Skip to main content
. Author manuscript; available in PMC: 2011 Jul 5.
Published in final edited form as: Proc IEEE Comput Soc Conf Comput Vis Pattern Recognit. 2007;4679:387–398. doi: 10.1007/978-3-540-74198-5_30

Algorithm 2.

Given two curves q0 and q1, compute a geodesic in S

  1. Find the geodesic between q0 and q1 in C(S1×SO(n)) using the approach outlined in Sec. 3.2. This also yields the tangent vector αt(1) at q1.

  2. Let {vi}, i = 1, …, d be the Fourier basis for Tid(D).

  3. Project the vector αt (1) on Tq1(Dq1) using Eqn. 8.

  4. if ||π(u)||2 < ε then

  5. Stop.

  6. end if

  7. Form the tangent vector gTid(D) as, g=i=1dαt(1),ϕ(vi)vi.

  8. Compute the flow on D at id, such that γ~=Ψ(id,g)=idg.

  9. Set q1=q1γ~=γqογ~.

  10. Go to Step 1.