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Abstract
Epilepsy is a brain disorder usually associated with abnormal cortical and/or subcortical functional
networks. Exploration of the abnormal network properties and localization of the brain regions
involved in human epilepsy networks are critical for both the understanding of the epilepsy
networks and planning therapeutic strategies. Currently, most localization of seizure networks
come from ictal EEG observations. Functional MRI provides high spatial resolution together with
more complete anatomical coverage compared with EEG and may have advantages if it can be
used to identify the network(s) associated with seizure onset and propagation. Epilepsy networks
are believed to be present with detectable abnormal signatures even during the interictal state. In
this study, epilepsy networks were investigated using resting-state fMRI acquired with the subjects
in the interictal state. We tested the hypothesis that social network theory applied to resting-state
fMRI data could reveal abnormal network properties at the group level. Using network data as
input to a classification algorithm allowed separation of medial temporal lobe epilepsy (MTLE)
patients from normal control subjects indicating the potential value of such network analyses in
epilepsy. Five local network properties obtained from 36 anatomically defined ROIs were input as
features to the classifier. An iterative feature selection strategy based on the classification
efficiency that can avoid ‘over-fitting’ is proposed to further improve the classification accuracy.
An average sensitivity of 77.2% and specificity of 83.86% were achieved via ‘leave one out’ cross
validation. This finding of significantly abnormal network properties in group level data
confirmed our initial hypothesis and provides motivation for further investigation of the epilepsy
process at the network level.
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1. Introduction
Epilepsy is a common brain disorder characterized by recurrent unprovoked seizures,
associated with functionally abnormal, distributed cortical and subcortical network(s). The
investigation of abnormal functional network properties and localization of the brain regions
responsible for seizure generation and propagation are key issues for both understanding the
epilepsy networks and potentially guiding therapeutic strategies.

The evidence for human epilepsy networks comes mostly from ictal and pre-ictal EEG
observations. In order to understand the spatiotemporal dynamics of seizure activity,
measures either from individual electrodes, for example power spectrum, or from electrode
pairs such as correlation, coherence and synchronization likelihood have been applied
(Bertashius, 1991; Ponten et al., 2007). In human medial temporal lobe epilepsy (MTLE),
intracranial EEG (icEEG) has shown evidence of a medial temporal limbic network which is
a bilateral, cortical/subcortical network that includes the hippocampal formation, amygdala,
entorhinal cortex, medial thalamus, and inferior frontal lobe (Spencer, 2002). Based on
human icEEG recordings of spontaneous seizures, the entire network may variably
participate in the genesis and expression of seizure activity. The initial electrical events are
expressed in various network locations, and may vary from seizure to seizure in an
individual (Spencer et al. 1992, 1994, 2002; Wennberg 2002). Locational and morphologic
variability in apparent “seizure onset” is typical of spontaneous seizures recorded within the
human brain in MTLE, but is difficult to recognize with the sparse sampling provided by
intracranial recording. Spencer (1994) and So (1991) further observed that seizure onset can
be synchronous over multiple areas, with involvement of extrahippocampal and subcortical
regions. Global changes in epilepsy networks have been observed in several states including
interictal, before rapid discharge, during rapid discharge (early ictal), during seizure
spreading (late ictal) and postictally (Ponten et al., 2007). Temporal lobe functional
connectivity was found to be lower in patients with longer TLE history while longer TLE
duration was correlated with more random network configuration (Dellen et al., 2009).

Although icEEG has good temporal resolution, its low spatial resolution and the invasive
nature of the procedure especially in deep cortical layers limits its widespread utilization.
Compared with icEEG, functional MRI provides higher spatial resolution together with
whole-brain anatomical coverage. Functional connectivity mapping using fMRI was first
described by Biswal (1995). This approach utilizes the blood oxygenation level dependent
contrast (BOLD) signal and measures the temporal correlations between different brain
regions in a single subject over time (Biswal 1995; Hampson 2002; Lowe 1998) typically
during rest. Low frequency (<0.1Hz) spontaneous fluctuations lead to temporal changes in
the BOLD signal and these temporal changes are often highly correlated across brain regions
that participate in similar networks. There is also evidence that resting-state connectivity can
be related to behavioral variables such as task performance (Hampson 2006a,b) and it is
altered in several clinical populations (Buckner 2009, Mullen 2010). Since epilepsy
networks are persistently abnormal, we test the hypothesis that such networks could be
defined by the extent and strength of their components in the interictal state. To detect
abnormalities we compare the networks identified in epilepsy patients in the interictal state
with the functional networks of a large set of control subjects in this study.
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Specifically we investigate the extent to which we can extract representative features to
classify functional connectivity networks thereby differentiating MTLE patients from
healthy control subjects. Social network analysis was adapted to extract information on the
functional networks in the brain from the high-dimensional resting-state fMRI data. Social
network analysis has emerged as an important technique in sociology and it plays a
significant role in various fields such as economics, biology, psychology, etc. Social
network analysis provides tools that can be used to interpret complicated coupling
topologies in brain networks. Recent studies suggest that networks derived from brain
activity possess a “small-world” topology characterized by dense local clustering and most
connections have short path length (Sporns et al., 2004; Bassett and Bullmore, 2006; Ponten
et al., 2007; Stam et al., 2007). Buckner (Buckner et al., 2009) investigated intrinsic cortical
hubs via the degree map, and the functional connectivity networks associated with such
hubs. Such analysis methods have been applied in epilepsy most recently with Kramer
(Kramer et al., 2008) examining the emergent network topology found in
electrocorticography data. In their work, six quantitative measures including average path
length, degree, closeness, clustering coefficient, betweenness centrality and betweenness
centralization were used to identify statistically significant changes in network topology
between ictal and preictal states. Global network properties such as average path length and
average clustering coefficient have also been studied in interictal epilepsy networks via
EEG/MEG (Horstmann et al., 2010). Liao (Liao et al., 2010) investigated the interictal
epilepsy network with fMRI using network properties including degree, n-to-1 connectivity,
clustering coefficient, shortest path lengths and small-world properties. Recent work has
demonstrated increasing evidence that both cognitive and psychiatric disturbances are
correlated with functional network architectural features (Reijneveld, 2007).

Unlike most of previous studies that focused on the ictal state, in this work, by using social
network theory, abnormal network properties were studied at both the individual and group
level resting-state fMRI data. At the individual subject level, the network metrics associated
with various regions of interest (ROIs) were found in both healthy control subjects and
epilepsy patients. Group level, analysis was then performed in an attempt to determine if a
classification strategy based on network properties could distinguish medial temporal lobe
epilepsy (MTLE) patients from the healthy control subjects. This analysis also allowed us to
extract the network features that provided the best classification of the two groups of
subjects. Five local network properties from 36 ROIs were entered as features to the
classifier. To further improve the classification accuracy and at the same time avoid ‘over
fitting’, a feature selection strategy was proposed. The classification accuracy was evaluated
via ‘leave one out’ cross validation. The network properties of various ROIs were ranked
based on their ability to separate patients from healthy controls. The abnormal ROIs found
both in individual patient and group level compared with healthy control subjects can aid in
the understanding of epilepsy networks and potentially provide guidance in choosing
therapeutic options.

2. Theory
A network G consists of a set of vertices and a set of edges. Each edge links two vertices
with a value defined as weight. In this paper, a weighted undirected network is adopted.

Five network properties including: Degree, Strength, Closeness, Clustering coefficient and
Betweenness centrality (Wasserman and Faust, 1994) were selected for brain network
analysis. The definitions of these properties follow.
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Degree
Let eij denote the connection between vertex i and vertex j. If i and j are connected, eij = 1,
otherwise eij = 0. The degree D(i) of a vertex i is the number of vertices it connects to, D(i)=
Σjeij.

Strength
Let wij denote the weights between vertex i and vertex j. The strength S(i) of a vertex i is the
sum of all connection weights, S(i)= Σjwij.

Closeness
The closeness of vertex i is defined as the number of vertexes reachable from i divided by
the summed distance to these reachable vertexes. The distance between two vertices is

defined as the inverse of the weight. , g is the connected group size of vertex
i, d(i, j) is the distance between vertex i and j, j ≠ i.

Clustering coefficient
The clustering coefficient γ measures the tightness of a connection in a local sub-network.
Let N(i) denote the set of vertices that connect to vertex i and S the number of vertices in
N(i). For an undirected network, the total number of edges within N(i) is given by

. If every point in N(i) is connected to every other point in the set, the total

number of edges is . The clustering coefficient is the ratio between the actual

number of edges and the total number of possible edges, . As for
weighted network, the generalization proposed by Onnela (Onnela et al. 2005) was adopted

in this work. In this case, 

If the vertices are well connected locally, γ will be close 1.

Betweenness centrality
The betweenness centrality τ(i) is the number of shortest paths between any two vertices that
travel through i. It is usually normalized by dividing its maximum value.

These five network metrics reveal the specific local network properties for each vertex. Our
goal in this work is to determine if such local network measures can differentiate a patient’s
epilepsy network from a healthy control network and hence locate the abnormal brain
regions. These properties were calculated using the software package of Pajek (Nooy et al.,
2005) and the Brain Connectivity Toolbox (Sporns et al.).

3. Methods
3.1. Data acquisition

FMRI Data of 52 control subjects and 16 patients who suffered from intractable medial
temporal lobe epilepsy were imaged on a 3T Siemens Trio scanner at the Yale MRRC.

Table 1 shows the clinical data of the 16 patients (7 male and 9 female) with ages from 11 to
53. History of seizure ranges from 3 to 48.5 years. All subjects gave informed written
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consent and this study was approved by the Yale IRB. A T1-weighted 3-plane localizer was
used to localize the slices to be obtained and T1 anatomic scans were collected in the axial-
oblique orientation parallel to the ac-pc line. Resting state functional data was obtained
using a gradient echo T2*-weighted echo planar imaging sequence with TR=1550ms,
TE=30ms, flip angle=80, FOV=22 × 22cm, matrix size 64×64, 25 slices, skip 0mm,
functional voxel size 3.4mm×3.4mm×6mm. 3–8 runs of resting state data were collected in
interleaved acquisition mode with 229 volumes per run.

3.2. Data Preprocessing
The functional data preprocessing pipeline included the following steps: first, slice timing
correction followed by motion correction was performed using SPM5; the linear trends in
the timecourses were removed; the data were then temporally filtered using a band-pass
filter (0.01–0.1Hz); and then spatially smoothed with a Gaussian filter of FWHM=8mm;
finally, the six rigid-body movement confounds were removed. (Friston et al., 1996)

3.3. ROI definition
To investigate a wide range of possible nodes in the limbic/medial temporal regions, 36
ROIs were defined in MNI space as listed in Table 2. This set of ROIs was composed of
both anatomically and functionally defined regions. The first 28 ROIs were adopted from an
online map of Brodmann’s areas (BioimageSuite.org). The last 8 ROIs were functionally
defined from BOLD task activation paradigms aimed at language and motor systems (Arora
et al., 2009).

One approach to performing a network analysis is to map each individual subject’s fMRI
data into a standard space such as MNI space. However, the disadvantage of this method is
that unexpected global and local confounds could be introduced into the timecourses in the
transformation space due to the interpolation by registration algorithm (Grootoonk et al.,
2000). Instead, in this work the ROI atlas was mapped from MNI common reference space
into each individual subject’s space. For each ROI, the mean timecourse within its region
was calculated and used to measure the connectivity matrix which was then input to the
network analysis.

3.4. Connectivity calculation
A symmetric connectivity matrix A was obtained by correlating the mean timecourses of 36
predefined ROIs for each subject. The timecourses of all scan runs of each ROI were
combined into one vector in connectivity matrix calculation.

(1)

Where ai, j is the correlation coefficient of ROI i and j.

(2)

B is the absolute matrix of A. Since there is a large variation of the connectivity matrix
across subjects, it is necessary to normalize the matrix before it can be compared across
subjects. Here, the absolute matrices B were then normalized based on the sum of matrix:
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(3)

Where , NV is the number of ROIs, NC is the number of
control subjects, bi, j is the entry of matrix B, VG is the weighted group mean, the weight W
was selected as 0.85 in this study to ensure most of the metric components of C are lower
than 1. VG is 588 given the above W.

Finally, all the elements below a fixed threshold were set to 0.

(4)

The selection of the threshold Th in (Eq. 4) will be discussed in subsection 3.5.1.1 and 3.5.2
where the optimal threshold Th=0.4 was obtained based on the optimal classification result.

Figure 1(a) and (b) are visualization examples of a network D for a normal healthy volunteer
and a patient respectively where the network threshold was set to a correlation of 0.4. Each
node represents one ROI while the weight between 2 nodes is the normalized connectivity
value in D. The distance between 2 nodes is the inverse of the weight. The layout of figure 1
was created using the Kamada-Kawai algorithm (Kamada and Kawai, 1989) which is a force
based layout method. The nodes located in the center of the graph have more connections
with other nodes while the nodes at the periphery of the graph have fewer connections.

3.5. Classification
In subsection 3.5.1 below, the major concepts and methods used in classifier construction
are discussed. Subsection 3.5.2 shows the cross validation of the proposed classifier in the
given data set.

3.5.1 Classifier construction
3.5.1.1 Setting a threshold for connectivity matrix: The first step in analyzing networks
using resting-state connectivity data is to set a threshold Th to (Eq. 4). The range of the Th is
[0,1]. The optimal Th will be obtained in subsection 3.5.2 based on the best classification
performance. This threshold really represents the correlation between the time-courses for a
pair of ROIs with 1 representing complete correlation and 0 reflecting no correlation in the
time-courses. Setting a threshold implies that two regions will be considered connected if
the correlation coefficient between them is higher than the chosen threshold and they will
not be considered connected if the correlation coefficient is below this threshold.

3.5.1.2 Boxplot and feature definition: In order to evaluate the possible abnormal network
metrics and abnormal ROIs, a Boxplot analysis was applied.

Boxplots were created for each of 36 ROIs using the 5 social network measures and the
control group data. Let Pij be the jth network property of ith ROI.
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(5)

Each of the 5 network properties across 36 ROIs were considered as a feature and entered
into a feature matrix O.

3.5.1.3 Classification criteria and feature selection: At the individual subject level, the
outliers indicated in matrix O of (Eq. 5) reveal local abnormalities in the functional network.
Different MTLE patients have different ROI areas labeled as outliers likely due to individual
differences in the MTLE. However, our goal was to investigate whether or not there were
common network properties or abnormal ROIs shared within this MTLE patient group. To
investigate the abnormal network properties at the group level, a classification analysis was
performed to determine if the outliers for each subject in all the 36 ROIs and 5 network
measures could separate the patient from the control group.

(6)

A suitable classification threshold can be selected for J based on the trade-off between
sensitivity and specificity to separate the two classes. Here, the classification threshold was
selected by maximizing the following term:

(7)

where sensitivity and specificity are defined as below:

(8)

(9)

Patients correctly classified represent true positives, while correctly classified control
subjects are true negatives. The patients that were incorrectly classified as control subjects
were labeled false negatives, and the control subjects that were incorrectly classified as
patients were considered false positives.

Classification criteria can be calculated within a feature subset and since the sample size in
this study is small relative to the high dimensional feature space, traditional recursive
forward/back forward feature selection strategy is vulnerable to ‘over-fitting’. Therefore, we
applied the following feature selection strategy to select a meaningful feature subset in order
to achieve higher classification accuracy while avoiding the problem of ‘over-fitting’.
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(10)

Where FS is the meaningful feature subset.

For each feature, the outlier rate ORA is defined as follows:

(11)

Feature subsets can be selected based on the outlier rates in both groups. Only those features
that have a greater outlier rate in the patient group than control group are selected.

(12)

Note that feature selection was conducted in the training set. Compared with traditional
recursive forward/backward feature selection strategy, this approach can avoid ‘over-fitting’
and thus achieve good generalization ability in a small sample set where high variation
exists in both groups.

3.5.1.4 Evaluation of classifier performance: The standard tool for controlling the trade-
off between sensitivity and specificity of an algorithm is a Receiver Operating Characteristic
(ROC) curve (Metz, 1986). The ROC curve is a plot of sensitivity versus 1-specificity (or
true positive rate versus false positive rate). The area under the ROC curve (AUR)
summarizes the quality of classification over a wide range of misclassification costs (Hanley
and McNeil, 1983). The greater the area under the ROC curve the higher the probability of
making a correct decision. Therefore, AUR was chosen as the criteria of evaluating the
performance of classifier in this study. In the case of iterative feature selection, (Eq. 12) is
actually equal to AUR>0.5.

3.5.2 Cross validation—For cross validation the training samples were divided into k
subsets, each of which had the same number of samples. The classifier was then trained k-
times: In the ith (i = 1,…,k) iteration, the classifier is trained on all subsets except the ith
onset, for which the classification error is computed. When k is equal to the total sample
number N, this approach is also called ‘leave one out’ cross validation. It is known that the
average of error calculated in the above loop is a rather good estimate of the generalization
error (Martin and Hirschberg, 1996). In order to evaluate the classification performance, a
52-fold cross validation (leave one out) which contained 2 loops was conducted as outlined
in Table 3:

The overall procedure of the optimal connectivity threshold selection can therefore be
summarized as follows:

a. Setting a connectivity matrix threshold Th with a range of [0,1] in (Eq. 4).

b. Running 52-fold cross validation using leave-one-out.

c. Calculating AUR of the classifier in step b).
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Performing the steps a–c) iteratively, the optimal Th=0.4 associated with the largest AUR
can be obtained as shown in figure 4 of section 4.4.

4. Results
4.1. Boxplot of five network metrics in ROIs

Figure 2 shows boxplot examples for the network measures of (a) Degree, (b) Strength, (c)
Closeness, (d) Clustering coefficient and (e) Betweenness centrality using all the 52 control
subjects. The data from the 16 patients are represented by the circles. Each column in the
figure represents a boxplot for a different ROI. The markers located above the upper whisker
represent positive outliers while the markers below the lower whisker represent the negative
outliers. The outliers from each patient can be examined using the boxplot but this work is
focused on the analysis of the abnormal network properties and regions at the group level.
For example, 10/16 patients were labeled below the whisker of 11th ROI in figure 2(b). In
other words there were 10 patient outliers for the network property Strength in the Right
Hippocampus ROI.

Different network thresholds emphasize different outlier directions for some network
measures and it is useful to examine the effect of threshold on the outliers. For example,
with the network threshold 0.4, the 20th ROI, Left BA31 (Superior Posterior Cingulate) has
a upper whisker near the upper bound 35 for network measure Degree as shown in figure
2(a). Therefore, there are no outliers for this feature although the data distribution for the
patient group is different from that of the control group in this feature. However, when the
network threshold is selected as 0.5, the upper whisker of this ROI is decreased with only 8
patients labeled as positive outliers. On the contrary, when the network threshold was
increased from 0.4 to 0.5, the lower whisker of the network measure Strength of 12th ROI,
the Right Hippocampus, was decreased to close the lower bound, the negative outlier rate of
patient group was reduced for this feature. The threshold effect is discussed further in the
section 4.4.

4.2. Feature rank
Table 4 shows the feature rank list based on the area under the ROC curve for each of the
features. The outlier rates of patients and control subjects were obtained from the boxplots in
figure 2. There were a total of 93 features with AUR>0.5. Only the top 30 features are listed
in table 4. With the network threshold 0.4, the most significant features are Strength and
Closeness of Right Hippocampus. The AUR of both of these features was 0.7163, with the
outlier rate of patient group equal to 0.625, and the outlier rate of control group equal to
0.1963. When the network threshold was changed from 0.4 to 0.5, some specific features
had quite different rankings, but there was more than 60% overlap between ROIs that
appeared in the top 30 features in both cases. ROIs such as Left/Right Hippocampus, Left/
Right Caudate, Left/Right BA31(Superior Posterior Cingulate), Left/Right BA23(Inferior
Posterior Cingulate), etc. were within the top 30 features at both thresholds.

4.3. Comparison of classification performance with and without feature selection
Note that the feature selection was conducted in the training data set of each iteration rather
than the whole data set in the cross validation. Only those features that had larger outlier
rates in the patient group relative to the control group, in other words, AUR>0.5, were
selected as a feature subset in the classification. These features contribute to the final
classification accuracy and as such were considered meaningful features for the classifier.
Including features with AUR<0.5 would reduce the classification accuracy as they do not
provide information that assists in separating the two groups and therefore should be
excluded.
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Figure 3 demonstrates the comparison of classification performance with and without
feature selection in 52-fold cross validation. The AURs were 0.8838 and 0.8132
respectively. It can be seen that the feature selection strategy based on (Eq. 12) can improve
the classification accuracy.

4.4. Comparison of classification performance with different thresholds
Figure 4 shows a comparison of classification performance with 10 different connectivity
matrix thresholds using 52-fold cross validation. Feature selection was included in all 10
cases. The AURs were 0.8838 (Th=0.4), 0.8338 (Th=0.425), 0.8299 (Th=0.5), 0.8184
(Th=0.375), 0.7922 (Th=0.475), 0.766 (Th=0.35), 0.7536 (Th=0.3), 0.7501 (Th=0.45),
0.7285 (Th=0.525) and 0.588 (Th=0.55) respectively. Since different network thresholds
may highlight different outliers, overall classification accuracies can be different. The best
classification performance was achieved when the network threshold was set as 0.4. In this
case, by setting an appropriate classification threshold for the total number of outliers in (Eq.
10), an average sensitivity of 77.2% and specificity of 83.86% were achieved by 52-fold
cross validation.

5. Discussion
The outlier rates of the five network properties summarized in table 4, indicate that ROIs
such as the Hippocampus, Caudate, BA31(Superior Posterior Cingulate), BA23(Inferior
Posterior Cingulate), represent the network nodes most affected in MTLE.

The hippocampus is part of the limbic system and plays an important role in epilepsy.
Hippocampal sclerosis is the most commonly visible type of tissue damage in temporal lobe
epilepsy although whether the epilepsy is caused by this hippocampal abnormality or the
hippocampus is damaged by the cumulative effects of seizures remains uncertain. Decreased
basal functional connectivity within epileptogenic networks associated with MTLE
previously has been reported (Bettus et al., 2009) in a study using interictal fMRI data. The
authors hypothesized that the pathophysiological alterations such as metabolic and
hemodynamic changes associated with epilepsy may affect the neurovascular coupling
thereby altering the relationship between BOLD signal and neuronal activity. Since it is well
known that the hippocampus is involved in MTLE it is not unexpected that we observe high
outlier rates on the network measures of Strength, Closeness, Degree and Clustering
coefficient in hippocampus but this finding supports the utility of measuring these variables
in resting-state fMRI data. The smaller Degree measure in patients suggests that there are
fewer strong connections (greater than threshold) between the hippocampus and the other
ROIs in MTLE. The smaller Strength values also indicate the functional connection of the
hippocampus with the other ROIs appears to be generally weaker in MTLE patients
compared with normal controls. The decrease observed in patients for the Closeness
measure in the hippocampus also arises from fewer and weaker connections - and therefore
increased distance. Outliers were found in the hippocampus in 12 out of 16 patients. More
specifically, for those 10 patients whose hippocampus was clearly labeled as abnormal (table
1), outliers were found in 9 of the 10 patients. It should be noted that the abnormal seizure
regions labeled in table 1 were detected by icEEG obtained in the ictal state while the outlier
regions detected here were obtained from resting-state fMRI data collected in the interictal
state.

The caudate nucleus is known to be an important part of the brain’s learning and memory
system and as part of this system it needs to communicate with the hippocampus.
Measurements of grey matter content using MRI and voxel based morphometry have
revealed significant decreases in caudate volume in patients with refractory medial temporal
lobe epilepsy (Bonilha 2004). In this work, the caudate demonstrates high outlier rates in the
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network measures of Strength, Closeness, Clustering coefficient and Betweenness centrality,
a finding that also supports the use of these measures in MTLE. Most of the outliers in
Strength and Closeness of caudate are negative outliers. However, there are almost equal
numbers of outliers in both the negative and positive directions for the Clustering coefficient
suggesting a high variation for this feature in the MTLE group compared with that of the
healthy controls.

The third major abnormal node revealed by this network analysis is the Cingulate gyrus
which also functions as an integral part of the limbic system, and is involved with emotion
formation and processing, learning and memory, as well as the default mode network. The
network measures of Strength, and Closeness for BA31(Superior Posterior Cingulate) and
BA23(Inferior Posterior Cingulate) rank in the top 30 abnormal features. In the MTLE
epilepsy patients the functional connections of BA31 and BA23 with other ROIs were
stronger than those of normal healthy volunteers according to the high positive outlier rates
of Strength, and Closeness. The increase of functional connectivity in Posterior Cingulate
Cortex has also been reported in other studies of MTLE (Zhang et al., 2010). This increased
connectivity in resting-state has been suggested to be involved in compensatory mechanisms
(Bettus et al., 2009). Another possible interpretation is that the PCC is involved in initiation
of spike and slow-wave discharges activity (Wang et al., 2011) and hence shows an up-
regulated network in these patients.

The globus pallidus is a sub-cortical structure of the brain and is a major component of the
basal ganglia system. It has been implicated functionally to play an active part in pre-
filtering external stimuli and may help reduce the amount of irrelevant information the brain
needs to store. In terms of epilepsy there is evidence for a role of the globus pallidus in the
hippocampal epilepsy network (Sabatino 1984, Sawamura 2002). The network measures of
Degree, Strength and Closeness showed high negative outlier rates suggesting weak
connections between this ROI and other parts of the MTLE network.

Finally, the orbitofrontal cortex (OFC), also part of the limbic system, has previously also
been found to be involved in the MTLE network (Blumenfeld 2004). Our network analysis
indicated high positive outlier rates for the network measure of Clustering coefficient
particularly in the left lateral OFC, which represents the high local embeddedness of the left
OFC in the MTLE network.

Taken together, these findings of alterations in the network properties in the limbic system
in MTLE patients suggest that such network measures may be valuable in assessing MTLE
patients using resting-state fMRI data.

By selecting those features that have larger outlier rates in the patient group relative to
healthy volunteers, a classification accuracy of AUR=0.8838 was achieved. These findings
reveal that the medial temporal lobe/limbic system exhibits abnormal network properties at
the group level in fMRI data obtained during the interictal state.

There are other literatures on the studying of interictal MTLE using fMRI. Liao (Liao et al.,
2010) reported altered small world properties of the interictal MTLE network with fMRI. A
number of areas in the default mode network including bilateral inferior frontal opercular
gyrus, left posterior cingulated gyrus, left precunes and right precentral gyrus, were shown
significant decreases in Degree in MTLE. Based on n-to-1 connectivity, some ROIs such as
bilateral gyrus rectus, left superior frontal gyrus, left middle temporal gyrus, right middle
orbitofrontal gyrus and right superior medial frontal gyrus were shown to have significantly
increased connectivity in MTLE. Zhang (Zhang et al., 2009) applied independent
component analysis (ICA) in a resting-state fMRI study of temporal lobe epilepsy. The
functional connectivity of the dorsal attention network (DAN) was found to be decreased in

Zhang et al. Page 11

J Neurosci Methods. Author manuscript; available in PMC 2012 July 15.

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript

N
IH

-PA Author M
anuscript



patients. Morgan (Morgan et al., 2009) used 2dTCA to investigate the activation of
functional network in left MTLE. The connectivity in the left anterior hippocampus,
bilateral insular cortex and default-mode network was investigated and using the left
anterior hippocampus as a seed region, the authors reported increased negative connectivity
in the patients compared to control subjects across a network including thalamic, brainstem,
frontal and parietal regions.

In our study, unlike the binary matrix used in (Liao et al., 2010), a weighted undirected
connectivity matrix was adopted and matrix normalization was proposed. Using five local
network properties, abnormal network properties were found in medial temporal lobe/limbic
system including hippocampus, cingulated gyrus and lateral OFC as well as the caudate and
globus pallidus based on the classification efficiency.

The nodes of the network analysis in this study were selected using predefined ROIs.
Connectivity analysis is a region based method that relies heavily on the choice of the ROIs
used for the analysis. Generalizing the ROI approach used here and performing network
analyses on a voxel basis has recently been shown to reveal differences between patients and
control subjects in Alzheimer’s disease (Buckner 2009). Such an approach can reveal local
topology of hubs revealing both ‘connector hubs’ (hub regions that are highly connected
within one module) and ‘provincial hubs’ (hub regions that link different modules) (Sporns,
2007; Hagmann, 2008) in epilepsy networks. Work is underway in our lab (Shen 2010) to
develop cortical parcellation approaches based on graph theory that can use resting-state
data to define functional subunits (nodes) for this type of analysis thereby decreasing the
need for reliance on anatomically or atlas defined ROIs.

6. Conclusions and future work
The findings presented here indicate that network properties measured from resting-state
fMRI data collected in the interictal state may reveal abnormal nodes involved in the
epileptogenic network. Network theory provides measures such as Degree, Strength,
Closeness, Clustering coefficient and Betweenness centrality, that appear to serve as
efficient features that can distinguish healthy volunteers from medial temporal lobe epilepsy
patients, even when these measures are based on data collected in the interictal state. They
can extract meaningful local information about network abnormalities associated with
epilepsy and identify specific nodes with abnormal connections. High outlier rates for some
of the network metrics were found in the limbic system with the primary regions including
the hippocampus, cingulated gyrus and lateral OFC together with caudate and globus
pallidus providing the most discerning information. These findings support the notion that
network analysis can reveal altered patterns of connectivity changes that are consistent
across patients in a clinical category.

In this work we have introduced a functional connectivity matrix normalization method and
a feature selection strategy designed to improve the classification performance of these
network properties. Based on the classification criteria, an average sensitivity of 77.2% and
specificity of 83.86% was achieved using 52-fold cross validation.

Further investigations on methods to improve the classification accuracy, are underway
using other measurements such as coherence and partial correlation/coherence as the input
to the connectivity matrix.
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Figure 1.
Network examples of patient and healthy control subject created using Kamada-Kawai
algorithm. (a) normal subject. (b) MTLE patient. The nodes located in the center of the
graph have more dense connections with other nodes while the nodes at the periphery of the
graph have fewer connections. It can be seen in figure 1(b) that the nodes 2(Left Caudate),
7(Right Globus Palidus), 12(Left Hippocampus), 23(Right Medial Orbitofrontal Cortex),
36(Left Posterior Medial Temporal Gyrus) have fewer connections. These nodes were
highlighted with red circles in figure 1(b). The difference between the nodes located at the
periphery of the graph and the other nodes is more distinct in MTLE patient than healthy
control.
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Figure 2.
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Boxplot examples of Degree, Strength, Closeness, Clustering coefficient and Betweenness
centrality. Boxplots were created by 52 control subjects. The marks represent 16 patients’
data. Note some marks were overlapped.
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Figure 3.
Comparison of ROC curves obtained by feature selection and without feature selection. The
area sizes under ROC curve are 0.8838 and 0.8132 respectively.
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Figure 4.
Comparison of ROC curves with different connectivity matrix thresholds, feature selection
was applied in all 10 cases. The largest AUR=0.8838 was achieved when Th=0.4.
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Table 2

ROI list

ROI Index ROI Name

1 Right Caudate

2 Left Caudate

3 Right Putamen

4 Left Putamen

5 Right Thalamus

6 Left Thalamus

7 Right Globus Palidus

8 Left Globus Palidus

9 Right Amygdala

10 Left Amygdala

11 Right Hippocampus

12 Left Hippocampus

13 Right BA32 (Superior Anterior Cingulate)

14 Left BA32 (Superior Anterior Cingulate)

15 Right BA24 (Inferior Anterior Cingulate)

16 Left BA24 (Inferior Anterior Cingulate)

17 Right BA23 (Inferior Posterior Cingulate)

18 Left BA23 (Inferior Posterior Cingulate)

19 Right BA31 (Superior Posterior Cingulate)

20 Left BA31 (Superior Posterior Cingulate)

21 Right Lateral OFC (Orbitofrontal Cortex)

22 Left Lateral OFC (Orbitofrontal Cortex)

23 Right Medial OFC (Orbitofrontal Cortex)

24 Left Medial OFC (Orbitofrontal Cortex)

25 Right Anterior Insula

26 Left Anterior Insula

27 Right Posterior Insula

28 Left Posterior Insula

29 Right Stg (Superior Temporal Gyrus)

30 Left Stg (Superior Temporal Gyrus)

31 Right Broca

32 Left Broca

33 Right Motor

34 Left Motor

35 Right Pmtg (Posterior Medial Temporal Gyrus)

36 Left Pmtg (Posterior Medial Temporal Gyrus)
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Table 3

52-fold cross validation (Leave one out).

LOOP 1: Iteratively select 1 out of 52 control subjects as testing sample (TESTING — Control), other 51 control subjects were used as training
set (TRAINING — Control) for LOOP 2.

LOOP 2: Iteratively select 1 out of 16 patients as testing sample (TESTING — Patient). Use other 15 patients as patients’ sample of training set
(TRAINING — Patient). Select those features that have larger outlier rate in control subjects (TRAINING — Control) than in patients
(TRAINING — Patient) as the feature subset and calculate the classification threshold via (Eq. 7). Test this feature subset and classification
threshold in the testing set (TESTING — Control + TESTING — Patient).

End LOOP2

End LOOP1

Feature subset selection: Iteratively select 1 out of 51 subjects’ training set (TRAINING — Control) in LOOP 2 together with 15 patients as
validation sample, other 50 control subjects were used to define outlier of boxplot.
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