial frequency (SF) tun-
ing with a drifting sinusoidal grating. Using the preferred grating inside a
long, thin patch, we measured the minimum response field (MRF) of the
cell along the axis perpendicular and parallel to the preferred orientation,
respectively (Read and Cumming, 2003). The disparity tuning was then
tested with a dynamic random-line stereogram (RLS) (4 � 4°; line width,
0.04°) centered on the MRF. If the cell fired fewer than 10 spikes/s to all
RLS or did not show significant disparity selectivity (ANOVA, p � 0.05),
it was excluded from this study.

Stimulus. We generated our noise stimulus, l (L )(x) and l (R )(x), by
summing 10 sinusoidal gratings that formed a harmonic series and one
offset term. These images were calculated and presented at the resolution
of the screen pixels but, because they only produce 21 independent values
in each eyes’ image, the images were downsampled to 21 values for the
analysis. We shall refer to these downsampled values as “pixels” below,
i.e., x is a 21-dimensional vector (xi with i � 1, 2, …, 21). The sampling
interval was 1⁄21th of the period of the harmonic series. The amplitude
am

( L) of the mth harmonic of the left eye was a Bernoulli random variable,
0 or c, each with a probability of 0.5. The phase of the harmonic �m

( L) was
sampled uniformly from 0 � am

( L) � 2�. The image in the left eye was thus

l�L�� xi� � c0
�L� � �

m�1

10

am
�L� sin�2�mf0xi � �m

�L��, (1)

where c0
( L) is sampled from the same distribution as the sum of sinusoids

on the right-hand side of Equation 1:

c0
�L� �

1

�20
�

m�1

10

bm
�L� sin��m

�L��. (2)

The bm
( L) and �m

( L) values were sampled independently of Equation 1. The
resulting 21 stimulus pixels were each approximately Gaussian distrib-
uted (by the central limit theorem) and uncorrelated with each other, as
required by the reverse correlation technique we are using.

The fundamental frequency f0 was chosen such that the series covered
the SF pass band as measured with gratings. For neurons that responded
to a broad range of low frequencies, this fundamental was chosen such
that the highest frequency was outside the pass band. A new noise image
was generated on every video frame. The patch size was equal to the
period of the fundamental component f0. The contrast of the compo-
nents, c, was fixed at 0.17. With this value, the probability that an image
would saturate the monitor was 0.005. On these image frames, the value
of c was lowered such that the image did not saturate the dynamic range
of the monitor.

In the right eye, the amplitudes am
( R) and the DC component c0

( R) were
assigned independently of the left eye on each video frame. The phase of

the mth component in the right eye was the sum of the �m
( L) in the left eye

and a randomized interocular phase difference ��m, thus

l�R�� xi� � c0
�R� � �

m�1

10

am
�R� sin�2�mf0xi � �m

�L� � ��m�. (3)

��m was randomly sampled from a discrete uniform distribution with
equal probability at {0, �/3, 2�/3, �, 4�/3, 5�/3} (for the purposes of
another study).

In a subset of the cells, we also measured responses to interleaved
anticorrelated and correlated RLS. A trial lasted 2.1 s. There were four
periods of stimulus presentation within a single trial. Each period had
duration of 420 ms, followed by a blank interval of 100 ms. A new RLS
was generated every frame.

Identification of the LN model. The noise image was converted to an
array of numbers. The axis of the image parallel to the stimulus orienta-
tion was ignored because the luminance was uniform. Because the actual
stimulus was shown at screen resolution computed directly from the
sinusoidal components, the luminance pattern along the perpendicular
axis was downsampled to 21 locations for each frame in each eye (the
number of independent values generated by our method) for the purpose
of our analysis. The image values were the luminance differences from
the background gray. A single binocular image can thus be represented as
a point in a 42-dimensional space.

We triggered the noise stimulus backward in time from each spike.
There was one spike-triggered ensemble (STE) of frames for each trigger
delay, � � {20, 25, …, 95 ms}. For each �, we calculated the spike-
triggered covariance (STC) matrix. We chose the � that maximized the
variance across the values in the STC matrix. The STE with this � was then
used to summarize the responses of each cell.

The average of the STE, or the spike-triggered average (STA), is the
identified filter of a simple-cell-like element of the LN model. The output
of this element is half-wave rectified, instead of full-wave rectified as in
the other elements. We tested the significance of this element by shuffling
the trials, i.e., randomly reassigning the spikes recorded in one trial to the
stimuli presented in another. Once a trial of spikes was reassigned, it was
not replaced in the possible pool of reassignments. We created 1000 sets
of shuffled data. For each shuffle, we calculated the STA and the distance
of the STA from the origin. If the distance of the original STA exceeded
the 99.5 percentile of the distances of the shuffled ones, the STA was
regarded significant.

The axis along the STA was projected out from all the images in the
STE; that is to say that the vector component parallel to the STA was
subtracted from each frame in the STE (Schwartz et al., 2006). The sub-
traction guaranteed that the linear filter of the simple-cell-like element
was orthogonal to the linear filter of any other element of the LN model.
We calculated the STC matrix of the new STE. The eigenvectors and
eigenvalues of the STC matrix are the principal components of the STE
and their variances, respectively. The principal components with signif-
icant variances are the identified filters of our LN model.

The significance of the eigenvalues was tested in a nested sequence.
Initially, the null hypothesis was that all eigenvalues are not significant
(Rust et al., 2005; Schwartz et al., 2006). We shuffled the trials to create
1000 sets of data. This made 1000 sets of eigenvalues, each sorted into
rank order. The 0.5 percentile of the lowest rank was the lower bound,
and the 99.5 percentile of the highest rank (first rank) was the upper
bound of the shuffled eigenvalue. We checked whether any of the original
eigenvalues exceeded the bounds. If none of them did, the null hypoth-
esis was regarded as correct, and the sequence of tests was stopped. Oth-
erwise, the null hypothesis was rejected, and the eigenvalue that deviated
most from the bounds was tagged as being significant. If the tagged
eigenvalue was above the upper bound, its eigenvector was added to the
list of excitatory elements. If the eigenvalue was below the lower bound,
the eigenvector was added to the list of suppressive elements. The second
round of the sequence started by projecting out the identified eigenvector
from the STE. The updated null hypothesis was that the remaining eigen-
values were not significant. The lowest rank in this round moved up by
one. The sequence of tests was repeated until the null hypothesis was not
rejected.
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The outputs of the linear filters are each passed through a squaring
nonlinearity. We refer to the linear filters, followed by their output non-
linearity, as “elements” to emphasize their hypothetical nature (Rust et
al., 2005); they may not correspond with real physiological subunits that
provide input to a cell, but the summed response of these elements de-
scribes the subspace in which the images of the STE lie. The majority of
our analysis therefore uses the linear sum of element responses to char-
acterize the model; this model structure is analogous to the traditional
disparity energy model (Ohzawa et al., 1990). Thus, the structure of our
model is as follows:

f�s1,s2, . . .,sM� � �a0 � �s0	

2 � a1 � s1

2 � a2 � s2
2 � . . .

� aM � sM
2 	
, (4)

where sk denotes the output of the kth linear filter (k � 0, 1, 2, …, M ). The
square brackets [.]
 represent half-wave rectification. The 0th element is
simple-cell like. The value of sk is called the feature contrast.

To estimate the weights ak for the elements, we applied the same meth-
ods as used for the traditional energy model (Schwartz et al., 2006). For
each element, we calculate the feature contrast, sk, on every frame. To
estimate the probability that a given feature contrast is associated with a
spike, we binned images into groups with similar sk and measured the
fraction of these images appeared in the STE as n(sk)/nSTE(sk), where n(sk)
and nSTE(sk) are the number of frames in this group of the original stim-
ulus ensemble and the STE, respectively. This gives the probability that a
spike will be elicited by this feature contrast over the duration of a single
frame. Multiplying by the frame rate (Rframe � 96 Hz) converts this into
firing rate in spikes per second. The border of the bins were the 0th, 5th,
10th, …, 100th percentiles. The center of a bin was the median value
within that bin. These response curves,

nSTE�sk�

n�sk�
Rframe � ak � sk

2 � bk, (5)

were constructed for all elements, and then the parameters ak and bk were
fitted by minimizing the least-square error.

Analysis of the identified model. The identified elements were classified
as either excitatory or suppressive, depending on whether increasing
feature contrast increased or decreased the probability of eliciting a spike.
Too much importance should not be attached to the shape of individual
filters. The space spanned by the set of filters is what the data constrains,
and quite different individual filters could be used to span the same space.
To summarize this space, we analyze the signal that was carried within
each pool by simulating the summed response of all elements to RLSs.
This was done separately for the pooled excitatory elements only, the
suppressive elements only, and all elements. We generated 1000 indepen-
dent frames of RLS for each disparity value. The model disparity-tuning
function was calculated by averaging the response to all the frames.

The disparity tuning of each pool was summarized with two numbers,
a position disparity and a phase disparity, inferred from the symmetry of
the tuning function. We calculated the centroid � and the symmetry
phase � of a disparity-tuning function v(z) of a pool (Read and Cum-
ming, 2003), as

� �

� v� z� z dz

� v� z� dz

� � arg��	
F�v�z 
 ��	�, (6)

respectively. F[.] is the complex Fourier transform, and �w is the sum-
mation across frequency components. The values of � and � were the
estimates of position and phase disparities signaled by the pool, respec-
tively. We used circular statistics for the analyses of symmetry phase �
(Mardia and Jupp, 1999). To estimate the preferred SF of each binocular

element, we calculated the cross-correlation between the filters of the left
and right eyes and took the peak in the amplitude spectrum. We deter-
mined the SF of a pool by calculating a weighted mean of the elements in
that pool, with weights based on eigenvalues.

The inclusion of the suppressive pool had only a modest effect on the
shape of the disparity-tuning curve, which averages the responses to
many stimuli. To explore the role of the suppressive pool in particular
images, we analyzed the model responses frame by frame. The responses
of one element to an image presented at different disparities are equiva-
lent to a population response of a map of similar detectors, with different
preferred disparity, to a single image. The stimuli were RLSs convolved
with a low-pass filter (to ensure that the response maps were smooth).
The low-pass filter was a Gaussian function with � � 1.25�, where � is
the pixel width. The disparity of the RLS was fixed to be equal to the
preferred disparity of the identified model. The true peak was estimated
as the peak after averaging the population response to 1000 indepen-
dently generated stimuli. Local peaks were detected as an increment fol-
lowed by a decrement. A local peak was classified as a false peak if it was
at least two pixels away from the true peak.

Comparison with conventional disparity tuning. The above analyses ex-
plore the subspace spanned by the images that were associated with
spikes. To compare the observed responses of a neuron with the predic-
tions of its identified model, it is useful to include a final nonlinearity that
determines the relationship between the summed response of excitatory
elements, rexc, the summed response of the suppressive elements, rsup,
and the firing rate. Rust et al. (2005) found that the firing rate depended
on both rexc and rsup. Following their example, we fitted functions that
convert combinations of (rexc, rsup) into firing rate. The values rexc and
rsup were computed for every frame and then were grouped into bins. The
mean response of the neuron in each bin was compared with the model
response. We explored two types of nonlinearity. The simplest was just a
threshold followed by an expansive nonlinearity:

g�rexc, rsup� � � � �
 � �rexc 
 rsup� � �	

� . (7)

The parameters, �, 
, �, and � were fitted using the least-square method.
The second nonlinearity, which includes normalization, was the same as
used by Rust et al. (2005):

h�rexc, rsup� � � �

 � rexc

� 
 � � rsup
�

� � rexc
� � � � rsup

� � 1
. (8)

Both nonlinearities operate on the same bivariate input (rexc, rsup), but
the model of Equation 7 has two fewer parameters than the model in
Equation 8.

Results
The identified LN model
The LN model has been widely used to characterize sensory neu-
rons, especially in cases in which the spike-triggered average is
informative. Even when responses are composed from the
summed output of multiple LN elements, white-noise analysis
can be used to estimate those elements, using spike-triggered
analysis of covariance (de Ruyter van Steveninck and Bialek,
1988; Touryan et al., 2002; Rust et al., 2005; Schwartz et al., 2006).
Figure 1A illustrates the underlying model. The response of the
neuron is assumed to be the summed output of a number of
elements, each of which consists of a linear filter in each eye,
followed by a static nonlinearity. The elements can be either ex-
citatory with a positive coefficient or suppressive with a negative
coefficient. The summed response is half-wave rectified, and the
resulting value determines the probability that a spike is gener-
ated. Under the assumptions of the model, spike-triggered anal-
ysis of covariance successfully reconstructs the underlying filters.

We recorded the spike train of V1 neurons as the monkey
maintained fixation. One-dimensional noise images (indepen-
dent samples with 21 lines in each eye) were presented at the
preferred orientation over the receptive fields of the left and right
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eyes. After the data were collected, we looked backward in time
and triggered one noise frame with every spike (Fig. 1B). This
generates a large ensemble of images, the STE. The common
properties of images in the STE indicate the features in the stim-
ulus that caused the neuron to fire (Schwartz et al., 2006). Each
frame was represented as a vector in a 42-dimensional space. The
STA is the average of the STE. The STC matrix represents the
second-order interactions present in the STE.

Figure 2A shows the STC matrix of an example cell that
showed strong binocular interaction. In this matrix, each element
records the covariance between pairs of pixels in the STE. In the
quadrant in which the pixels come from different eyes (bottom
left, top right), such covariances reflect binocular interactions.
The other quadrants represent interactions within the image of
one eye. In this example, there is a narrow region of positive
covariance along a diagonal strip in the binocular quadrant of the
matrix. This indicates that the cell was excited by images that had
the same luminance in the appropriate positions in the two eyes.
The fact that the points lie on a line with slope close to �1 indi-
cates that the same disparity was effective at all the locations.
Small regions of negative covariance flanked the positive strip.
The negative regions indicate that the cell was either excited by
images that had the opposite luminance and/or suppressed by
images that had the same luminance, in slightly disparate posi-
tions between the eyes. A striking feature of this example is that

the monocular quadrants show weaker signals than the binocular
quadrant. This implies that interactions between pixels in differ-
ent eyes have a stronger influence on the firing of the neuron than
interactions between pixels within one eye. This property is con-
sistent with the idea that an important function of this neuron is
to signal stereoscopic depth.

We used principal components analysis to compactly summa-
rize the STC matrix. First, for each image in the STE, the vector
component along the axis of the STA was subtracted to make any
principal component orthogonal to the STA. The principal com-
ponents were calculated by an eigenvalue decomposition of the
resulting STC. This STC matrix in Figure 2A had four eigenvalues
that were significantly larger than chance and three eigenvalues
that were significantly smaller than chance (nested resampling,
p � 0.01; see Materials and Methods) (Fig. 2B). These seven LN
elements capture the statistically significant modulation in the
STC matrix. Finally, the STA yields the filter describing a tradi-
tional simple-cell model.

In the example shown, the filters of the excitatory elements
had similar shapes in the left and right eyes (Fig. 2C). In contrast,
the filters of the suppressive elements had inverted shapes be-
tween the eyes (Fig. 2D). Thus, the relationship between left and
right eye filters is inverted in the suppressive element compared
with the excitatory elements. This was also true for another ex-
ample cell in which the excitatory elements had dissimilar RFs
between the eyes (Fig. 2E–H). The inversion was a common
property of suppressive elements, as we show below.

Suppressive elements in the population
We recorded 70 disparity-selective cells from two monkeys.
There were 66 cells (36 from monkey duf and 30 from monkey
ruf) that had at least one significant element. Only one neuron
behaved like a traditional simple cell, i.e., the only significant
element was the STA. Of the remainder, 88% (57 of 65) had more
elements than the traditional complex model, similar to the pro-
portion reported by Rust et al. (2005). Even this figure is probably
an underestimate: for statistical reasons, more spikes (more im-
ages in the STE) are required to identify additional elements, so
the number of significant elements increased as the size of the
STE increased (rS � 0.50, p � 0.0019) (Fig. 3). We found at least
one excitatory element and at least one suppressive element in 29
cells. They constituted 51% (29 of 57) of all the cells that had
more than two elements. Again this figure represents a lower
bound of the true fraction, because identifying suppressive ele-
ments requires large STEs. For neurons in which we were able to
record at least 20,000 spikes, 24 of 35 (69%) revealed at least an
excitatory and a suppressive element.

Functionally push–pull-like combination of signals
Each half of the filter of an element describes the receptive field in
one eye. For these LN elements, the cross-correlation function
between the left and right RFs predicts the disparity tuning of the
element (Fleet et al., 1996; Zhu and Qian, 1996; Prince et al.,
2002) and generates the structure seen in the binocular quadrant
of the STC matrix (Ohzawa et al., 1990). For the cell shown in
Figure 2A–D, the cross-correlation functions of all four excit-
atory elements were even symmetric and maximal at �0.1° dis-
parity (Fig. 4A). In contrast, the cross-correlation functions for
the suppressive elements were minimal at �0.1° disparity (Fig.
4B). The inverted shape of the cross-correlation functions for the
suppressive element demonstrates a push–pull-like organization
for disparity; disparities that produce excitation also produce
withdrawal of suppression. Although we describe the functional

Figure 1. Identification of the elements with spike-triggered analysis. A, The elements of
the model have a linear filter in each eye followed by an output nonlinearity. The outputs of the
elements are combined linearly, with some of their coefficients being negative. After a rectified
nonlinearity, the signal intensity determines the firing rate. B, Sequences of noise patterns were
presented to both eyes. The patterns were uncorrelated between the eyes. One noise frame
preceding each spike was extracted. The spike-triggered stimulus ensemble consists of all such
frames preceding a spike. L, Left; R, right.
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relationship between excitation and suppression as push–pull-
like, the description does not necessarily imply a push–pull rela-
tionship in the synaptic inputs to the cell (Priebe and Ferster,
2005). The synaptic mechanism of suppression can be either in-

hibition or withdrawal of excitation. Exci-
tation is withdrawn when the inhibition
takes place earlier in the pathway.

To demonstrate push–pull organiza-
tion for each neuron, in a way that does
not depend on analyzing the shapes of in-
dividual filters, we first summarized the
contribution of all excitatory elements
(including the STA, if present) by simulat-
ing the summed signal in response to an
RLS. We then compared this with the dis-
parity tuning of the pooled suppressive el-
ements. The example in Figure 4C shows a
tuning curve typical of “tuned-excitatory”
neurons for the excitatory pool, whereas
the suppressive pool shows a pattern typ-
ical of “tuned-inhibitory” neurons (Pog-
gio et al., 1988). The tuned-inhibitory
response arises in these LN elements when
receptive fields have dissimilar shapes in
the two eyes (DeAngelis et al., 1991). Here
left and right RFs are related by a phase
shift close to � (large phase disparity). The
excitatory elements have similar shapes in
the two eyes (little phase disparity). Note
that the sign convention of the ordinate is
the response of the suppressive pool, not
its effect on the recorded cell. This tuning
function is subtracted from, not added to,
the tuning function of the excitatory pool
and hence reinforces the disparity selec-
tivity. The inclusion of the suppressive
pool had little effect on the shape of the
disparity tuning (Fig. 4D). For this dem-
onstration, the suppressive pool was com-
bined linearly with the excitatory pool.
The linear combination allows us to sepa-
rate contributions from each pool, with-
out any interactions introduced by the
final output nonlinearity.

The second example cell had different
disparity selectivity, with odd-symmetric
tuning for the excitatory pool (phase dis-
parity near �/2). Nonetheless, the differ-
ence in phase disparity between excitatory
and suppressive responses was close to �.

We selected the subset of neurons that
had at least one excitatory and at least one
suppressive element (n � 29) and esti-
mated the phase disparity of each pool
from the symmetry of the disparity-
tuning function [symmetry phase (Read
and Cumming, 2003)]. The disparity re-
sponse of suppressive elements was sys-
tematically out-of-phase with that of the
excitatory elements: there was a significant
circular correlation (r� � 0.71, p � 3.6 �
10�4) (Fig. 5A), with a mean circular dif-
ference of �0.99�. We also explored dis-

parity coded by simple translations of the RF (position disparity)
by measuring the centroid of the disparity tuning (Read and
Cumming, 2003). These were mostly distributed around zero and
not correlated between the two pools (rs � 0.07, p � 0.71) (Fig.

Figure 2. Identified elements of two example cells. A, The STC matrix has four quadrants. The top left and the bottom right quadrants
show correlations between pixels shown to the left eye (L-eye) or to the right eye (R-eye). Structures in the top right and bottom left
quadrants show binocular interaction. The diagonal was replaced with zeros in this figure to show the important structures in the matrix.
The diagonal contained large values in the actual calculations (corresponding to the variance of each pixel). The color bar shows the scale of
covariance values. B, After projecting out the STA from the ensemble, the eigenvalues of the STC matrix reveal the significant elements
(filled symbols). The eigenvalues are normalized to a sum of one. The last eigenvalue was always zero, corresponding to the axis that had
been projected out (data not shown). C, Four elements were identified as excitatory (Exc) elements. The left column shows the eigenvectors
(receptive field elements). The blue and red segments show the filters of the left and right eyes. The ordinate is in arbitrary units. D, Three
elements were identified as suppressive (Sup) elements. The STA is shown on the bottom row. E–H, Another example cell. The plotting
conventions are the same as in A–D. This cell revealed two suppressive elements.
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5B). The results suggest that the pools are organized in a push–
pull manner. The disparity that maximally excites the excitatory
pool, maximally inhibits the suppressive pool and vice versa. This
mechanism is analogous to the organization of thalamocortical
inputs to V1 (Priebe and Ferster, 2005) but operating in the dis-
parity domain.

We found only one other property that was systematically
different between the pools: the SF of the suppressive pool was
lower than the excitatory pool (Wilcoxon’s signed rank test, p �
2.9 � 10�4) (Fig. 5C). The geometric mean of the frequency ratio
was 0.51 (0.98 octave difference). This suppression from dispar-
ities at a coarser scale has long been known to be a useful strategy
in solving the correspondence problem (Marr and Poggio, 1979).
A straightforward advantage for disparity tuning is that the sup-
pressive elements reduce the side lobes in the disparity-tuning
function. The effect of suppression on the tuning function is the
same as adding a same-sign function with low SF. Recent evi-
dence has suggested that such “coarse-to-fine” mechanisms do
operate early in binocular processing (Menz and Freeman,
2004a,b). Our study extends these by characterizing the spatial
structure and suppressive nature of this interaction.

Reduced responses to false matches
The relationship between phase disparities of excitatory and sup-
pressive pools suggests a possible role in solving the correspon-
dence problem. Binocular LN elements will, on average, produce
their strongest response to stimuli with a disparity that matches
the RF disparity of the filter. However, any given single image
(e.g., a single RLS) may produce even stronger responses at other
disparities (false matches). Our group recently pointed out that
neurons with phase disparities may respond more strongly to
these false matches (Read and Cumming, 2007; Haefner and
Cumming, 2008). For this reason, suppression from neurons
with phase disparity onto neurons without may help eliminate
responses to false matches (Read and Cumming, 2007). Because
the suppressive elements we identified have different phase dis-
parities from the excitatory elements, they may serve this same
function.

The identified model allowed us to evaluate this possibility
directly. For each neuron, we explored the matching problem by
considering the response of a population of detectors that were
identical to the excitatory pool for that neuron, but each was
given a different position disparity. The response of this popula-
tion to a single image at one disparity then illustrates the problem
of false matches (Fig. 6A). For the example shown, there are three

local maxima in the population response (disparity, �0.9, �0.1,
and 0.5°). Indeed, the overall maximum response was to a false
match (0.5°). If the visual system identified the disparity from the
maximum response in such a population, the wrong depth would
be perceived.

Comparing these responses with a population that linearly
sums excitatory and suppressive pools, detectors of all false dis-
parities are suppressed to some degree (Fig. 6A); only the detec-
tor of the true disparity is consistently free of suppression
(�0.1°). As a result, the false peaks are moderately suppressed on
average, whereas the correct peak remains unchanged. Thus, the
inclusion of the suppressive pool helps disambiguate the correct
peak from the false peaks.

We repeated this simulation for 1000 independently gener-
ated images, locating local peaks in each map. We then measured
the response difference between the correct peak and the closest
false peak. Figure 6B compares this measure for the excitatory
pool with the measure when suppression is included. Almost
every point lies above the diagonal, indicating that the suppres-
sive pool systematically reduces responses to false matches more
than it reduces responses to the correct disparity.

The results for each of the 29 cells that revealed suppressive
elements were summarized with the mean (Fig. 6B, white cross).
The selective suppression of responses to false matches was con-
sistent across the population (Wilcoxon’s signed rank test, p �
5.3 � 10�6) (Fig. 6C). The best suppression was seen in the
even-symmetric cells (Fig. 6C, filled symbols). These are the
cells that are maximally excited by naturally occurring dispar-

Figure 3. The dataset of this study. The number of recovered elements is plotted against the
number of spikes recorded for each cell. A larger number of spikes more frequently revealed
more elements than the original energy model. The additional elements frequently included
suppressive (Sup) elements.

Figure 4. Prediction of the disparity tuning with the identified elements. A, The cross-
correlation function between the left (L) and right (R) eye segments of the filter are shown for
each element. The cross-correlation functions for the four excitatory (Exc) elements and the STA
are superimposed. They are all in-phase. This is the same cell as in Figure 2A–D. B, The cross-
correlation for the three suppressive (Sup) elements are shown. They are in-phase with each
other. Same cell as in A. C, The identified elements were used to simulate the output of the
excitatory pool (solid, left axis) and suppressive pool (dashed, right axis) in response to a
random-line stereogram. The average output of 1000 frames is shown. D, The disparity tuning
of the full model was simulated. E–H, The same simulations as in A–D but with the elements
identified in the same cell as Figure 2E–H.
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ities, for which Read and Cumming (2007) suggested that the
suppression we observe might help solve the stereo correspon-
dence problem.

This analysis of peak responses shows a selective strengthen-
ing of responses to true matches. How effectively this reduces the
matching problem depends on what decoding rule is applied to
the population response. We chose our analysis of peak responses
so as to avoid presenting results that depend on the particular
decoding rule.

Coarse-to-fine dynamics of
disparity tuning
We noted above that the coarser scale of the
suppressive subunits might represent a
coarse-to-fine matching mechanism. If this
coarse-to-fine interaction evolves over time,
it should result in a systematic sharpening of
the disparity-tuning curve with time. We
explored this by analyzing the dynamics of
disparity tuning by forward correlation of
stimulus and response. For each stimulus in
the original ensemble and each disparity
value, we computed the correlation between
the images in the left and the right eyes.
Then for a given disparity, we searched
through the ensemble for positive values.
We triggered the spike train on every occur-
rence of a positive value. The triggered spike
trains were averaged and then filtered
(Gaussian window with ��1 frame width).
The result of this forward correlation analy-
sis is a spike density function (SDF) in re-
sponse to positive binocular correlation for
a given disparity (Fig. 7A).

The difference between two SDFs (the
response to positive with respect to the
response to negative binocular correla-
tion) shows the dynamics of disparity tun-
ing. The tuning function was broad
during the rising phase of the response.
The tuning function gradually became
sharper with longer delay times (Fig. 7B).
We characterized the tuning width by the
peak of the frequency spectrum. The peak
shifted by a median of 1.5 octaves between
the rising and decaying phases (Fig. 7C)
(Wilcoxon’s signed rank test, p � 1.8 �
10�4). The disparity tuning had a tempo-
ral order of coarse-to-fine. This result is
consistent with data from anesthetized
cats (Menz and Freeman, 2004a,b).

Comparison with conventional
disparity tuning
We tested whether the model was capable
of explaining conventional disparity tun-
ing measured with RLSs. These stimuli
were composed of high contrast lines and
so were different from the stimuli used for
the white-noise analysis. The ability of the
model to predict steady-state responses to
this stimulus is therefore a strong test of its
ability to explain neuronal responses. Be-
cause this analysis compares observed and

predicted firing rates, it requires that we first estimate any output
nonlinearity that relates the summed response of the elements to
the firing rate of the neuron. For this purpose, we calculated the
response of each cell to different combinations of summed exci-
tation and suppression in the model (following Rust et al., 2005).
Figure 8A shows two cross-sections through this 3-D surface: the
response as a function of excitatory pool input, for maximal sup-
pressive input and for minimal suppressive input. The downward
displacement between these curves reflects the subtractive input

Figure 5. Disparity-tuning characteristics of excitatory and suppressive pools. Each panel shows the symmetry phase (an
estimate of phase disparity) (A), centroid (an estimate of position disparity) (B), and SF (C), respectively. The value for the (exc)
excitatory pool is plotted on the abscissa, and the value for the suppressive (sup) pool is plotted on the ordinate. Arrows indicate the
example cells in Figure 2, A–D (ruf1844) and E–H (duf1725). The dashed lines traversing the top left and bottom right quadrants
in A represent an antiphase relationship.

Figure 6. Reduction of false peaks by the suppressive pool. A, A population of disparity detectors was created using an identified
model (ruf1844). One population had only the excitatory pool, whereas the other used the full model. The responses of the
populations to a single static image are shown. B, The height of the true peak (at �0.1°) relative to the false peak was calculated
for both models in response to 1000 different images. The difference in height is plotted for the full model against the excitatory
pool only. The white cross indicates the mean of the response difference pairs. C, The simulations are summarized by the mean for
each cell. The filled symbols indicate the cells with an even-symmetric excitatory pool.

Figure 7. Dynamics of disparity tuning with stimulus-triggered spikes. A, Spike density functions triggered on the presence of
positive correlation in the images at a particular disparity. These correlations at the preferred disparity (disparity 1) produce a
transient increase in activity. At disparities 2 and 3, they produce a transient reduction in activity. Disparity 2 produced the weakest
response during the rising phase of the response, whereas disparity 3 produced the weakest response during the decay. The
minimum response for disparity 2 precedes the minimum for disparity 3. B, From spike density functions for all disparities, two
cross-sections were extracted showing disparity selectivity at different times. A delay of 10 ms before the optimal represented the
rising phase. The decaying phase was 10 ms after the optimal. The disparities shown in A are marked with the corresponding
numbers. In this example, the disparity tuning sharpened over time. C, Population data. The disparity-tuning functions were
transformed to frequency spectra (after zero padding to improve the frequency resolution). The peak frequencies were expressed
as multiples of the fundamental frequency (units of octave). The peaks of the spectra shifted to higher frequencies over time.
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from the suppressive elements. High suppressive input also re-
duces the gain of responses to excitatory input. We quantified this
with linear regression. All 29 cells showed the reduction in slope,
with a median slope 20% lower for maximal suppression com-
pared with minimal suppression.

Rust et al. (2005) accounted for these slope changes with a
normalization model (Fig. 8B). Our data are almost equally well
described by a simpler model that applies an expansive nonlin-
earity after summing the two pools, requiring fewer parameters
(Fig. 8, compare A, B). The normalization model was modestly
better, explaining 97.5% of the variance (median) compared with
96.9% for the output nonlinearity alone (Wilcoxon’s signed rank
test, p � 3.6 � 10�4), but this is not surprising with two more
parameters in the normalization model. Because both models
produce very similar fits to the data, none of the conclusions we
present are affected by the choice of model.

The analysis illustrated in Figure 8 also allowed us to quantify
how strongly the suppressive elements influenced firing rate, us-
ing the fractional suppression described by Rust et al. (2005). This
is the ratio of responses with maximal excitation and maximal
suppression to the response with maximal excitation and mini-
mal suppression. The fractional suppression had a median value
of 0.68 (Fig. 8D). This was similar to the 0.63 reported by Rust et
al. (2005).

Having reconstructed the output nonlinearity, we simulated
the responses of the cell to RLSs presented at various disparities.
We compared these simulations with separate measurements,
made on the same cells using traditional
tuning curves (Fig. 9A,B shows exam-
ples). The median correlation coefficient
between predicted and observed response
was 0.88 for the 29 cells with suppression
(0.82 for all 64 cells), indicating that the
model predicted the shape of the
disparity-tuning curve well (Fig. 9D).

To compare predicted response magni-
tudes, we took the slope of a type II linear
regression of predicted versus observed re-
sponses. The median slope was 4.7 (larger
than 1.0, Wilcoxon’s signed rank test, p �
2.6 � 10�6 for the 29 cells with suppression;
median of 2.9; p � 3.5 � 10�12 for all 64
cells). This indicates that the predicted re-
sponses were generally larger than the ob-
served responses. This probably reflects the effect of contrast
normalization: the root mean square stimulus contrast of the
white-noise stimulus was lower than that of the RLS used for the
disparity tuning. Any saturation of responses at high contrast will
therefore result in observed responses that are smaller than the
model predictions. Thus, although the responses to the white-
noise stimulus alone do not clearly indicate the operation of a
normalization mechanism, our data as a whole do.

No attenuation with anticorrelated stimuli
Simulating the responses of the identified models (Fig. 6) re-
vealed that responses to false matches were suppressed. We there-
fore explored whether the model might also explain responses to
a different type of false match: those produced by anticorrelated
stereograms. Anticorrelated stereograms have no corresponding
patterns between the eyes yet evoke responses in disparity-
selective neurons (Cumming and Parker, 1997). These responses
are on average weaker than responses to correlated stereograms,
suggesting that responses to false matches are attenuated. We

simulated the responses of the identified models to anticorrelated
RLSs, to see whether our models explain this property. Figure 10
shows data for the two example cells and the corresponding iden-
tified model. Both identified models showed minimal attenua-
tion of disparity tuning with anticorrelated stereograms (Fig.
10A,B), whereas the neurons show substantial attenuation (Fig.
10E,F).

To pursue this discrepancy, we estimated neuronal responses
to correlated and anticorrelated disparities in our white-noise
stimulus. We analyzed the stimulus-triggered response (forward
correlation) as in Figure 7 but used a higher threshold of binoc-
ular correlation. The responses to images that were greater than
the 75th percentile or smaller than the 25th percentile repre-
sented the responses to positive and negative correlations, respec-
tively. These two SDFs were then separately compared with that
produced by near zero correlations (25th to 75th percentiles).
The SDF for each disparity was then integrated over time to arrive
at a disparity-tuning function. These estimates showed no atten-
uation in the response to anticorrelation, very similar to the

Figure 8. Combining excitatory and suppressive signals. A, The observed firing rate is shown
as a function of the calculated responses of the excitatory (Exc) pool and the suppressive pool.
The filled and open symbols are the two cross-sections of the response function. Filled symbols
show responses when the response of the suppressive pool was at a minimum. Open symbols
show responses for maximal suppression. The curves are the responses of the model with a
power-law function in Equation 7. B, The symbols are copied from A. The curves are the fitted
model with a normalization function in Equation 8. Both models captured the reduced slope
with suppression. C, The variance explained by the power-law model and the normalization
model was comparable, although divisive normalization was slightly better. D, Fractional sup-
pression is the ratio of the two symbols at the right end of the response function in A. The
distribution shows that suppression was clearly present in most cells and made a substantial
contribution to the responses.

Figure 9. Comparing disparity tuning of the models with the neurons. A, The disparity tuning of thee model is superimposed on
the actual disparity tuning. Error bars indicating SEM are smaller than the data points in this scale. This is the same cell as in Figure
2A–D. B, This is the same cell as in Figure 2E–H. C, The ratio (slope of regression line) between the response of the model and the
response of the cell is plotted as a function of the correlation. Three cells had a negative ratio, falling outside the plotted range. Sup,
Suppression.
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model response (Fig. 10C,D). Because the data from which the
model was derived did not exhibit attenuation with negative cor-
relations, it is unsurprising that the models themselves did not
show attenuation.

The bottom row shows the responses of the cells to the RLSs in
traditional tuning curves (Fig. 10E,F). Both cells showed sub-
stantial attenuation with anticorrelated stereograms (amplitude
ratios were �0.45 and �0.48, respectively). Figure 11 summa-
rizes this analysis for all 60 disparity-selective cells. The ampli-
tude ratios of the model prediction and the triggered response
were both near �1, with the model predicting a slightly lower
ratio (median of �0.95 vs �1.0; Wilcoxon’s signed rank test, p �
0.012; n � 58). The ratio in the traditional tuning curves indi-
cated a significant attenuation (median of �0.41; p � 1.6 �

10�10), similar to that reported previously. We examined the
subset of neurons for which we identified at least one excitatory
and one suppressive element. The amplitude ratios were slightly
lower with the model prediction than the triggered response (me-
dian of �0.90 vs �1.0; p � 0.005; n � 25). The response in
traditional tuning curves was significantly more attenuated (me-
dian of �0.45; p � 2.0 � 10�5).

Thus, the failure of the model to describe response to anticor-
related RLS in tuning curves reflects the fact that the neurons
respond differently to negative correlation in the noise stimulus
and in traditional tuning curves, and the model correctly de-
scribes the neuronal responses in the data to which it is fit. The
difference between the neuronal responses in the two cases pre-
sumably represents the effect of some additional nonlinearity.
What difference in the stimuli is responsible for this difference in
response will be the subject of a future investigation.

Simulation of fixational eye movements
In generating our STE, we have assumed that the monkeys main-
tained perfect fixation throughout the trial. In practice, small
fixational eye movements will generate random translations of
the receptive field of the neuron relative to the stimulus (median
of within-trial SDs, 0.053° and 0.056° for monkeys duf and ruf,
respectively, for horizontal conjugate movements). We have ex-
plored the effects of this jitter in simulations, using both idealized
energy models and using the identified excitatory elements. In no
cases did adding random jitter to the stimulus location lead the
STC analysis to produce suppressive elements like those we ob-
served, so we do not believe that fixational eye movements can
account for our findings.

We also asked whether fixational eye movements bias the ex-
citatory and suppressive elements to a push–pull organization.

Figure 10. Neuronal and model responses to anticorrelated stimuli, for the two example cells. A, B, The prediction of the model of the disparity-tuning function for correlated (Corr, filled) and
anticorrelated (Anticorr, open) RLSs (left). The scatter plot of the responses between same disparity (right). The slope of the regression line (dashed) is the amplitude ratio of the two tuning functions.
The predicted slopes were both close to�1 (�0.69,�1.1). C, D, Disparity tuning estimated from responses to noise stimuli. The regression slopes were�1.0 in both cells, indicating no attenuation
of response with anticorrelation. E, F, The actual response of the cell to correlated (filled) and anticorrelated (open) RLSs in a traditional tuning curve. The regression slopes (�0.45, �0.48) were
lower than in A and B.

Figure 11. Responses to correlated (Corr) and anticorrelated (Anticorr) stimuli. The ratio
(amplitude of response modulation to anticorrelated patterns)/(amplitude of response to cor-
related stimuli) defines “relative gain.” A, The relative gain predicted by the model is close to 1,
as are the spike-triggered responses. B, In traditional tuning curves, the gain was substantially
lower than predicted by the identified model. Thus, the model did not account for the attenu-
ated response of the cells to anticorrelated RLS in traditional tuning curves. Sup, Suppression.
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For this test, the model combined excitatory and suppressive
elements that were not given a push–pull organization but were
given different position disparities and both zero phase dispari-
ties. The STC analysis correctly recovered the elements, as long as
the difference in the position disparities was sufficiently large. We
also tested models with elements containing phase disparities
that differed by �/2, rather than �. Again, the analysis correctly
recovered the subunits, even in the presence of simulated eye
movements. Hence, the push–pull pairing of excitatory and sup-
pressive elements we find seems unlikely to be an artifact of eye
movement.

Discussion
This study took advantage of white-noise analysis to identify a
general LN model for disparity-selective cells in monkey V1. Our
goal was to identify the binocular elements of the model with as
few assumptions as possible. We found not only elements that
represent excitatory drives, as expected from the disparity energy
model, but also additional elements that reflect suppressive
drives. Unexpectedly, we found that, in many neurons, the exci-
tation and suppression were combined in a push–pull organiza-
tion. Whenever a stereogram with the preferred disparity of the
cell is presented, the excitatory elements drive the cell (push),
whereas the suppressive elements disinhibit the cell (pull). We
found that this push–pull organization helps suppress responses
to false matches (spurious responses to stimuli not at the cells
preferred disparity) in binocular images.

These spurious responses complicate the interpretation of re-
sponses across a population of disparity detectors. If one exam-
ines a population of energy-model like disparity detectors each
tuned to a different disparity, the detector with the maximum
response frequently does not have the same disparity as the
stimulus. The suppressive elements identified in this study
specifically attenuated these false peaks in the response, help-
ing to disambiguate the true peak from the false ones. Thus,
the push–pull organization represents a physiological step to-
ward solving the correspondence problem in stereo computa-
tion (Marr and Poggio, 1979).

A recent computational study proposed an algorithm that es-
timates the correct disparity from a map of disparity-energy
models (Read and Cumming, 2007). They proposed that the al-
gorithm could be physiologically implemented by suppressing
the signal of the even-symmetric (phase disparity, 
0) detectors
with the signal of hybrid (�phase disparity� � 0) detectors. This is
compatible with our finding that the suppressive signal is from
detectors that are in antiphase (difference in phase disparity,

�). Although the hybrid detectors in their model spanned a
range of phase relationships, our simulations here (Fig. 7) indi-
cate that phase disparities in antiphase are sufficient to produce a
similar effect. Furthermore, the computational study predicted
that the effect of this suppressive signal is to reduce responses to
false matches only in neurons with near zero phase disparity
(Read and Cumming, 2007), a pattern we also found (Fig. 6C).

An important difference between our results and the compu-
tational algorithm is that the algorithm considered interactions
between filters that were identical, apart from their binocular
position and phase disparities. Our suppressive elements also
showed a coarser spatial scale (lower preferred spatial frequency)
than their excitatory counterparts. This allows information at
coarse scales to influence matches made at finer scales. This
coarse-to-fine constraint has long been recognized as useful for
solving the correspondence problem (Marr and Poggio, 1979).
We showed a sharpening of the disparity response over time,

consistent with this coarse-to-fine process and similar to that
reported in V1 of anesthetized cats (Menz and Freeman,
2004a,b). Some human psychophysical work suggest that these
coarse-to-fine interactions only operate between frequencies �2
octaves apart (Wilson et al., 1991). This is similar to the range of
frequency differences we observed, compatible with the idea that
the suppressive elements we identified mediate coarse-to-fine in-
teractions in stereo processing. Thus, it appears that the suppres-
sive elements we identified simultaneously combine two
principles for reducing responses to false matches: push–pull and
coarse-to-fine organizations.

Anzai et al. (1999) used a related technique to study functional
subunits of disparity-selective complex cells in cat V1. However,
their analysis focused on excitatory elements, and it is not clear
whether their data contained evidence for suppression. Other
studies in the cat (not exploring binocular interaction) have
also reported only excitatory elements (Touryan et al., 2002),
but it is not yet clear whether this might be explained by
methodological differences between that study and those in
the monkey (Rust et al., 2005). Therefore, whether or not there
is a species difference in the prevalence of suppressive ele-
ments remains an open question.

If the mechanisms we have identified correctly explained the
responses of V1 neurons to all types of false matches, they should
explain another phenomenon. When stimulated with random-
dot stimuli of opposite polarity in the two eyes (anticorrelated
stereograms), V1 neurons still show disparity selectivity but with
reduced modulation amplitude (Cumming and Parker, 1997).
We explored the responses of the reconstructed models to anti-
correlated stereograms and found that they showed only very
slight attenuation of this sort. We also found that the neuronal
responses to anticorrelation in the white-noise stimulus showed
little attenuation, although many of the neurons showed substan-
tial attenuation when tested with traditional tuning curves. This
suggests that mechanisms not engaged by the white-noise stimu-
lus contribute to the stronger attenuation of tuning curves mea-
sured using anticorrelated stereograms. Nonetheless, our results
identify mechanisms that effectively reduce the matching prob-
lem for more natural stimuli.

The push–pull arrangement of filters that we find is reminis-
cent of the push–pull mechanism found in thalamocortical pro-
jections. In the case of orientation selectivity (Hirsch et al., 1998;
Troyer et al., 1998) and direction selectivity (Priebe and Ferster,
2005), the push–pull arrangement is thought to sharpen selectiv-
ity for these attributes. The binocular push–pull mechanism we
describe may sharpen disparity selectivity. It also achieves some-
thing quite different: a greater robustness to false matches, or
nuisance parameters in the stimulus. It will be interesting to see
whether a push–pull arrangement of inputs might be also bene-
ficial in other cases in which the brain has to infer a particular
aspect of the stimulus while discarding others.

In summary, we report a physiological mechanism that helps
solve the stereo correspondence problem at an early stage of bin-
ocular processing (V1). The mechanism is a push–pull organiza-
tion in binocular receptive fields. A similar organization with a
different functional implication has been shown for monocular
processing in the thalamocortical projections (Priebe and Ferster,
2005) but has never been implicated in binocular processing. We
show that simple operations based on the output of the energy
model can explain how this mechanism is exploited in the cortex
to solve a well-known computational problem faced by the visual
system.
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