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Abstract
This paper illustrates and extends an efficient framework, called the square-root-elastic (SRE)
framework, for studying shapes of closed curves, that was first introduced in [2]. This framework
combines the strengths of two important ideas - elastic shape metric and path-straightening
methods - for finding geodesics in shape spaces of curves. The elastic metric allows for optimal
matching of features between curves while path-straightening ensures that the algorithm results in
geodesic paths. This paper extends this framework by removing two important shape preserving
transformations: rotations and re-parameterizations, by forming quotient spaces and constructing
geodesics on these quotient spaces. These ideas are demonstrated using experiments involving 2D
and 3D curves.

1 Introduction
Shape analysis of closed curves, in two, three, or higher dimensions, has become an
important topic of study. In particular, a large number of mathematical representations and
metrics have been proposed to analyze shapes of such curves, albeit mostly in two-
dimensional situations. Despite the large variety in metrics proposed, there is an emerging
consensus on the suitability of the elastic metric for curve-shape analysis. This metric uses a
combination of bending and stretching/compression to find optimal deformations from one
shape to another. Additionally, it is invariant to re-parameterizations of curves. On pre-
defined shape spaces of curves, these deformations are computed as shortest paths, or
geodesics, under this chosen metric. This metric was suggested by Younes [13] and Mio et
al. [6,7]; the latter developed a shooting method to compute geodesic paths between
arbitrary shapes. Several other authors, including Michor and Mumford [5] and Shah [11],
have also highlighted the advantages of this metric.

Although there is continuing research on various shape representations and metrics, we point
out that the computational evaluations of different approaches are yet to be performed. For
instance, we can ask the question: Amongst the different representations, such as coordinate
functions, angle functions, curvature functions, log-speed functions, and deformation vector
fields, introduced for shape analysis of parameterized curves, which is the most efficient one
for elastic shape analysis? We elaborate this question further. Consider the representation of
a planar curve β by its velocity vector , seen as a complex scalar r(s)eiθ(s). Here r(s) is
the instantaneous speed and θ(s) is the angle made by  with the positive X axis. Mio et
al. [7] use the pair (ϕ, θ), with ϕ = log(r), to represent and analyze the shape of β. Other
researchers have used r directly, or its integral form ∫ r(s)ds, as representatives of speeds of
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curves. In this case, the elastic metric assumes a complicated form due to the requirement of
invariance to parameterizations. Secondly, it may not be computationally efficient. As an
example, in case of Mio et al., the elastic metric translates into the form,

(1)

This metric given by Eqn. 1, under the (ϕ, θ) representation varies from point to point on the
shape manifold, and is thereby complicated to implement.

Recently, Joshi et al. [2] proposed a new framework that uses the square-root of the speed of
the curve and greatly simplifies the computation of geodesics. Additionally, it applies a
more stable as well as an efficient, path-straightening approach for finding geodesics. This
framework has been called the Square-Root Elastic (SRE) framework, since it uses the
square-root representation to obtain an elastic analysis of curves. The SRE framework has
the following advantages. Under this representation, the elastic metric reduces to a simple 
metric. Not only is the metric the same at all points, but it is also much simpler to implement
and study. The SRE framework combines the strengths of the elastic metric and the path
straightening method for finding geodesics. Furthermore, there are convenient, isometric
mappings from the proposed representation to other forms used previously. Finally, this
approach is applicable to study of curves in  for all n and not just n = 2.

In this paper, our focus is on the shapes of curves, rather than the curves themselves. The
paper [2] constructed a space  of closed curves in , and presented algorithms for
computing geodesic paths between curves in . However, there are infinite number of
elements in  that represent the same shape. The reason for this multiplicity is that rigid
rotations and re-parameterizations of a curve can result in different elements of , but they
all have the same shape. The sets of such representations are called orbits, and they form
equivalent classes of shapes. For the purpose of shape analysis of curves, one needs to
remove these shape-preserving transformations from the representation, and to compute
geodesic paths in the resulting shape (quotient) space, called . The shape space is viewed
as the quotient of  under the rotation SO(n) and re-parametrization  groups, i.e.

. To find geodesics in , one needs to find the shortest geodesic path(s)
between elements of orbits in . Previous papers have used different techniques for
removing these transformations. Since most of the past papers have studied curves in ,
where the rotation space is simply one-dimensional, one can do so using the exhaustive
search [4]. The group of all re-parameterizations is often removed using the dynamic
programming algorithm to match points across curves [7,10]. In this paper, we present a
gradient approach that uses the differential geometry of these transformation groups, SO(n)
and , to match any two curves. The basic idea is to initialize a geodesic path in  between
arbitrary elements of the two given orbits, and to use the gradient directions on these spaces
to iteratively reduce the geodesic length until one reaches a geodesic path in .

The remainder of the paper is organized as follows. Section 2 summarizes the SRE
framework for analyzing curves; it presents the square-root representation of curves and the
path-straightening approach to finding geodesics in . Section 3 presents the main results of
this paper: defining shape space  and computation of geodesic paths in . This is followed
by some experimental results in Section 4 and a short summary in Section 5.
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2 Square-Root Elastic (SRE) Framework
Next, we summarize ideas presented in [2] for elastic matching of closed curves in . There
are two main ideas here: (i) the use of square-root representation of curves, and (ii) the use
of path-straightening flows for computing geodesic paths. We summarize each of these ideas
here, and refer the reader to [2] for further details.

2.1 Square-Root Representations of Curves
For the interval I ≡ [0, 2π], let β : I →  be a curve with a non-vanishing derivative
everywhere. Denote its shape by the function q : I →  as follows,

(2)

Here, s ∈ I, , and  is taken to be the standard Euclidean inner product in
. The quantity ∥q(s)∥ represents the square-root of the instantaneous speed of the curve β,

whereas the ratio  is the unit tangent vector for each s ∈ [0, 2π) along the curve.

Indeed, the curve β can be recovered from q using . Let
,  and ∀s, q(s) ≠ 0} be the space of all vector valued

functions representing the curves as described above. This is an open subset of the infinite-
dimensional vector space of all functions on I. Each element of this set represents an elastic

curve on . Denote  as the space of all unit-length,

elastic curves. The closure condition for a curve β implies that . For the

square-root representation, this translates to . Define a mapping

 according to . The space obtained by the inverse image
 is the space of all closed, elastic curves. Then, the subset  is the

space of all unit-length, closed and elastic curves that are invariant to translation and scaling.

The length of a geodesic or the “shortest path” between two points on a manifold depends
on the Riemannian metric, which is an inner product defined on each tangent space of the
manifold. Thus we would like to construct a tangent space  at each point q. We
observe that the tangent space of  is the space of all vector valued functions with 
components. We define an inner-product on  as follows.

Definition 1. Given a curveq , and the tangent vectors u,  respectively, the
inner product between u, v is defined as,

(3)

In order to define the space of tangent vectors to , we derive the normal space of  at q
first. As shown in [2], the normal space of  at q is
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where ei is a unit vector in  along the i coordinate axis. Given a curve q ∈ , and the
tangent vector w to  at q, the tangent space of  at q is defined as

.

2.2 Path Straightening Flows for Computing Geodesics
Given two curves q0 and q1, our goal is to find a geodesic between them in  under the
Riemannian metric specified in Eqn. 3. In the path straightening approach, first introduced
in [3], the given shapes are connected by an initial arbitrary path that is iteratively
“straightened” so as to minimize its length. This iteration is performed using the gradient of
an energy E, until one reaches a critical point of E. Let  be any path in . Then,
the critical points of the energy

(4)

are geodesics in  (see [12]). In order to minimize the integral in Eqn. 4, we need to find the
gradient of the energy E[α] in the space of all paths on . For this purpose, we define  as
the collection of all paths in , and  as the collection of all paths going

from q0 to q1. Since each element along the path α is a curve in , the tangent space Tα( )
is written as . Following [3], we impose the Palais
metric [8] on Tα( ) to result in a Riemannian structure on the space of all paths . For u1,

, the Palais metric is given by the inner product,

(5)

where  denotes a covariant derivative. The gradient of E[α] is a vector field in the tangent
space Tα( ), where .

To derive the gradient vector field of E[α] on Tα( ), we state the following theorem from
[3] without proof.

Theorem 1. The gradient vector field of E is given by a v in Tα( ) such that , and v(0) =
0.

Theorem 1 implies that the gradient of E in Tα( ) is given by covariantly integrating the

velocity vector field  along the curve α. Once the gradient in Tα( ) is obtained, it can
be orthogonally projected into Tα( ) to obtain the required gradient for iteratively updating
α. This projection is specified using the following lemma.
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Lemma 1. The orthogonal complement of the tangent space Tα( ) in Tα( ) is given by

.

Using this Lemma, a tangent vector field  can be projected onto Tα( ) by

subtracting a component w of v that satisfies ; this property makes w a
covariantly linear vector field. In our case, w is given by , where  is a backward
parallel transport of the vector field v(1) along α. After obtaining the gradient of the energy
E[α] in , we can update the path α in the direction of the gradient field v.

Now we can combine all the previous steps to compute geodesics in the space . The first
step is the initialization of a path α on . Using the initialized path α, Algorithm 1
summarizes various steps using the path-straightening approach in computing the geodesic.

The resulting geodesic distance between the two curves is then given by ,
where  is the resulting geodesic path.

3 Removing Shape Preserving Transformations
So far, we have constructed geodesics between a pair of curves in the . In doing so, we
implicitly assumed that the starting points of both the curves were fixed, and the rotational
alignment remained unchanged. However the “shape” of a curve remains invariant under
rotations as well as the choice of starting point along the curve. Furthermore, the appearance
of a curve, including its pose (scale, location, and orientation) is also invariant to the speed
of traversal along the curve. In the following subsections, we define the space of elastic
shapes, and outline an optimization algorithm that measures the “elastic” distance between
curves under certain well-defined shape-preserving transformations.

3.1 Elastic Shape Space ( )
The idea of matching shapes of objects by studying their deformations under appropriate
group actions is well known [1]. Following a slightly different approach, we are interested in
constructing the shape space as a quotient space of , modulo shape preserving
transformations such as rigid rotations and re-parameterizations. In addition to translation
and scaling, we identify the following re-parameterizations and group actions on the curve
that preserve its shape.

1. Placement of origin (seed): A change in the starting point of the curve  is
represented by the action of a unit circle  on q, according to r · q(s) = q((s −
r)mod 2π) for r ∈ [0, 2π] with 0 and 2π identified.

2. Rigid rotation: A rigid rotation of a curve is considered as a group action by a n-
by-n rotation matrix On ∈ SO(n) on q, and is defined as On · q(s) = Onq(s), ∀s ∈ [0,
2π).

3. Re-parametrization by speed: A curve traveled at arbitrary speeds is said to be re-
parameterized by a non-linear differentiable map γ (with a differentiable inverse)

also referred to as a diffeomorphism. We define  as the space of all
orientation-preserving and origin-preserving diffeomorphisms. Then, the resulting
variable speed parameterizations of the curve can be thought of as diffeomorphic
group actions of  on the curve q. This group action is derived as follows. Let
q be the representation of a curve β. Let α = β(γ) be a re-parametrization of β by γ.
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Then the respective velocity vectors can be written as

. The re-parametrization of q by
γ is defined as a right action of the group  on the set  and written as

. Figure 1 shows an example of a re-parameterized curve by an
arbitrary γ. The change in the speed due to re-parametrization is observed by
discrete points plotted along the curve.

Altogether, the set of curves affected by the group actions above, partition the space  into
equivalent classes. We now define the elastic shape space as the quotient space

. The problem of finding a geodesic between two shapes in  is
same as finding the shortest path between the equivalent classes of the given pair of shapes.
Since the actions of the re-parametrization groups on  constitute actions by isometries, this
problem also amounts to minimizing the length of the geodesic path, such that

(6)

Conceptually, this involves finding an optimal rotational alignment ( ), seed ( ), and an
optimal speed parameterization ( ) that minimizes the distance given by Eqn. 6. As a result
of this optimality, the geodesic path becomes orthogonal to the respective orbits of SO(n)
and . We propose an iterative solution using a gradient descent approach that successively
causes the projection of the tangent vector (αt(1)) on each of these orbits, to be zero. In
practice, we divide the problem in two steps. At every iteration, we will first find a geodesic

in the quotient space under all rotations,  and use it as an initial condition

for computing the geodesic in the elastic shape space  until the
algorithm converges.

3.2 Geodesics in 
We briefly discuss the computation of geodesics in the space  after removing all rotations
and seed placements. We recall that the orbit of any element  under a group action g ∈
G is the set Gq = {q · g : g ∈ G}. Given a pair of shapes q0 and q1, the idea is to construct a
tangent space of the orbit Oq1 of q1 under the group action by On ∈ SO(n) and iteratively
make the projection of the tangent vector αt(1) on Tq1(Oq1) to be zero. We will adopt the
approach similar to Klassen et al. and refer the reader to [3] for details. Furthermore, the
optimal seed is given by . In practice, for a discrete representation (T
samples), the optimal seed is given as . Together, the above
minimization approach yields a locally optimal alignment in terms of the rotation and
placement of origin. Although this approach works for n–dimensional curves, one can adopt
other efficient methods for low-dimensional curves. Particularly in the case of 2D curves,
we can take advantage of the fact that the group of rotations SO(2) is a 1-dimensional
manifold. In this case, we can discretize the angle  and using the

, search in the orbit of Oq1 to achieve an optimal rotational
alignment. As an example, Fig. 2 shows the variation of the geodesic path energy in 
against the rotational alignment. The path corresponding to O = Oopt is the geodesic in

.
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3.3 Geodesics in
In order to compute geodesics in the quotient space of elastic shapes, , we follow a similar
idea as above. This time, we define an orbit  of q1 under the group action by . An
optimal elastic alignment between any two shapes q0 and q1 is obtained, when the projection

of the tangent vector αt(1) on the subspace  is zero. Instead of posing the

optimization problem on the subspace , we consider the tangent space of  at

identity , which is an  space and construct 1-parameter flows on  as follows.
Let  represent a 1-parameter flow at identity on  such that ψ0(id, g)= s for
any tangent vector . Next, we define the diffeomorphic group action

. Then the differential ϕ* maps the tangent vector g to

 and is given by,

(7)

Let V ≡ {vi}, i = 1, …, d denote the Fourier basis for the tangent space of . Using the

differential map ϕ*(V), we can construct the basis for the tangent space . Following
the previously outlined approach, we compute a geodesic between shapes represented by q0

and q1 in . In the process of computing this geodesic, the shape q1 gets

rotated and shifted as , where  and . We then project the tangent

vector αt(1) on . For a tangent vector , its projection on  is
defined as

(8)

Using the inverse of ϕ*, we can construct a tangent vector  and compute 1-
parameter flows on . The above procedure is repeated until the quantity ⟨π(αt(1), π(αt)⟩
becomes zero. Shown in Fig. 3 is a cartoon diagram illustrating this process. The complete
procedure of finding a geodesic in  is described in Algorithm 2. As an example, Fig.
4 shows the comparisons between

non-elastic geodesics computed using the method in [4] and elastic geodesics computed
using algorithm 2.

4 Experimental Results
In this section, we present some experimental results for computing elastic geodesics by
implementing the above algorithms in MATLAB®. Figure 5 shows pairwise geodesics
between 2-D curves in the shape space . Intermediate shapes along the geodesics have tick-
marks placed around the curve, that help identify parts of the curve traversed by non-
uniform speed. Figure 6 shows two different views of a geodesic path computed between a
pair of 3-D curves in .
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Next, we present a few examples of geodesic paths between 3D curves of real data
consisting of salient curves extracted from human facial surfaces. Samir et al. [9] have used
3D curve matching for the purpose of face recognition. The idea here is to extract important
curves from 3D scans of facial surfaces across subjects, and use pairwise geodesic distances
to match them. Figure 7 (a) shows 2D views of a facial surface over-laid with 3D curves
resulting from a specific depth function. Figure 7 (b) shows different views of a geodesic in

 between two arbitrarily selected curves on this surface.

Finally, we present a clustering result of a sample of 25 shapes of gestures from the ASL
alphabet. We compute the pairwise elastic geodesic distances between the set of shapes
shown in Fig. 8 and use a simple k–means algorithm to automatically group them into 5
clusters. It is observed that the elastic distance captures local variabilities effectively, an
important requirement in clustering of shapes.

5 Summary
This paper illustrates and extends the square-root elastic (SRE) framework introduced
recently in [2] for analyzing shapes of closed curves in . The novelty in this framework is
that the representation of elastic curves by a single vector valued function that incorporates
both stretching and bending along the curve. The elastic (Riemannian) metric reduces to a
simple  form that greatly simplifies analysis and understanding of shapes of curves. This
paper extends this idea by computing geodesics on the quotient spaces formed by the action
of rotation and re-parametrization groups on the spaces of closed curves. The main idea is to
use a gradient iteration to find a geodesic path between any two orbits. Experimental results,
obtained on 2D and 3D curves, underline the utility of using elastic metrics and emphasize
the generality of these ideas to higher dimensions.
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Fig. 1.
From left, an unit-speed 2-D curve, γ acting on the curve, and the re-parameterized curve
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Fig. 2.
Left: Path energy vs. the angle of rotation. Right: Geodesic Path corresponding to the
optimal alignment.
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Fig. 3.
Illustration of the process of finding geodesics in 
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Fig. 4.
Odd rows show non-elastic geodesic paths [4]. Even rows show elastic geodesics.
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Fig. 5.
Row-wise geodesic paths in  between the pair of curves shown to the left
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Fig. 6.
Examples of geodesics between a pair of 3-D curves
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Fig. 7.
(a) Example facial surfaces with salient curves marked. (b) Two different views of a
geodesic between two facial curves.
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Fig. 8.
Left panel shows 25 gestures from the ASL alphabet. Right panel shows row-wise clusters
of gestures.
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Algorithm 1

Given q0, , compute a geodesic between them

1 Initialize a path α between q0 and q1.

2 repeat

3
Compute the path velocity αt ≡

dα
dt  along α.

4
Calculate the covariant integral (v) of 

dα
dt .

5
Parallel translate (backward) v(1) along α as w

~
.

6
Form the gradient vector of E in Tα(F0) as v = v − tw

~
.

7 Update the path α in the direction v.

8
Compute path energy E = 1

2k ∑0
k αt(τ), αt(τ) .

9 until ||∇ E|| > ε
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Algorithm 2

Given two curves q0 and q1, compute a geodesic in 

1
Find the geodesic between q0 and q1 in C ∕ (S1 × SO(n)) using the approach outlined in Sec. 3.2. This also yields the tangent
vector αt(1) at q1.

2 Let {vi}, i = 1, …, d be the Fourier basis for Tid(D).

3 Project the vector αt (1) on Tq1(Dq1) using Eqn. 8.

4 if ||π(u)||2 < ε then

5 Stop.

6 end if

7
Form the tangent vector g ∈ Tid (D) as, g = ∑i=1

d αt(1), ϕ∗(vi) vi.
8

Compute the flow on D at id, such that γ
~
= Ψ∊(id, g) = id − ∊g.

9
Set q1 = q1 ⋅ γ

~
= γ ′ q ο γ

~
.

10 Go to Step 1.
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