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Abstract
In this article, we develop a framework for analyzing the causal effects of interventions in the
presence of latent factors that could affect outcomes, even in the absence of interventions. This
framework will be useful in situations in which genes are included among the latent factors. We
estimate the model and study the early origins of observed later-life disparities by education. We
determine the role played by cognitive, noncognitive, and early health endowments. We identify
the causal effect of education on health and health-related behaviors. We show that family
background characteristics and cognitive, noncognitive, and health endowments developed by age
10 are important determinants of health disparities at age 30. We also show that not properly
accounting for personality traits results in overestimation of the importance of cognitive ability in
determining later health. Selection on preexisting traits explains more than half of the observed
differences in poor health and obesity. Education has an important causal effect in explaining
differences in smoking rates. There are significant gender differences. We go beyond the current
literature, which typically estimates mean effects, to compute distributions of treatment effects.
We show that the effect of education on health varies among individuals who are similar in their
observed characteristics, and how a mean effect can hide gains and losses for different individuals.
This analysis highlights the crucial role played by promotion of good health at an early age and the
importance of prevention in the reduction of health disparities. We speculate about how the model
can be applied to genetic studies.
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Background
Researchers are paying increasing attention to the social determinants of health and placing
growing emphasis on the value of early childhood interventions (Commission on Social
Determinants of Health, 2008; Currie, 2009b; Marmot, 2010). Recent studies suggest that
early endowments, including genes, play an important role in understanding the etiology and
the evolution of health disparities (Bamshad, 2005; Fine, Ibrahim, & Thomas, 2005). Genes
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and other factors set early in life may determine the choice of education, lifestyles, and
environments that are beneficial or detrimental to health. Observed health differences in
individuals living in different environments may reflect, in part, heterogeneity in these early
endowments. They may also play a role in determining differential responses to
interventions and choices across individuals otherwise similar in their observed
characteristics.1

A growing literature establishes strong relationships between early childhood conditions and
adult outcomes (Knudsen, Heckman, Cameron, & Shonkoff, 2006). Gaps in both cognitive
and noncognitive abilities across different families emerge at an early age (Cunha,
Heckman, Lochner, & Masterov, 2006), as do gaps in health (Case, Lubotsky, & Paxson,
2002). Various studies suggest it is possible to partially compensate children damaged by
adverse environments (Heckman, Moon, Pinto, Savelyev, & Yavitz, 2010). Very little
research has focused on the role of these early factors on later health—there is still much to
know. Our research aims to start to fill this gap.

We present a general framework that allows for both cognitive, noncognitive, and health
factors and the choices of lifestyles, education, and environments to affect health outcomes.
The concept of developmental health, comprising physical, genetic, cognitive, and
psychosocial dimensions of child development, has been influential in life-course
epidemiology (Davey Smith, 2003; Kuh & Ben-Shlomo, 1997), but it has not yet been fully
accepted into the mainstream economics or medical literatures (McCormick, 2008).

In previous work (Conti, Heckman, & Urzua, 2010a, 2010b), we study the early origins of
the education–health gradient. Health gaps between education groups are rising (Meara,
Richards, & Cutler, 2008). Many authors have noted that better health early in life is
associated with higher educational attainment (Currie, 2009a; Grossman, 1975; Perri, 1984;
Wolfe, 1985), and that more educated individuals, in turn, have better health later in life and
better labor market prospects (Cutler & Lleras-Muney, 2010; Grossman & Kaestner, 1997).
A positive correlation between health and schooling is one of the most well-established
findings in the social sciences (Kolata, 2007). However, whether and to what extent this
correlation reflects causality is still subject to debate (see Grossman, 2000, 2006, for
comprehensive reviews of the literature). Three explanations are offered in the literature: (a)
causality runs from education to health (Grossman, 1972, 2008); (b) causality runs from
health to education (Currie, 2009a); and (c) both health and education are determined by a
third factor, such as time or risk preferences (Fuchs, 1982). Understanding the relative
importance of each of these mechanisms in generating observed differences in Health ×
Education interactions is relevant to designing policies to promote health.

Much of the literature in epidemiology and public health decomposes health disparities by
education without taking into account the fact that people make different educational
choices on the basis of factors that are also determinants of health behaviors. The literature
in economics addresses this problem largely using instrumental variables (Currie & Moretti,
2003; Lleras-Muney, 2005). This article examines the origins of health disparities by
education in the context of a general framework of latent variables to analyze the effect of
interventions and to disentangle causality from selection effects.

The paper is organized as follows: We first present a model of choice of schooling,
lifestyles, and environments, which can, in principle, incorporate the role of genetics. We

1For example, Bakermans-Kranenburg, Van Ijzendoorn, Pijlman, Mesman, and Juffer (2008) show that children carrying a high-risk
allele of the DRD4 gene have a stronger response to a parent training program designed to reduce their conduct problems. For other
examples of planned treatments that moderate genetic influences or of treatments in which genetic factors moderate effects, see Bauer
et al. (2007) and Brody, Beach, Philibert, Chen, and Murry (2009).
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then motivate our empirical analysis, which summarizes the research of Conti, Heckman and
Urzua (2010a, 2010b). Data and empirical results are then discussed. We next show how to
estimate the causal effects of education on health and report estimates. We follow this
discussion with possible application to genetics.

A Causal Model with Latent Factors Determining Outcomes and Choices of
Education, Lifestyles, and Environments

This section presents a framework for causal analysis, developed in Carneiro, Hansen, and
Heckman (2003); Aakvik, Heckman, and Vytlacil (2005); and Abbring and Heckman
(2007). An agent at age t is characterized by a vector of capabilities:

where θCt is a vector of cognitive capabilities, θNt is a vector of noncognitive capabilities,
θHt is a vector of health stocks, and θG is a genetic determinant. The latent factors in θt can
evolve over time and may be governed by investment decisions (see Cunha & Heckman,
2008, 2009; Cunha, Heckman, & Schennach, 2010). We discuss how to introduce the
genetic factor into analyses later in this article. For now, θG is just another latent factor.

A Latent Variable Model of Choice and Outcomes

Let  denote the net utility an individual derives from selecting a certain environment and
Di denote a binary variable indicating his or her actual decision (so Di = 1 if the individual
selects that environment and Di = 0 otherwise). Thus, we assume:

(1)

The net utility  is determined by an individual's observed and unobserved characteristics:

where Zi is a vector of observed characteristics determining an individual’s net utility level
and Vi is an unobserved random variable that also affects utility. Zi and Vi are assumed to be
statistically independent conditional on X.

Once the individual has selected her environment, all future outcomes are potentially
causally related to this decision. Our model allows individuals to choose their environments,
taking into account the potential outcomes in the two possible states (exposed and
unexposed).2 This feature of our model is extremely important. To the extent that
individuals select their environments anticipating future outcomes, we need to control for
the potential consequences of selection when comparing outcomes across levels of
exposures (i.e., comparisons of the outcomes of individuals exposed and unexposed are not
informative on causal questions because the two samples are not random samples of the
potential outcomes in the population for each state). We deal with the selection problem by
using a model of potential outcomes due to Neyman (1923) as extended in economics to
model the choices of the environments made by the agents (e.g., Heckman & Sedlacek,

2Notice this also incorporates into the modeling approach features of existing genetic analyses, according to which individuals
carrying certain genetic variants are both more likely to adopt certain behaviors, and to benefit from them (see Nicklas et al., 2005, for
the case of exercise and cytokine gene).
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1985; Roy, 1951) In this model, observed and unobserved variables (unobserved from the
point of view of the researcher but possibly known to the agent) are correlated across
exposure levels and outcomes. We link the unobserved variables in our choice and outcome
models to individual’s cognitive, noncognitive, health, and genetic endowments through
measurement equations. This feature of our approach represents an important contribution
because it not only allows for a simultaneous role for endowments as determinants of
choices and outcomes, but it also recognizes that some of these endowments are unobserved
by the researcher but are known to the agents (for example, we allow for the possibility that
individuals with a certain genetic endowment are more likely to select a certain environment
and also more likely to adopt certain behaviors). See Heckman (2008, 2010) for a discussion
of the importance of joint modeling of choice and outcome equations in causal inference.
Conventional causal models in statistics do not model the selection process. Our model
includes both continuous and discrete outcomes. We now turn to the discussion of how we
model each type of outcome.

Continuous Outcomes
Let (Yi1, Yi0) denote the potential outcomes for an individual (i), corresponding to the event
of selecting or not selecting a certain environment (respectively). The model assumes that
each of the potential outcomes is determined by an individual’s observed and unobserved
characteristics. Specifically, we write the potential outcome associated with environmental
exposure as:

(2)

and the potential outcome obtained if a person is unexposed as follows:

(3)

where Xi is a vector of observed characteristics and (Ui1, Ui0) denote the unobserved
components. It is not strictly required that Xi is statistically independent of Ui1, Ui0, and Vi
(for purposes of estimation, it is convenient to assume that Xi is independent of Ui1, Ui0, and
Vi, but this is not strictly required). An additively separable structure for μ0 (Xi, Ui0) and μ1
(Xi, Ui1) is not required. However, in our empirical implementation of the model, we assume
additive separability: μ0 (Xi, Ui0) = β0Xi + Ui0 and μ1 (Xi, Ui1) = β1Xi + Ui1. We do not
impose any assumptions on the correlations among Ui1, Ui0, and Vi. We allow the
unobserved components from outcomes and environmental choice to be correlated, and as
previously explained, any comparison of outcomes across levels of exposures should take
into account the potential selection problem. Notice that in this setup, the observed outcome
(Yi) is produced by potential outcomes (Y1i and Y0i) and the selection of the environment
(Di):3

(4)

Discrete Outcomes
Our general approach allows for dichotomous outcomes. In such cases, we use a model of
potential outcomes with an underlying latent index structure. Let  and  denote the net

3Equations 2–4 are from the Neyman (1923), Fisher (1935), Cox (1958), and Rubin (1974) model of potential outcomes. With the
addition of Equation 1 it is also the switching regression model of Quandt (1972) or the Roy model of income distribution (Heckman
& Honoré, 1990; Heckman & Sedlacek, 1985; Roy, 1951).
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utilities for individual (i) associated with the outcome in each of the two regimes. These
utilities are assumed to be a function of observed (Qi) (Qi might include the same variables
as Xi) and unobserved (εi1, εi0) characteristics. Specifically, we assume the following:

where Qi ╨ (εi0, εi1) Qi ╨ (εi,0εi,1) and “╨” denotes statistical independence. Associated with
each , we define the binary variable Bis as follows:

As in the case of continuous outcomes, we assume linear-in-parameters and additive
specifications for the functions κ0 (Qi, εi0) and κ1 (Qi, εi1) in our empirical implementation
of the model—κ0 (Qi, εi0) = λ0Qi + εi0 and κ1 (Qi, εi1) = λ1Qi + εi1—but, as in the
continuous case, this is a matter of computational convenience and is not strictly required.
We also allow for correlations among εi1, εi0, Ui1, Ui0, and Vi. The observed outcome Bi is
as follows:

(5)

Unobserved Endowments
Our model allows for general statistical dependence among the unobserved components Vi,
Ui1, Ui0, εi0, and εi1. We model the dependence by assuming that the error terms are
characterized by a factor structure which we interpret as cognitive and noncognitive
abilities, health, and genetic endowments. Specifically, and suppressing the subindex (i) to
simplify the exposition, if we let θ denote a vector of unobserved factors, with θ = (θC, θN,
θH, θG), where θC, θN, θH and θG can be vectors and represent the cognitive and
noncognitive abilities, health, and genetic endowments, respectively, we assume the
following:

where, for simplicity of exposition, we assume that (υV, υU1, υU0, υε1, υε0) are mutually
independent (this assumption can be relaxed in a number of ways—see Cunha et al., 2010,
and Hu & Schennach, 2008). Using this structure, we can analyze the effect of each of the
components of θ (cognitive, noncognitive, health, and genetic factors) on each of the
outcomes controlling for the endogeneity of the choice of the environment. To show this in
greater detail, we rewrite the choice equation as follows:

(6)

We rewrite the potential outcome associated with exposure as follows:
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(7)

and we rewrite the potential outcome obtained if a person does not select a certain
environment as follows:

(8)

By decomposing the differences in outcomes observed in people in different treatment
conditions, we can parse out the components that determine the selection into these
conditions and separate out causal effects from effects that would be present even without
the treatment.

Without further structure, the model is not identified. Up to this point, there is nothing in our
model that allows us to identify the levels (and distributions) of the components of θ. We
must supplement our model with additional information to identify it. We assume that the
new source of information is not affected by decisions about the choice of the environment,
otherwise it would also be contaminated by selection and a more involved procedure would
be required to obtain valid causal inference. More general examples can be found in
Carneiro et al. (2003), Hansen, Heckman, and Mullen (2004), and Heckman, Stixrud, and
Urzua (2006).

The Measurement System
Following Carneiro et al. (2003) and Abbring and Heckman (2007), we posit a linear
measurement system to identify the joint distribution of the unobserved endowments (θ).
Specifically, we supplement the model introduced above with a set of equations linking
early cognitive (MC), noncognitive (MN), health (MH), and genetic measures (MG) with the
unobserved cognitive (θC), noncognitive (θN), health (θH), and genetic θ(G) factors so that

we can give them a meaningful interpretation. Specifically, let ,

and  denote the set of early cognitive, noncognitive, health, and genetic variables
with NC, NN, NH and NG denoting the number of cognitive, noncognitive, health, and genetic
measurements available, respectively (assume that they are “dedicated”, i.e. that they only
measure one factor).4 For the case of scalar factors θC, θN, θH, θG:

4Assuming dedicated measurements means that the cognitive, noncognitive, health, and genetic measurements are only related to their
respective factors. One can relax this assumption in various ways. See Carneiro et al. (2003).
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where X denotes the set of observed variables determining the measures, and we assume that
υC1,…, υCNC, υN1,…, υNNN, υH1,…υHNH, υG1,…, υGNG are mutually independent. Our
assumption of dedicated measurements implies, for example, that intelligence tests are
solely a measure of cognitive ability (see Carneiro et al., 2003, and Cunha et al., 2010, for an
examination of more general cases). However, the factors can be correlated among each
other. Under the conditions in Carneiro et al. (2003) and Abbring and Heckman (2007), the
model is identified.

We now turn to an empirical illustration of this model, summarizing some of the results
from Conti, Heckman, and Urzua (2010a, 2010b).

Empirical Application: The Early Origins of the Education–Health Gradient
As an illustration of this approach, we develop a model of schooling choice (the
“environment” Di, in Equation 1) in which individuals sort across schooling levels on the
basis of their gains in terms of health and labor market outcomes. Clearly, other
interventions and choices of environments can be modeled. We summarize some of the
analysis of Conti, Heckman, and Urzua (2010a, 2010b; henceforth CHU). We lack genetic
data, so the example illustrates the application of the general framework previously
discussed but does not estimate genetic relationships. We study the decision of whether or
not to stay on in schooling beyond the compulsory age and its causal effects on adult
outcomes.5 Specifically, in our model, different schooling levels have associated different
adult outcomes: in our notation, (Yi0, Yi1) are the potential outcomes for individual (i)
corresponding, respectively, to the event of dropping out once one has reached the
compulsory schooling level and continuing education beyond it. These differences arise not
only because of the effects of observed variables on adult outcomes, but also because of
unobserved factors, which we model and interpret as cognitive ability, personality traits, and
health stocks.

With this empirical application, we join together different strands of the literature in
economics, epidemiology, and psychology. The first strand refers to the relationship
between health and cognitive ability. Although the importance of ability bias has long been
recognized in labor economics, the effect of cognitive ability on health has received
relatively less attention (the only exceptions are Auld & Sidhu, 2005; Cutler & Lleras-

5This decision is particularly important in the United Kingdom (the country we study), where the dropout rate is particularly high.
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Muney, 2010; Elias, 2005; Grossman, 1975; Hartog & Oosterbeek, 1998; Kaestner, 2009;
and Shakotko, Edwards, & Grossman, 1982). However, this topic has recently received
considerable attention in the field of cognitive epidemiology: large epidemiological studies
have found that intelligence in childhood predicts substantial differences in adult morbidity
and mortality (e.g., Batty, Deary, Schoon, & Gale, 2007; Gottfredson & Deary, 2004;
Whalley & Deary, 2001).

The second strand refers to the relationship between personality traits and health. Although
there is already an established literature in psychology on their importance (see Hampson &
Friedman, 2008; Roberts, Harms, Smith, Wood, & Webb, 2006; and Roberts, Kuncel,
Shiner, Caspi, & Goldberg, 2007), economists have just started to explore the effects of
personality traits on health (Kaestner, 2009) and health-related behaviors (Cutler & Lleras-
Muney, 2010; Heckman et al., 2006).

Our work also relates to the literature on biological programming (Gluckman & Hanson,
2006) and on the role of early-life conditions on adult outcomes (Case, Fertig, & Paxson,
2005), and to life-course epidemiology (Kuh & Ben-Shlomo, 1997). We go beyond the
current literature that looks at the effect of a single health indicator (e.g. height in
adolescence) on later outcomes. We model health as a latent factor to fully capture its
multiple indicators and the possibility that each indicator is measured with error (for a recent
example of this approach, see Dahly, Adair, & Bollen, 2008).

The final strand of the literature we refer to is the research on the effect of education on non-
market outcomes (e.g. health, fertility, marriage). The positive correlation between
education and health has long been recognized in the economic, epidemiologic, and medical
literatures, and several attempts at disentangling correlation from causality have been made
—in an extensive review of the literature, (Grossman 2006) concluded that there seems to be
evidence of a causal effect of education on health. Our methodology allows us to disentangle
differences in health between high- and low-educated individuals into the components which
can be attributed to education and the part which is determined by early-life factors
correlated both with education and late-life outcomes.

Data and Empirical Implementation
CHU use data from the British Cohort Study (BCS70): a survey of all babies born (alive or
dead) after the 24th week of gestation from 12:01 AM on Sunday, April 5, 1970, to 11:59
PM on Saturday, April 11, 1970, in England, Scotland, Wales, and Northern Ireland.6 Thus
far, there have been seven follow-ups (1975, 1980, 1986, 1996, 2000, 2004, and 2008) to
track all members of the birth cohort. We draw information from the birth survey, the
second sweep (1980, age 10), and the fifth sweep (2000, age 30). We select the fifth sweep
to secure the comparability of our results to those in the literature (Heckman et al., 2006).

After removing children born with congenital abnormalities and non-Whites (or those with
missing information on ethnicity), and deleting responses with missing information on the
covariates, the sample size amounts to 3,777 men and 3,620 women.

Schooling and Postschooling Outcomes
The following outcomes are considered in the analysis of CHU:

6The original name of the data was the British Births Survey (BBS), sponsored by the National Birthday Trust Fund in association
with the Royal College of Obstetricians and Gynecologists.
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• Schooling. The schooling measure is a dummy variable indicating whether or not
the individual stayed in school after reaching the minimum school-leaving age. For
the individuals in the BCS70 data, the minimum school-leaving age was 16 years.

• Labor market outcomes. CHU analyze two labor market outcomes: (log) hourly
wages and full-time employment status. Both are measured at age 30.

• Healthy behaviors. CHU consider three healthy behaviors, all measured at age 30:
use of cannabis over the lifetime (this is scored as "1" if the individual has used
cannabis by the age of 30), daily smoking (scored as "1" if the individual smokes
cigarettes every day), and regular exercise (scored as "1" if the individual exercises
regularly).

• Health. CHU analyze three variables characterizing an individual’s health status by
age 30. These are self-reported poor health (scored as "1" if the individual reports
his or her health to be "fair" or "poor"), obesity, and depression. Obesity is scored
based on a body mass index (BMI) of more than 25 (for females) or 30 (for males).
(Note that we use different thresholds for males and females because the difference
between high- and low-educated females is barely statistically significant if we
used a threshold of 30.) Depression is measured using the Malaise Inventory
(Rutter, Tizard, & Whitmore, 1970). The inventory includes 24 "yes/no" items that
cover emotional disturbances and associated physical symptoms. Individuals
responding "yes" to seven or more items are categorized as depressed.

In this article, we discuss only daily smoking, self-reported health and obesity in detail, as
these are the three outcomes studied in the health disparities literature more often (see Conti,
Heckman, & Urzua, 2010a, 2010b, for a discussion). Summary statistics for our outcome
measures are displayed in Table A1 at our Web appendix
(http://jenni.uchicago.edu/EdHealth/). Figure 1 displays the full range of educational
differentials in our outcome measures. It is interesting to notice that the magnitude of the
differential varies depending on the outcome, but a sizeable educational disparity is already
present by age 30.

Measurement System
As indicators of cognitive ability, CHU use the following seven test scores administered to
the children at age 10: the Picture Language Comprehension Test, the Friendly Math Test,
the Shortened Edinburgh Reading Test, and the four British Ability Scales. CHU use six
scales as measurements of noncognitive ability: one administered to the child (the locus of
control scale), and five administered to the teacher (perseverance, cooperativeness,
completeness, attentiveness, and persistence). As measures of the health endowment, CHU
use the height and the head circumference of the child at age 10, and the height of the
mother and of the father (also measured when the child was aged 10). Further details are
given in the Web appendix, where summary statistics for the measurements are also
presented (see Table A2).

Observed Characteristics
CHU include the following set of covariates in both the measurement system and in the
outcome equations: mother’s age at birth, mother’s education at birth (whether or not the
mother continued education beyond the minimum school-leaving age), father’s social class
at birth, total gross family income at age 10, whether the child lived with both parents since
birth until age 10, parity, and the number of children in the family at age 10 (CHU also
include child’s weight in the measurement equation for child’s height and head
circumference, and mother/father weight in the measurement equations for maternal/paternal
height). The schooling choice model also includes as a covariate the gender-specific

Conti and Heckman Page 9

Perspect Psychol Sci. Author manuscript; available in PMC 2011 July 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

http://jenni.uchicago.edu/EdHealth/


seasonally adjusted rate of unemployment-related benefit claims (the claimant count) as
observed in January 1986. Summary statistics for the covariates are presented in Table A3 in
our Web appendix.

Distributional Assumption and Estimation Strategy
CHU use mixture of normal approximations to the underlying factors’ distribution. Normal
mixtures can flexibly approximate a variety of distributions (see Ferguson, 1983):

where μ1 and μ2 are vectors of dimension 3 × 1 and Σ1 and Σ2 are matrices of dimension 3 ×
3. The variance–covariance matrices are not restricted to be diagonal matrices, so the
underlying factors are allowed to be correlated.

For the idiosyncratic components associated with the binary choice models (υV, υε0, υε1),
CHU assume independent normal distributions with a mean of 0 and a variance of 1. For the
idiosyncratic components associated with the continuous outcomes (υU0, υU1), CHU assume
independent normal distributions with means equal to zero and unknown variances.

The joint density of the outcomes conditional on observables is as follows:

where f(·) is the joint density of continuous (Y) and discrete outcomes (B), schooling choices
(D), cognitive measures (MC), noncognitive scales (MN), and early health variables (MH).
Written in terms of unobservables, the density is as follows:

where f(·) is defined as above and Fθ(·) denotes the joint cumulative density associated with
unobserved cognitive (θC), noncognitive (θN) and health (θH) endowments. Notice that,
conditional on unobserved factors (and observed characteristics), the components of D, MC,
MN, and MH are independent, and the sample likelihood simplifies accordingly. (Y and B are
not independent of D given X (see Equations 4 and 5). However, conditional on θ, any effect
of D on Y and B is causal). Using latent factors to account for the correlation across
outcomes, schooling decisions, and measurements simplifies the computation. CHU use
Bayesian Markov Chain Monte Carlo methods to compute the sample likelihood. See CHU
for further details.

Defining the Causal Effects of Interventions
Δi = Yi1 − Yi0 denotes the person-specific treatment effect for a given individual i and
outcome Y. As before, Yi1 and Yi0 denote the outcomes associated with postcompulsory
education (Di = 1) and compulsory education (Di = 0), respectively. We illustrate how to use
our framework to compute treatment parameters in the context of a single outcome.
However, our discussion directly extends to the more general case of vectors of continuous
and discrete outcomes.
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Δi involves factual and counterfactual outcomes. The counterfactual outcome refers to the
same individual—what would the outcome have been had he or she made a different choice?

For a given person we seek to determine what would be his or her outcome if he or she
continued education after compulsory schooling compared to the case where they do not. As
our model deals with the estimation of counterfactual outcomes, we can use it to estimate
the distribution of person-specific treatment effects. With this distribution in hand, we can
compute different average treatment parameters. We focus on the average treatment effect in
this paper7 (i.e., on the average effect of the treatment on a person drawn randomly from the
population of individuals):

where we integrate E(Y1 − Y0|X = x, θ = t) (the average treatment effect given X = x and θ =
t) with respect to the distributions of X and θ, where FX,θ(x, t) is the joint distribution of X
and θ evaluated at x, t. (We omit the subindex i for simplicity—Y and X denote any outcome
variable and associated covariates).

For the question addressed in this paper, knowledge of the distributional parameters is
fundamental. Does anybody benefit from post-compulsory education? Among those who
stay on in school after 16, what fraction benefits? The factor structure setup allows us to
estimate these distributional parameters, following Aakvik et al. (2005) and Carneiro et al.
(2003). We now discuss the empirical results of CHU.

Empirical Results
Figure 2 presents the estimated distributions of cognitive, noncognitive, and health
endowments for males and females, respectively. Panels A and C in both figures
demonstrate the importance of not imposing normal distributions for θ. Furthermore, the
comparison between males and females suggest robust patterns, with the cognitive
component highly correlated with the noncognitive component for both genders.

The Role of Early Endowments as Determinants of Adult Outcomes
Figure 3 presents the sorting of individuals across schooling levels in terms of the
distributions of cognitive, noncognitive, and health endowments. There is a clear sorting of
high cognitive and noncognitive individuals into the postcompulsory level of schooling. The
pattern is observed for both males and females. The sorting on the health endowment is not
as strong as the sorting observed in Panels A1–A2 (cognitive) and B1–B2 (noncognitive),
but it is statistically significant for females.8 Table 1 reports the marginal effects of θ on
daily smoking, obesity, and self-reported health by level of education.9 Notice that cognitive
ability is a significant determinant of the educational choice, but it basically plays no role on
health outcomes (the only exception is the case of poor health for females in the low-
education group). On the contrary, noncognitive ability, which is also a significant

7Conti, Heckman, Lopes, and Piatek (2010) consider other treatment parameters, such as the average effect of the treatment on the
treated (i.e., on a person drawn randomly from the population of individuals who entered the treatment) and the marginal treatment
effect.
8The results for the measurement systems are available at our Web appendix. See tables (A-4)–(A-6). Here we just notice that each of
the unobserved endowments is a significant determinant of the respective set of measurements.
9Following Aakvik et al. (2005), marginal effects are defined as the analytical derivative averaged over the unconditional distribution

of X and θ: , with k = {0,1} and j = {C, N, H}.
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determinant of the educational choice, exerts a powerful role in reducing the probability of
engaging in unhealthy behaviors such as smoking and poor health at age 30 (notice that, in
the latter case, the effect of noncognitive ability only achieves statistical significance for the
low-education group). We also uncover the role played by early health conditions. For
males, early health conditions have no significant effect on the probability of staying on
beyond the minimum compulsory level of education, but have a direct effect on all the
health outcomes at age 30. For females the effect of health conditions at age 10 seems to
work mainly through the educational channel. Notice that, for both males and females,
children with a better health endowment at 10 are less likely to be obese by age 30, which is
consistent with our modeling of the health factor as a physical health endowment. To gain a
better understanding of the overall impact of early life factors, including their effect through
education, we compute the predicted unconditional outcome (i.e., the outcome not
dependent on education; results by level of education are qualitatively similar; see CHU)
and we plot it by percentile of the respective factors in Figures 4–6. In each case, for a given
outcome Y, endowment θj, and percentile Pθj, we compute E[Y |θj ∈ Pθj] by integrating out
the observable characteristics and fixing the remaining two unobserved endowments at their
overall mean, and we normalize the predicted outcome to zero at the first percentile of the
distribution of each factor, so that we can compare the relative magnitude of their effects for
both genders.

Our first striking result points to a much lesser role for cognitive ability than has been
emphasized in the cognitive epidemiology literature. The result is especially strong for
males: A shift from the bottom to the top of the cognitive ability distribution brings about no
significant change in the probability of daily smoking (Fig. 4, Panel A), of having poor
health (Fig. 5, Panel A), or of being obese (Fig. 6, Panel A) at age 30. The picture is only
slightly different for females: cognitive ability also plays no role on the probability of being
a daily smoker (Fig. 4, Panel B) or of being obese (Fig. 6, Panel B), but it is an important
determinant of the probability of having poor health (Fig. 5, Panel B). The second result that
we emphasize is that both noncognitive ability and early health have effects of comparable
magnitude. For example, a successful noncognitive/health intervention that would move a
child from the bottom to the top percentile of their respective distributions would bring
about a reduction in the probability of having poor health at age 30 by more than 10% for
males (Fig. 5, Panel A) and by more than 5% for females (Fig. 5, Panel B). The only
exception is obesity: for this outcome, the early health endowment is the single major
determinant—a finding that corroborates our interpretation of it as physical health.

Education
We now analyze the causal effect of education on the outcomes we consider. The results are
shown in Figure 7, where the observed disparities are decomposed into the average
treatment effect of education (the darker region) and the effect of selection. Notice that
education has a causal effect on most outcomes for both males and females. To gain a better
understanding of the role played by education in reducing health disparities, we complement
Figure 7 with Figure 8, which displays the fraction of the observed differential that can be
attributed to education. We see that education plays an important role in explaining
differences in smoking behavior, but it accounts for half or less than half of the observed
differential in self-reported health. We also uncover significant gender differences:
Education plays a much more important role in accounting for the gap in obesity rates for
males than it does for females (notice the difference in obesity by education is entirely due
to selection for females). This emphasizes the importance of taking the gender dimension
into account when studying health disparities.
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Distribution of Treatment Effects
We now move beyond the traditional literature that only considers mean effects and estimate
distributions of treatment effects (see Fig. 9). Knowledge of these distributions is
fundamental if we want to uncover what lies behind a “zero” average treatment effect and
determine the proportion of the individuals who actually benefit from the treatment. We
notice that, in the case of smoking, the proportion of people who gain is much bigger than
the proportion of people who “lose”,10 so the average treatment effect turns out to be
negative (Fig. 9, Panels A1 and A2). (In each graph, the height of the bar on the left
represents the proportion of individuals who would have a successful outcome if treated
(i.e., Y1 = 0) but an unsuccessful outcome if not treated (i.e., Y0 = 1), so that the average
treatment effect for this group is −1. The opposite holds for the bar on the right. The height
of the middle bar represents the proportion of individuals who would be unaffected by the
treatment.)

However, consider obesity in females (Fig. 9, Panel C2). We can see that underlying an
insignificant average treatment effect of education are gains and losses that balance each
other out—the same proportion of women (almost 20%) lose and gain from the treatment.
Although usually overlooked in traditional studies on the impact of treatments on outcomes,
knowledge of these distributional parameters is fundamental to understanding if there is a
fraction of individuals who benefit from a particular policy beyond the average treatment
effect (see Abbring and Heckman (2007) for a discussion of distributional treatment effects).

Treatment Effect Heterogeneity: The Role of Early Endowments
We next analyze how the average treatment effect of education varies along the distribution
of cognitive and noncognitive skills, and early health. In each case, for a given outcome Y,
endowment θj and percentile Pθj, we compute E[Y1 − Y0|θj ∈ Pθj] by integrating out the
observed (by us) characteristics and fixing the remaining two unobserved endowments at
their overall mean. Although there is a significant amount of heterogeneity in the effect of
education across outcomes by levels of endowments, we can uncover some distinct patterns.
First, the beneficial effect of education is much bigger at the top of the cognitive ability
distribution for males (see Panel A in Figs. 10–12) and at the bottom for females (apart from
smoking, see Panel B in Figs. 10–12). This is particularly interesting in the case of smoking,
as it is consistent with the interpretation that the information content on the dangers of
smoking provided by postcompulsory education needs to be combined with the capacity to
process that information in order to be effective. Second, for all outcomes and genders,
education compensates for poor noncognitive ability. Third, there is no heterogeneity in the
effect of education for males along the distribution of the health endowment.

The Role of Cognitive Ability
Table 2 compares the effect of cognitive ability in our three-factor model with the effect
found in a model where we do not include noncognitive ability and early health. It is striking
to note that if early noncognitive traits are not included in the model, early cognitive ability
has an important effect for all the outcomes, whereas it plays no role in the model where we
consider the three early factors jointly (see for example the smoking and health outcomes).
(The same pattern holds when we estimate the effects of the endowments by means of factor
scores and simple Probit and OLS regression. The results are available from the authors
upon request.) This comes as no surprise if we consider that the estimated correlations
between the cognitive and noncognitive endowments are very high (0.54 for both males and

10In this particular example, those who "lose" are people who start smoking as a consequence of continuing education after age 16.
We can think of many reasons why this could be the case: inability to cope with stress due to increased study effort, negative peer
effects, etc.
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females). To better gauge the magnitude of these effects, Figure 13 presents the total effect
of cognitive ability on the outcomes in our three-endowment model and in a model without
the noncognitive and health endowment. Notice that, in all the cases in which cognitive
ability is not a significant determinant of the outcomes in the three-factor model, it has a
significant and sizeable impact on them when noncognitive skills and early health are not
included; it also has a bigger impact on the probability of being in poor health for females,
for which it was a significant determinant in the three-factor model. This serves as a serious
caveat for all the work in this area that has not given adequate importance to personality
traits and focuses solely on the role played by intelligence early in life (Gale, Batty, &
Deary, 2008, and von Stumm, Gale, Batty, & Deary, 2009, acknowledge the relevance of
locus of control in the relationship between childhood IQ and adult outcomes).

Possible Applications to Genetic Data
The framework of this article can be applied to the analysis of genetic data. The most
obvious way is to include θG as an element of θt. This approach is somewhat unsatisfactory
because θCt, θNt, and θHt likely have genetic components.

One way to address this is through the technology of skill formation (Cunha & Heckman,
2007, 2008, 2009; Cunha, Heckman, & Schennach, 2010). Latent capabilities θ̃t = (θCt, θNt,
θHt) may be produced by investment It, which includes parental environments, schooling
and the effects of neighborhoods and social environments:

(9)

where θG, the genetic factor, affects the acquisition of capabilities. At t = 0, which
corresponds to birth, I−1 denotes the in-utero conditions (Gluckman & Hanson, 2005, 2006),
and θ̃−1 = 0. Thus, early life conditions determine lifetime capabilities. θGDi = 1 See Cunha
and Heckman (2008) and Cunha, Heckman, and Schennach (2010) for estimates of similar
models that show the promise of this approach (though they do not use genetic data).

Notice that we can allow the genetic factor θG to affect both the choice of treatment (e.g.,
whether Di = 1 or not) and the outcomes given the choices (it is a component of θ in
Equations 6, 7, and 8). Hence our model can identify gene–environment correlations (rGE),
in which genes determine the selection into environments (the component of αV
corresponding to θG is not zero), and gene–environment interactions (G×E), in which
environments can modify the association between genes and outcomes (the components of
αU1 and αU0 corresponding to genes are not zero).

One possible way to use genetic data is as follows. First, our modeling strategy easily
accommodates the case in which a single genetic marker proxies a certain genotype,
modeling what Reiss and Leve (2007) call “allele–environment” interaction. A second
possibility is to capitalize on recent advances in epigenotyping (a method for assaying the
methylation status of DNA) and use the proportion of methylation in C-phosphate-G sites
(cytosine and guanine separated by a phosphate that links the two together in the DNA
sequence) as measurements. In this case, our modeling strategy would naturally extend to a
dynamic setting, to allow for the fact that methylation patterns can change over time, and θGt
would be the methylated gene, which is what affects choices of environments and outcomes
(see Schneider et al., 2010—we plan to extend our approach to a dynamic setting along the
lines of Cunha & Heckman, 2008, Cunha et al., 2010, and Heckman, 2007). A third
possibility is to use genome-wide expression data from DNA microarray. In these latter
cases, clustering would naturally arise according to similarity in patterns of gene expression

Conti and Heckman Page 14

Perspect Psychol Sci. Author manuscript; available in PMC 2011 July 5.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



(see Eisen, Spellman, Brown, & Botstein, 1998), and our framework would allow us to
analyze significant differential expression after a given treatment. In addition to this, the
availability of the three different types of data would allow us to examine the extent to
which the genotype affects both gene expression and DNA methylation (see Gibbs et al.,
2010, for a very recent analysis along these lines). Clearly, one advantage of modeling the
second or third type of data relies on the fact that changes in methylation patterns and gene
expression reflect genome-wide activity, whereas we would use the first type of data to
analyze the effect that specific alleles have on the choice of environments and on the
outcomes.

Notice that each of the four endowments can be itself a vector: this would allow us to model,
respectively, fluid and crystallized intelligence, the Big Five, physical and mental health,
and, in the case of θG, gene–gene interactions (G×G), which, if not properly accounted for,
can give rise to false gene-environment correlations (rGE). Finally, it is worth remarking
that as our model allows each endowment to have an effect on the choice of environment
and on a variety of outcomes, it encompasses pleiotropy (i.e., the cases in which genes have
differential effects on more than one phenotype).

Twin Data
If analysts have access to twin data, they do not need direct measurements on genetic
markers. In contrast to the approach previously discussed, we now deal with the case of
observed environments but with no direct proxy for genotype. The availability of data on
twins allows us to estimate genetic effects even in absence of measures of genotypes.

Traditionally, twin studies decompose the phenotypic variance into three components:
additive genetic, common environment, and unique environment—the so-called ACE
model. Here, we discuss a binary environment, and we refer the reader to recent work by
Purcell (2002) and Rathouz, Van Hulle, Rodgers, Waldman, and Lahey (2008) for the case
of continuous moderators. For the binary environment, Eaves (1982) proposed a simple
method for detecting G×E: estimate components of phenotypic variance conditional on
environmental exposure, such that, if the amount of variance explained by genetic factors
differs between exposed and unexposed twins, then this will constitute evidence for G×E (as
a different environment is applied over the same set of genotypes). Eaves (1982) recognized
that phenotypic differences might be also due to active gene–environment correlations but
did not propose a method to separate out the two components. Our method encompasses
both rGE and G×E with twins data in the context of the genetic factor model proposed by
Martin and Eaves (1977).

As the choice and the outcome portions of our model are unchanged (apart from the
presence of a set of outcomes and a choice equation for each twin), we focus on the
measurement system to show how genetic effects can be identified from multiple proxies on
the same factor for MZ and DZ twins. Mij is defined as the ith measurement M on twin j
(think of M as a test of cognitive ability, for example). Let us further assume that we have
two measurements for each twin, and that each measurement is a linear function of the
factor it is designed to proxy (cognitive ability, in the context of the above example) and of
the genetic endowment. Thus, we relax the assumption of dedicated measurements. Defining

 as the cognitive ability of Twin 1 and  as the cognitive ability of Twin 2, we leave the
conditioning on X implicit to simplify the exposition and write the measurement system as
follows:
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where we make the standard assumptions in twin design that (β1, β2) are the same for both
twins, and we use the first measurement for each twin to normalize the factor . In addition,

we assume that . Let us further assume for the moment , where “╨” denotes
independence. By using the fact that cov(θG1, θG2) = 1 in the case of MZ twins, and cov(θG1,
θG2) = 0.5 in the case of DZ twins, we obtain the following covariances:

From the eight covariances and the assumption that , we are generally able to

identify all the seven parameters of the measurement system 
with (β1, β2) and (α21, α22) identified up to sign. With this type of information, we can relax
the assumption that , and identify , at the cost of imposing an assumption like

. Clearly, the availability of a number of measurements (>2) for each twin, or of
multiple time periods, would allow us also to relax this equicorrelation assumption and to
identify richer models. The development of these models is left for another occasion.

Adoption Data
The model can be applied to adoption data. As in the case of twins data, one defining
characteristic of the adoption design is the possibility of identifying and estimating genetic
effects in the absence of direct measurements on genotypes. In the following analysis, we
present the simplest possible model that allows us to exploit adoption data (our model
currently does not consider the case of adoption of relatives—this is a straightforward
extension that is left for a future occasion). For ease of exposition, we present this model in
the context of a specific application on structured parenting (D, the environment) and child
psychopathology (Y, the outcome; see Leve et al., 2009, for the original application). Define
θB as the birth parents (BP) factor (e.g. depression), θA as the adoptive parents (AP) factor
(same personality disfunction as for the BP), and θC as the adopted child (AC) factor (e.g.,
behavioral problems as early precursors of psychopathology). By defining the treatment as
structured parenting and the outcome as child psychopathology, we notice that we are able
to model genetic and environmental effects on parenting, while allowing at the same time
parenting to exert a differential effect on child psychopathology as a function of genetic
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endowments. Thus, we incorporate both rGE and G×E in this setup. We rewrite our choice
equation as follows:

(10)

and we rewrite the potential outcome (child psychopathology) associated with exposure to
structured parenting as follows:

(11)

and the potential outcome obtained if the parent does not adopt a structured parenting
approach is as follows:

(12)

It is now instructive to interpret each of the model parameters: αBV represents evocative
rGE, αB1 and αB0 capture how parenting moderates genetic risk, αAV captures the indirect
effect of adoptive parents personality through parenting, αA1 and αA0 capture the direct
effect on the child psychopathology, αCV captures the direct effect of child’s early
behavioral problems on parenting, and αC1 and αC0 allow parenting to have a differential
effect on child’s outcomes depending on child’s early behavioral problems. It turns out that
the covariances among the factors have a meaningful interpretation in this setting: cov(θA,
θB) captures the presence of selective placement or adoption openness, cov(θA, θC) captures
the similarity between adoptive parents and children that reflects environmental influences,
and cov(θB, θC)captures the similarity between birth parents and children that reflect genetic
influences. Under general conditions specified in Carneiro et al. (2003) and Abbring and
Heckman (2007), the model is identified. We hope to apply these models in future work.

Conclusions
In this article, we apply a general model for causal inference of interventions (choices of
environments) in the presence of latent variables that affect choices of interventions and
outcomes to disentangle the causal effect of interventions from the role played by latent
factors as they determine outcomes. In an empirical illustration of our methodology, we
draw on the work of Conti, Heckman, and Urzua (2010a, 2010b) that determines the role
played by cognitive, noncognitive, and early health endowments on adult outcomes. We
identify the causal effect of education on health and health-related behaviors. We develop an
empirical model of schooling choice and postschooling outcomes, in which both dimensions
are influenced by latent factors (cognitive, noncognitive, and health). We show that family
background characteristics and cognitive, noncognitive, and health endowments present as
early as age 10 are important determinants of disparities in smoking rates, poor health, and
obesity at age 30. We show that not properly accounting for personality traits overestimates
the importance of cognitive ability in determining later health. We show that selection
explains more than half of the observed difference by education in poor health and obesity,
and that education has an important causal effect in explaining differences in smoking rates.
We uncover significant gender differences. We go beyond the current literature, which
usually estimates mean effects to compute distributions of treatment effects. We show how
the health returns to education can vary also among individuals who are similar under their
observed characteristics and how a mean effect can hide gains and losses for different
individuals. This highlights the crucial role played by the early years in promoting health
and the importance of prevention in the reduction of health disparities. We have discussed
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how the method can be applied to analyze how genes affect the choice of interventions
(environments) and the potential outcomes resulting from interventions. An empirical
application of the model to genetic data is left to the future.

Supplementary Material
Refer to Web version on PubMed Central for supplementary material.
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Fig. 1.
Disparities by education. The figure displays the differences in obesity, poor health, and
daily smoking by education, between individuals with educational level equal to compulsory
education and individuals with some postcompulsory education. The differences are also
presented by gender. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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Fig. 2.
Joint distributions of the endowments. A: Cognitive and noncognitive endowments in males
and females. B: Cognitive and health endowments in males and females. C: Noncognitive
and health endowments in males and females. The figures show the joint distributions of
cognitive, noncognitive, and health endowments and are generated using simulated data
from our model. The simulated data contains the same number of observations as the actual
data. The estimated correlations are as follows: cognitive and noncognitive endowments = .
544 for males and .541 for females, cognitive and health endowments = .176 for males and .
153 for females, and noncognitive and health = .093 for males and .040 for females. Finally,
for each endowment, the mean is standardized to be zero. Adapted from Conti, Heckman,
and Urzua (2010a, 2010b).
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Fig. 3.
Marginal distributions of endowments for males (A) and females (B) by schooling level.
The figures show the marginal distributions of cognitive, noncognitive, and health
endowments and are generated using simulated data from our model. The simulated data
contains the same number of observations as the actual data. Adapted from Conti, Heckman,
and Urzua (2010a, 2010b).
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Fig. 4.
Effects of endowments on daily smoking outcomes for males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel;
when we compute the effect of each endowment on the outcome, we integrate out the
observable characteristics and fix the other two endowments at their overall mean. Adapted
from Conti, Heckman, and Urzua (2010a, 2010b).
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Fig. 5.
Effects of endowments on fair or poor health outcomes for males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel;
when we compute the effect of each endowment on the outcome, we integrate out the
observable characteristics and fix the other two endowments at their overall mean. Adapted
from Conti, Heckman, and Urzua (2010a, 2010b).
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Fig. 6.
Effects of endowments on obesity outcomes for males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel;
when we compute the effect of each endowment on the outcome, we integrate out the
observable characteristics and fix the other two endowments at their overall mean. Adapted
from Conti, Heckman, and Urzua (2010a, 2010b).
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Fig. 7.
Decomposition of the observed disparities in outcomes by education. The bar heights show
the difference in outcomes by educational level (postcompulsory schooling vs. compulsory
schooling). The darker region within each bar shows the fraction of the raw gap arising from
the causal contribution of education. The rest is due to selection. Adapted from Conti,
Heckman, and Urzua (2010a, 2010b).
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Fig. 8.
Fraction of the observed disparities in outcomes due to education. The figure displays the
fractions of the observed differentials that can be attributed to the effect of education.
Specifically, if we denote by Δ the observed differences in outcome Y (i.e. Δ = E[Y1|D = 1]

− E[Y0|D = 0]), in this figure we present . The differential in
obesity by education for females is entirely explained by selection. Adapted from Conti,
Heckman, and Urzua (2010a, 2010b).
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Fig. 9.
Population distribution of the average treatment effect. A: Daily smoking (males and
females). B: Fair/poor health (males and females). C: Obesity (males and females). The
figures display the distribution of the average treatment effect by gender. The outcomes are
simulated from the estimates of the model. The simulated data contains the same number of
observations as the actual data. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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Fig. 10.
Treatment effect heterogeneity for daily smoking in males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel;
when computing the average treatment effect along the distribution of each endowment, we
integrate out the observable characteristics and fix the other two endowments at their overall
mean. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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Fig. 11.
Treatment effect heterogeneity for fair/poor health in males (A) and females (B). The
endowments and the outcomes are simulated from the estimates of the model in each panel;
when computing the average treatment effect along the distribution of each endowment, we
integrate out the observable characteristics and fix the other two endowments at their overall
mean. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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Fig. 12.
Treatment effect heterogeneity for obesity in males (A) and females (B). The endowments
and the outcomes are simulated from the estimates of the model in each panel; when
computing the average treatment effect along the distribution of each endowment, we
integrate out the observable characteristics and fix the other two endowments at their overall
mean. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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Fig. 13.
Effect of cognitive ability. A: Effect on daily smoking for males and females. B: Effect on
fair/poor health for males and females. C: Effect on obesity for males and females. The
figure shows the effect of cognitive ability on the outcome of interest in the three-factor
model versus a model without the noncognitive and health endowments. The dashed line is
the same as the one displayed in Figure 4–6 for the cognitive factor in the three-factor
model. Adapted from Conti, Heckman, and Urzua (2010a, 2010b).
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Table 2

Marginal Effects of Endowments on Outcomes, by Educational Level: Cognitive Ability Only

Males Females

Variable Three-factor
model

Cognitive ability
only

Three-factor
model

Cognitive ability
only

Education 0.205
(2.446)

0.238
(2.524)

0.195
(3.732)

0.220
(3.823)

Daily smoking (C) 0.062
(2.133)

−0.045
(−2.041)

0.017
(0.580)

−0.045
(−1.918)

Daily smoking (PC) −0.009
(−0.276)

−0.054
(−1.931)

−0.007
(−0.266)

−0.050
(−1.927)

Poor health (C) 0.017
(0.794)

−0.045
(−2.382)

−0.052
(−1.957)

−0.081
(−2.918)

Poor health (PC) −0.037
(−1.221)

−0.045
(−1.634)

−0.017
(−0.700)

−0.040
(−1.687)

Obesity (C) 0.014
(0.688)

−0.022
(−1.370)

−0.012
(−0.407)

−0.063
(−2.651)

Obesity (PC) −0.007
(−0.251)

−0.009
(−0.393)

0.039
(1.160)

−0.021
(−0.847)

Note. Adapted from Conti, Heckman, and Urzua (2010a, 2010b). This table displays unstandardized coefficients. The three-factor-model column
displays the same results as Table 1 (the "Cognitive" column). The cognitive-ability-only column displays the estimated marginal effects of the
cognitive factor on the outcomes for a model that does not include the noncognitive and health factors. Numbers in parentheses are t statistics. C =
compulsory; PC = post-compulsory.
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