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Abstract

Transplantation of pluripotent stem cells has proven beneficial in heart failure, yet the proteomic
landscape underlying repair remains largely uncharacterized. In a genetic model of dilated
cardiomyopathy elicited by pressure overload in the KCNJ11 (potassium inwardly rectifying
channel, subfamily J, member 11) null mutant, proteome-wide profiles were here resolved by
means of a systems approach prior to and following disease manifestation in the absence or
presence of embryonic stem cell treatment. Comparative two-dimensional gel electrophoresis
revealed a unique cardiomyopathic proteome in the absence of therapy, remodeled in response to
stem cell treatment. Specifically, linear ion trap quadrupole-Orbitrap mass spectrometry
determined the identities of 93 and 109 differentially expressed proteins from treated and
untreated cardiomyopathic hearts, respectively. Mapped protein— protein relationships and
corresponding neighborhoods incorporated the stem cell-dependent subproteome into a
nonstochastic network with divergent composition from the stem cell-independent counterpart.
Stem cell intervention produced a distinct proteome signature across a spectrum of biological
processes ranging from energetic metabolism, oxidoreductases, and stress-related chaper-ones to
processes supporting protein synthesis/degradation, signaling, and transport regulation, cell
structure and scaffolding. In the absence of treatment, bioinformatic interrogation of the disease-
only proteome network prioritized adverse cardiac outcomes, ablated or ameliorated following
stem cell transplantation. Functional and structural measurements validated improved myocardial
contractile performance, reduced ventricular size and decreased cardiac damage in the treated
cohort. Unbiased systems assessment unmasked “cardiovascular development” as a prioritized
biological function in stem cell-reconstructed cardiomyopathic hearts. Thus, embryonic stem cell
treatment transformed the cardiomyopathic proteome to demote disease-associated adverse effects
and sustain a procardiogenic developmental response, supplying a regenerative substrate for heart
failure repair.
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INTRODUCTION

Cardiomyopathy is an intrinsic, progressive disorder of the myocardium resulting in
impaired function of the heart [1]. The clinical entity of dilated cardiomyopathy is
characterized by ventricular dilation and reduced contractile performance, precipitating heart
failure and poor outcome [2, 3]. Discovery of monogenic forms of heritable dilated
cardiomyopathy has revealed the intricate nature of corrupted pathways independent of
common risk factors such as ischemic disease, underlying endocrine disorders or cardiotoxic
insults [4-7]. A case in point is the recent genetic studies linking defects in cardioprotective
ATP-sensitive K* (KaTp) channels to an aberrant stress response in the pathogenesis of a
malignant form of dilated cardiomyopathy [8-12]. Severity of disease progression in dilated
cardiomyopathy often mandates cardiac transplantation as the only remaining treatment
option, a constraint compounded by donor organ shortage, warranting exploration of
alternative management strategies [12, 13].

Beyond the reach of current therapies, stem cell technology provides a foundation for heart
repair without the need for organ replacement [14-18]. Although cardiac rejuvenation has
been recognized as a homeostatic self-repair mechanism, the innate regenerative reserve is
insufficient to salvage failing myocardium [19-22]. In fact, initiation and evolution of the
cardiomyopathic process was linked to depletion of the resident cardiac stem cell pool [23].
Introduction of progenitor cells into the diseased heart may therefore offer a means of
promoting the healing process. Indeed, in the context of Katp channel ablation that
recapitulates salient traits of the human dilated cardiomyopathy 10 syndrome (CMD 10),
functional repair was recently achieved by an embryonic stem (ES) cell therapy regimen
[24]. Moreover, it has been established that embryonic stem cell progeny consistently
acquire a cardiogenic phenotype with functional excitation-contraction coupling associated
with maturation of the cellular energetic matrix, and when transplanted into damaged heart
contribute to repopulation of dysfunctional myocardium improving contractile performance
[25-29]. Stem cell lineage commitment and integration within diseased host myocardium
has been further documented [30- 33]. Deciphering the molecular substrate underlying the
regenerative process would however require mapping the protein landscape of the recipient
heart in response to stem cell intervention. So far, however, the proteomic response of cell
therapy in heart disease remains unknown.

Enabled by high-throughput technologies for large scale identification of proteins and
associated networks, systems platforms offer an integrative, unbiased approach to address
the complexity of pathobiologic change in disease and in response to therapy [34-38]. Here,
in the stressed Katp channel knockout, a prototype of genetic dilated cardiomyopathy,
proteome-wide profiling decoded the global manifestation of disease and the signature of
embryonic stem cell therapy. In the stem cell-dependent proteome, network analysis
demonstrated a prioritized cardiovascular development function and demotion of disease-
associated adverse effects, validated by improved functional and structural outcome with
treatment. Stem cell-based proteomic remodeling is thus resolved in a genetic model of
dilated cardiomyopathy, mapping molecular underpinnings of regenerative outcome.
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MATERIALS AND METHODS

Genetic Model of Dilated Cardiomyopathy and Intervention Protocols

Protocols were carried out in accordance with NIH guidelines, and with approval of the
Institutional Animal Care and Use Committee. Eight- to twelve-week-old male Katp
channel knockout mice (Kir6.2-KO), generated by disruption of the KCNJ11 (potassium
inwardly rectifying channel, subfamily J, member 11) gene encoding the Kir6.2 channel
pore [9, 24], served as the prestress Control cohort (experimental group 1). Separate cohorts
of syngeneic age- and sex-matched Kir6.2-KO mice underwent transverse aortic constriction
(TAC) to induce continuous hemodynamic pressure overload upon the left ventricle [39,
40]. At 2 weeks following aortic constriction, pressure-overloaded Kir6.2-KO hearts were
exposed by thoracotomy, and animals were further randomly separated into two disease
groups, that is, untreated [ES(—), experimental group 2] and embryonic stem cell treated
[ES(+), experimental group 3]. Study subjects uniformity across cohorts ensured controlled
head-to-head comparisons of experimental interventions. For the ES(+) cohort, epicardial
injection of 200,000 murine lacZ-labeled R1 embryonic stem cells, in 15 pl propagation
medium (Glasgow’s Minimum Essential Medium, Lonza, Basel, Switzerland), was
performed at five separate sites (40,000 cells in 3 pl per site) in the anterior wall of the left
ventricle [24]. The R1 embryonic stem cell line was selected as it is the only cell type
demonstrated to ensure repair in this model of genetic dilated cardiomyopathy [24]. End
points included survival, cardiac function and structure evaluated by echocardiography and
pathological examination [24], as well as proteome-wide and network analysis. Functional
parameters were measured at a series of time points, including at baseline and at 1.5, 2, 4,
and 8 weeks postaortic constriction, with additional comparative tracking of contractile and
structural changes in ES(—) versus ES(+) cohorts at 0, 2, and 6 weeks postrandomization for
cell intervention. The time point of 8 weeks was selected for proteomic analysis as indices
of disease progression were consistent with chronic end-stage heart failure. Because of high
mortality of Katp channel knockout animals [24, 40], a total of 90 animals were required in
the study to assure sufficient survivorship up to 8 weeks of sustained stress load.

Prospective Evaluation of Cardiac Function and Structure

To evaluate progression of disease and the impact of stem cell therapy, transthoracic
echocardiography (30-MHz MS400 transducer, Vevo2100, Visual Sonics, Toronto, Canada;
15L 8 transducer, Sequoia 512, Siemens, Concord, CA) [41] was performed at multiple time
points to prospectively assess cardiac function and structure. For all experimental groups,
left ventricular fractional shortening (%) was calculated as ([LVVDd — LVDs]/ LVDd) x 100,
where LVDd is left ventricular end-diastolic dimension (mm) and LVDs, left ventricular
end-systolic dimension (mm) [42]. Ejection fraction (%) was calculated as ([LVVd -
LVVs]/LVVd) x 100, where LVVd is left ventricular end-diastolic volume (ul) and LVVs,
left ventricular end-systolic volume (pl). Left ventricular weight (mg) was derived as
[(LVDd + IVST + PWT)3 — LVDd3] % 1.055, where IVST is interventricular septum
thickness (mm), and PWT, posterior wall thickness (mm). Left ventricular wall thickness to
dimension ratio was calculated as a sum of IVST and PWT divided by LVDd, and was used
to monitor the evolution of heart geometry [24, 33, 40]. Total heart weight was measured at
the time of autopsy.

Protein Extraction and Quantitation

For proteomic analysis, disease-untreated [ES(—)] and disease-treated [ES(+)] Kir6.2-KO, as
well as prestress unconstricted (control) animals, were sacrificed under isoflurane
anesthesia, and hearts excised and rinsed in phosphate-buffered saline. Left ventricles
including septum were removed, weighed ex vivo, snap-frozen in liquid N5, and stored at
—80°C. Cytosolic tissue extracts, comprising the majority of cellular proteins compatible
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with isoelectric focusing (IEF) solubilization and resolution, were prepared by
homogenization at 4°C in four volumes of extraction buffer, consisting of (in mM) 4-(2-
hydroxyethyl)-1-ppiperazineethanesulfonic acid (HEPES) 25 (pH 7.4), phenyl-
methylsulfonyl fluoride (PMSF) 0.25, and dithiothreitol (DTT) 50, 1.25 uM pepstatin A,
Mini-Complete protease inhibitor cocktail (Roche Applied Science, Indianapolis, IN), and
1% phosphatase inhibitor cocktails 1 and 2 (Sigma, St. Louis, MO) [43]. Samples were
centrifuged (16,000g) at 4°C for 10 minutes, supernatants were transferred to fresh tubes,
and protein was quantified in triplicate by Bio-Rad (Hercules, CA) protein assay using the
microassay procedure with a bovine y-globulin standard [44], with equivalent protein
amounts from all samples resolved simultaneously by sodium dodecyl sulfate
polyacrylamide gel electrophoresis (SDS-PAGE) and stained to independently assess protein
quantitation prior to two-dimensional (2D) gel electrophoresis.

2D Electrophoresis and Gel Imaging

Protein extracts (100 pug) were resolved by immobilized pH gradient (IPG) 2-DE following
addition to IEF rehydration buffer (7 M urea, 2 M thiourea, 2% w/v CHAPS, 50 mM DTT, 1
x Bio-Rad pH 3-10 ampholytes). Same lot IPG Ready Strips (pH 3-10, 170 mm, Bio-Rad)
were actively rehydrated at 50 V for 10 hours, followed by rapid voltage ramping with a
series of 15 minutes steps at 100, 500, and 1,000 V, and a final step at 10,000 V for 60 kVh
at 20°C [45]. Focused IPG strips were rinsed with distilled, deionized water, and incubated
for 15 minutes in equilibration buffer (50 mM Tris-HCI, pH 8.8, 6 M urea, 30% v/v
glycerol, 2% w/v SDS) containing 10 mg/ml DTT, followed by 15 minutes in equilibration
buffer containing 25 mg/ml iodoacetamide. After horizontal positioning on freshly prepared
12.5% SDS-PAGE gels, strips were overlaid with SDS buffer (25 mM Tris, 192 mM
glycine, 0.1% w/v SDS) containing 0.5% w/v agarose, and resolved orthogonally by SDS-
PAGE in a Protean 1l XL system (Bio-Rad). Resolved 2D gels were silver stained and
digitized at 400 dpi for spot image analysis, including spot detection, matching,
normalization, and quantification, conducted with Bio-Rad PDQuest v.7.4.0 following
subtraction of background and horizontal/vertical streaking intensities [36, 43]. Individual
gel images were normalized by total intensity of valid spots. Fold change ratios were
calculated as [mean ES(—)]:[mean Control], [mean ES(+)]:[mean Control], and [mean
ES(+)]:[mean ES(-)] for protein spots increasing in the numerator group, or the negative
inverse for protein species decreasing in the numerator group. For proteins identified in
more than one spot, the sum of values for all spots was used to determine a weighted
average treatment ratio, unless otherwise indicated.

Nanoelectrospray Linear lon Trap Tandem Mass Spectrometry

Significantly altered protein species were isolated from resolved gels, destained, and
prepared for liquid chromatography-tandem mass spectrometry (LC-MS/MS) by reduction,
alkylation, tryptic digestion, peptide extraction, and drying [32, 38, 43]. Peptides were
reconstituted in 0.15% formic acid, 0.05% trifluoroacetic acid (TFA), and trap injected onto
a 75 pm x 10 cm ProteoPep C18 PicoFrit nanoflow column (New Objective, Woburn, MA).
Chromatography was performed using 0.2% formic acid in solvent A (99% water, 1%
acetonitrile) and B (80% acetonitrile, 5% isopropanol, 15% water), with peptides eluted over
30 minutes with a 5%-45% solvent B gradient using an Eksigent nanoHPLC system (MDS
Sciex, Toronto, Canada) coupled to a linear ion trap quadrupole (LTQ)-Orbitrap mass
spectrometer (Thermo Fisher Scientific, Barrington, IL). Continuous scanning of eluted
peptide ions was carried out between 375 and 1600 m/z, automatically switching to MS/MS
collision induced dissociation mode on ions exceeding an intensity of 8,000. Raw MS/MS
spectra were converted to .dta files using Bioworks 3.2 (Thermo Fisher Scientific), and
merged files matching +1, 2, or three peptide charge states were correlated to theoretical
tryptic fragments in Swiss-Prot (v.53.0) using Mascot v.2.2 [46]. Searches were conducted
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Interactome

on mammalian sequences (53,539 entries), tolerating up to two missed cleavages, a mass
tolerance of 60.01 Da for precursor ions (including 13C peak detection) and 60.6 Da for MS/
MS product ions allowing for protein N-terminal acetylation, methionine oxidation, and
cysteine carbamidomethylation. Protein identities were confirmed by matching multiple
peptide spectra at p < .05, with proteins accepted at p <.01. Proteins identified by a single
peptide were thus subjected to a higher stringency level (p < .01), and were confirmed by
manual spectrum inspection with detected fragment ions from the MS/MS spectrum required
to be above baseline noise, have demonstrable continuity in b-or y-ion series, and proline
residues yielding intense y-ions [47]. Protein assignments were further validated by
congruence of observed versus predicted pl/M,, using the EXPASy pl/M; tool
(http://us.expasy.org/tools/pi_tool.html), taking into consideration protein processing and
post-translational modifications.

Network Analysis

Differentially expressed proteins, with fold change ratios, were submitted as focus proteins
for network analysis using Ingenuity Pathways Knowledge Base (Ingenuity Systems,
www.ingenuity.com) to identify associated functional networks. An overview of interactions
was obtained by merging functional subnetworks into composite interactomes. The
composites were depicted using the molecular interaction network visualization program
Cytoscape 2.6.2 [48], with paired network layouts coordinated using the ReOrientPlugin to
localize common nodes in the same spatial location within multiple networks, and
topological properties characterized using Network Analyzer [49]. Computed properties
included node degree (k), the number of links connected to the node, and node degree
distribution [P(K)], the probability that a specified node has k links, defined as P(k) = X(k)/n,
where X(K) is the number of nodes with degree k and n is the total number of network nodes
[50, 51]. P(k) versus k discriminates between random and scale-free topographies, defined
by normal and power law distributions, respectively [50]. The Anderson-Darling normality
test ruled out a normal distribution, so P(k) versus k was calculated as a power law
relationship using a cumulative distribution function [52] to determine vy in the power law
distribution [P(k) ~ k™] according to Equation (1):

W
y=14n [Zln i ]
pay

Xmin

(1)

where v is the power law exponent, n the number of network nodes, x; node degree, and Xmin
the minimum node degree within the network, with statistical error ¢ [52] for Equation (1)
defined by Equation (2):

n —1
Xi Y- 1
o=vn {Zln } =
Vn @

i=1

To link expression data with systems functions, resolved networks were interrogated with
Ingenuity Pathways Analysis (IPA) [36, 43].

Statistical Analysis

Comparison between groups was performed using a standard t-test of variables with 95%
confidence intervals, with data expressed as mean + standard error. Wilcoxon test was used
to evaluate cardiac physiological parameters (JMP 8, SAS Institute, Cary, NC). Kaplan-
Meier analysis with log-rank testing was applied to evaluate survivorship. Comparison of
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2D gel spot intensities between experimental groups was carried out by t-test. A p <.05 was
considered significant, unless otherwise indicated.

RESULTS

Global Protein Profiling in Genetic Cardiomyopathy and Stem Cell Intervention

TAC imposes sustained pressure overload on the left ventricle resulting over 8 weeks in
progressive contractile dysfunction and cardiomegaly, characteristic of congestive heart
failure in the KCNJ11 knockout, Kir6.2-KO model (Fig. 1A), a surrogate of human genetic
KaTp channel-deficient cardiomyopathy [24, 40]. To assess, in the setting of Katp channel
deficiency, molecular consequences of TAC-imposed stress in the absence and presence of
stem cell intervention, prestressed KCNJ11 knockouts (control, experimental group 1) were
compared head-to-head to pressure-overloaded Kir6.2-KO randomized at 2 weeks post-TAC
into untreated [ES(—), experimental group 2] and embryonic stem cell-treated [ES(+),
experimental group 3] cohorts (Fig. 1B). To this end, left ventricle cytosolic proteomes were
extracted from control (n = 5), and 8 weeks after TAC from ES(-) (n = 5) and ES(+) (n = 5)
cohorts, and profiled by differential proteomics. In broad pH range silver-stained 2D gels
(Fig. 1C), over 700 protein species were consistently resolved (Fig. 1D). Reproducibility
across cohorts was documented by positive correlation of average normalized intensities of
matching protein spots in control versus ES(—) and control versus ES(+) gels (Fig. 1E and
1F, scatter plots). Densitometric quantification revealed that a subset of 84 unique protein
spots (12% of resolved proteome) was significantly altered in response to TAC-induced
pressure overload in the cardiomyopathic Katp channel knockout hearts [control vs. ES(-);
Fig. 1E, pie chart]. Following 6 week-long cell therapy, 44 protein spots (7% of resolved
proteome) differed between prestressed controls and stem cell-treated TAC Kir6.2-KO
[control vs. ES(+); Fig. 1F, pie chart]. Thus, differential expression profiling of Kir6.2 Katp
channel knockout hearts demonstrated the global proteomic impact of imposed stress, with
cell therapy eliciting distinct remodeling of the cardiomyopathic subproteome in stressed
failing hearts.

Distinct Protein Signatures in Cardiomyopathic Hearts in Absence and Presence of Stem
Cell Therapy

Proteins specifically altered in failing Katp channel knockout hearts, in the absence and
presence of stem cell therapy, were determined by LTQ-Orbitrap MS/MS analysis of in-gel
tryptic digests. In ES(—) hearts, 109 altered proteins were identified by this high-throughput
approach. Individual protein identities, along with extent of fold-change and supporting gel
and mass spectrometry metrics, encompass a spectrum across metabolism and signaling
infrastructure reflecting the complex pathologic substrate of the cardiomyopathic state (Fig.
2; Supporting Information Table S1 and Table S2). Cellular metabolism related identities
were responsible for 64% of disease-induced proteome change, and included 13 oxidative
phosphorylation, 13 tricarboxylic acid (TCA) cycle, and 44 substrate metabolism proteins
(Fig. 2). Ontological annotation revealed that the additional 39 identified proteins formed a
metabolism-related signaling infrastructure encompassing oxidoreductases (10 proteins),
cellular structure and scaffolding (11), signaling regulation (3), stress-related chaperones (8),
protein synthesis and degradation (3), as well as transport regulation (4) (Fig. 2). In ES(+)
hearts, a distinct set of 93 proteins were identified in response to stem cell treatment (Fig. 3;
Supporting Information Table S1 and Table S3). These were primarily associated with
metabolism (63 proteins, 68%), including oxidative phosphorylation (8 proteins), TCA cycle
(12) and substrate metabolism (43), and a metabolism-related infrastructure of
oxidoreductases (10), cellular structure and scaffolding (3), signaling regulation (4), stress-
related chaperones (5), protein synthesis and degradation (5), as well as transport regulation
(3) (Fig. 3). When compared with untreated hearts (Fig. 2), cell therapy (Fig. 3) nullified
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disease-induced changes in 68% of proteins and reduced the extent of fold-change in an
additional 16%, reorganizing the proteome landscape of failing hearts. Thus, resolving
individual identities of protein changes establishes a signature of Katp channel-deficient
cardiomyopathy, extensively restructured by stem cell intervention.

Stem Cell Treatment Restructures Cardiomyopathic Proteome Network

To obtain a collective understanding of processes associated with cell therapy-induced
proteome remodeling in the setting of Kap channel deficient cardiomyopathy, network
analysis was implemented to compare untreated ES(—) versus treated ES(+) subproteomes.
Protein—protein interaction mapping clustered the 109 altered proteins from untreated
cardiomyopathic hearts into an organized network comprised of 229 nodes linked by 1,207
interactions [or edges; Fig. 4A, left; ES(—) network]. The 93 proteins specific to the stem
cell-treated diseased hearts assembled into a network of 205 nodes connected by 975 edges
[Fig. 4A right, ES(+) network]. Network topologies for both ES(—) and ES(+) networks
displayed a nonstochastic pattern, excluding a random association among changing proteins.
Indeed, the inter-relationship between node degree (k) and degree distribution P(k) followed
power law distributions indicative of scale-free nonrandom architecture (Fig. 4A, insets left
and right). Although similar in size, the two networks shared only 75 common proteins (Fig.
4B), underscoring the distinct molecular composition of the ES(—) and ES(+) proteomes
expanded to a broader network neighborhood context. The majority of proteins in every
functional category were unique to each of the respective networks, as only 35% of
metabolic proteins and fewer than 22% of nodes for any metabolism-related infrastructure
category were shared between ES(—) and ES(+) networks (Fig. 4C). Thus, mapped ES(-)
and ES(+) heart subproteome-dependent networks exhibit limited overlap, suggesting
different functional consequences in the absence and presence of stem cell therapy.

In Silico Phenotypic Patterns Induced by Stem Cell Therapy Validated In Vivo

Network analysis provides a systems framework to delineate, in an impartial manner,
putative patterns arising from a remodeled proteome based on extracted core signatures [35,
38]. Collective bioinformatic interrogation demonstrated a dramatically overrepresented
“Cardiac Disease” category associated with the ES(—) network (p = 2.35 x 107°), consistent
with heart disease susceptibility, which was reduced by three orders of magnitude (p = 3.11
x 1072) within the ES(+) network (Fig. 5A, left). Further interrogation of the ES(—) network
against a broad spectrum of 134 curated pathological conditions and toxicological pathways
within the Ingenuity Pathways Knowledge Base extracted exclusively cardiac structural and
functional adverse effects, namely “cardiac damage,” “cardiac dilation,” “cardiac dysplasia,”
“cardiac enlargement,” “cardiac inflammation,” “cardiac hypertrophy,” and “cardiac
fibrosis” (Fig. 5A, right). Bioinformatic survey predicted that the six of these seven
detrimental outcomes in the ES(—) network are eliminated from the ES(+) network,
suggesting functional and structural benefit of stem cell intervention in the setting of
cardiomyopathy (Fig. 5A, right). To validate this core prediction, cardiac function and
structure were assessed in vivo in untreated and stem cell-treated cohorts by prospective
echocardiography (Fig. 5B-5G) and pathoanatomical analysis (Fig. 5H-5I). Untreated
Kir6.2-KO-stressed mice [ES(—)] demonstrated significant and progressive cardiac
dysfunction (Fig. 5B-5G) and associated heart chambers enlargement (Fig. 5H-51),
precipitating without therapy high mortality rates with 53% survivorship between 2 and 8
weeks poststress and poor overall survival (17%). In contrast, throughout the follow-up
period, stem cell intervention [ES(+)] significantly improved cardiac contractility and
prevented cardiac dilation and enlargement, nullifying premature mortality. Specifically,
serial monitoring of fractional shortening from the point of randomization 2 weeks post-
TAC indicated continuous deterioration without cell therapy, but improved fractional
shortening with cell therapy at multiple time points (Fig. 5C). Ejection fraction, an index of
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cardiac contractility that prognosticates outcome in heart failure, was reversed towards
prestress levels by stem cell treatment (i.e., 22.4 + 2.4%, n =5 ES(—) vs. 69.1 £3.3%,n=5
ES(+), p < .01, with control 95% confidence interval indicated for benchmarking; Fig. 5D).
The post-TAC increase in cardiac dilation in untreated hearts was marked by 2 weeks and
continuously increased by 6 weeks, whereas cell therapy was effective in maintaining
diastolic dimension throughout the observation period (Fig. 5E). Significant wall thinning
relative to left ventricular diameter without treatment was restored to control levels 6 weeks
following cell delivery (i.e., 0.33 £ 0.04, n =5 ES(-) vs. 0.58 £ 0.05, n =5 ES(+), p < .01;
Fig. 5F). By 6 weeks of therapy, the increased left ventricular volume was normalized (i.e.,
88.0+6.8pl,n=5ES(-) vs. 30.4 £ 6.8 ul, n =5 ES(+), p <.01; Fig. 5G). Functional
improvement detected by echocardiography was supported by favorable structural
remodeling, demonstrated by marked reduction in cardiac hypertrophy (Fig. 5H) in response
to stem cell therapy (i.e., heart weight: 301.8 + 21.9 mg, n =5 ES(-) vs. 167.8 7.0 mg, n =
5 ES(+), p < .01; Fig. 51). Thus, bioinformatic interrogation for prediction of specific
cardiomyopathic traits of cardiac function and structure in response to cell therapy were
validated by in vivo echocardiography and ex vivo pathology.

Stem Cell Therapy Prioritizes a Cardio-Regenerative Proteome Module

Iterative systems interrogation enables unbiased identification and stratification of functional
categories emerging from a perturbed proteome [36]. 2D gel analysis revealed that stem cell
therapy induced 28 significantly altered protein species (Fig. 6A). Gel-to-gel reproducibility
indicated high correlation of average normalized intensities of matching protein species
(Fig. 6A, inset). Mass spectometric analysis of protein species altered by cell therapy
resolved 61 unique protein identities (Fig. 6B; Supporting Information Table S1 and Table
S4). Proteins integrated into an organized network of 120 nodes linked by 560 edges (Fig.
7A). A nonrandom, scale-free topology was deduced based on network degree distribution
properties (Fig. 7B). Ontological assessment of the stem cell-induced interactome against
curated biological processes extracted categorically overrepresented functions, with
“cardiovascular system development” prioritized among the ranking of all developmental
functions (Fig. 7C). In contrast, “cardiovascular system development” was not prioritized in
the untreated cardiomyopathic network, and was reduced in significance by more than one
order of magnitude, that is, p = 1.98 x 107° and 4.14 x 10~ relative to cell therapy,
indicating a cardio-rejuvenative substrate induced by stem cell intervention. Thus, iterative
proteome-wide network resolution unmasked a regenerative signature induced by embryonic
stem cell treatment of failing heart in the context of Katp channel-deficient
cardiomyopathy.

DISCUSSION

Transplantation of stem cells shows promise in the treatment of cardiovascular disease, yet
the molecular foundation that underlies repair remains largely unknown [16, 17]. The
present study deciphers the proteomic landscape induced by embryonic stem cell
intervention in a surrogate of type 10 human genetic dilated cardiomyopathy produced by
stress in the setting of Katp channel deficiency. In this nonischemic heart failure model,
using proteomics and network analysis, we demonstrate that pluripotent stem cell therapy
downgrades adverse consequences of disease, as a result of global remodeling of the
pathologic heart, inducing a distinct cardio-regenerative proteome featuring a prioritized
cardiovascular development signature. The resolved, stem cell-dependent subproteome
identifies a previously undefined regenerative substrate of heart failure repair.
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Systems Pathology of Genetic Cardiomyopathy

Traditional means of risk assessment have focused on single candidate pathways [53]. The
emergence of systems approaches now enables unbiased, integrative surveys of complex
disease states [54-56]. In this regard, proteome-wide profiling provides a high-throughput/
high-specificity platform to extract disease processes at a global scale [57, 58]. As applied in
this study, proteomics in conjunction with network-based systems analysis incorporates all
measured changes for in silico bioinformatic interrogation of disease and therapy
phenotypes, avoiding potential bias that may be introduced by selectively focusing only on a
particular class of altered protein, for example, those of greatest differential expression, or
selection of suspected candidate proteins regardless of observed change in expression [59].
Multiple etiologies cause cardiomyopathies, with complex disease phenotypes arising
through interactions between individual genetic make-up and environmental stress
challenges [1-8, 60]. Moreover, cardiomyopathic triggers may corrupt the resident cardiac
stem cell compartment jeopardizing the innate repair potential of the myocardium [23].
Here, proteomic analysis was implemented within an established paradigm of genetic
cardiomyopathy, that is, the stressed Ka1p channel knockout model that recapitulates salient
traits of human disease [24, 40]. The KCNJ11 null mutant under imposed hemo-dynamic
load demonstrates compromised contractility and ventricular dilation predisposing to
premature death [40], features of the life-threatening cardiomyopathic CMD 10 syndrome
associated with mutations in genes encoding for subunits of the Katp channel [8, 11].
Compared to nonfailing unstressed counterparts, failing Katp channel knockout hearts,
exposed to the stress of chronic pressure overload, displayed a pronounced rearrangement of
the cardiac proteome. The primary impact of the 109 significantly altered protein changes
centered on energy metabolism with 70 unique proteins stratified into the “cellular
metabolism” category, consistent with impaired metabolic homeostasis a recognized
hallmark underlying initiation and maintenance of heart failure [9, 61-64]. Accumulation of
defects along energetic pathways precipitates failure of the whole cardiac bioenergetic
system leading to myocardial dysfunction [61]. The present systems pathology approach
thus pinpoints identities of affected proteins, revealing the broad landscape underlying the
KaTp channel-deficient CMD10 cardiomyopathic proteome.

Stem Cell Therapy Restructures Cardiomyopathic Proteome

Current pharmacotherapy for dilated cardiomyopathy is largely designed to address
symptom reduction or limit disease progression [3, 7, 65]. Targeting heart repair mandates a
regimen with the capacity to replace dysfunctional heart muscle [17, 66], as recently
demonstrated with tissue reconstruction by stem cell-based therapy in the setting of
cardiomyopathy [23, 24]. Beyond dissecting the pathobiological complexity of disease,
proteomic approaches could decode responses triggered by applied therapies and ensure a
holistic perspective by network integration [35, 67]. It should be noted, however, that global
relationships between protein targets and treatment algorithms remain largely
uncharacterized [68]. In this first proteomic examination of the large-scale impact of stem
cell therapy in disease, a comprehensive protein registry was collected at 6 weeks post-
transplantation of embryonic stem cells into failing Katp channel-deficient hearts. Cell
intervention was found to produce a significant imprint upon the host myocardium,
particularly affecting components of energetic metabolism and metabolism-related
infrastructure. Operating as part of highly interconnected cellular networks, the stem cell-
dependent interactome was encompassed within a nonstochastic network of protein—protein
relationships that diverged from that of the stem cell-independent counterpart. These data
indicate that embryonic stem cell treatment orchestrated a wide spectrum of change that
collectively restructured the diseased proteome architecture underlying the active process of
repair.
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Cardio-Regenerative Network Signature Underlies Stem Cell-Based Repair

The processes of protein identification, ontological stratification, and iterative interrogation
create a systems tool to project phenotypic outcome [38, 69]. Cytotherapy here canceled six
of seven prominent cardiac-specific adverse outcomes prioritized by disease, providing a
new proteome identity to the healing myocardium. Verifying bioinformatic output,
independent functional and structural measurements documented increased ejection fraction
and fractional shortening, reduced ventricular dilation and reversal of cardiomegaly
affirming benefit in vivo. Moreover, the in silico prediction of overrepresentation of fibrosis
was experimentally verified in tissue samples, and was significantly reduced in treated
versus untreated hearts [24]. This unprecedented proteomic perspective offers thereby a
reliable resource to diagnose a reparative response at a systems level. Further deconvolution
of the stem cell-dependent subproteome exposed a cardiovascular development-enriched
module absent from untreated cohorts. In line with the documented formation of new
cardiac tissue and cell cycle activation in ~15% of cells within embryonic stem cell-treated
cardiac tissue, normalizing sarcomeric and gap junction organization [24], the present
findings map a dynamic host—graft interaction that transitions the proteome from a diseased
towards a regenerative state. The multifaceted nature of regenerative repair mechanisms
includes contributions from both endogenous and exogenous sources [70]. Notwithstanding,
here the source of resolved proteins could not be distinguished as transplanted cells came
from the same species as the endogenous tissue to avoid rejection and maximize
engraftment.

CONCLUSION

Current experience with stem cell-based therapy has been primarily focused on ischemic
forms of heart disease, whereas less is known of the potential benefit in the setting of
nonischemic cardiomyopathy. Here, global protein expression profiling and comparative
network analysis extracted from dilated, nonischemic cardiomyopathic ventricles distinct
interactomes in the absence versus presence of embryonic stem cell treatment, establishing a
proteomic fingerprint characterizing cell-based therapy in the context of Katp channel
dysfunction and heart failure. The decoded proteomic profile provides a systems framework
to diagnose regenerative patterns imposed by stem cell-based intervention.
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Figure 1.

ES(-) intensity

ES(+) intensity

Stem cell intervention remodels heart proteome in genetic dilated cardiomyopathy. (A):
Malignant dilated cardiomyopathy in Katp channel-deficient (Kir6.2-KO) hearts under
stress imposed by TAC characterized by decreased contractility (FS) and increased LVDd
following initial compensatory hypertrophy observed at 1.5 weeks post-TAC. Shaded
background indicates 95% confidence interval for FS (pink) and LVDd (gray) in age- and
sex-matched Kir6.2-KO (Control) hearts. (B): The experimental protocol involved systems
analysis combining proteomic comparison of left ventricular (LV) extracts obtained 8 weeks
post-TAC from three separate experimental groups, unstressed Kir6.2-KO (#1 - Control),
disease untreated TAC Kir6.2-KO [#2 — ES(—)] and disease treated TAC Kir6.2-KO [#3 —
ES(+)] treated by 6 weeks of R1 embryonic stem cell therapy, followed by network analysis
and in silico prioritization of proteomic findings in conjunction with in vivo and ex vivo
functional validation. (C): Representative silver stained two-dimensional gels (pH 3-10 IEF,
12.5% SDS-PAGE) of LV tissue extracts (100 pg protein) from unstressed Kir6.2-KO
(control), and from aortic-constricted untreated [ES(—)] or stem cell-treated [ES(+)]
counterparts. Spots identified as differentially expressed relative to those in unstressed
hearts are circled and numbered on ES(—) and ES(+) gels. (D): Gel reproducibility
demonstrated by no significant difference in number of resolved protein species. (E, F):
Densitometric spot quantitation, with scatter plots of average normalized intensities of
matching protein spots showing correlation for control versus ES(—) and control versus
ES(+) gels, and pie charts indicating significant differences in 84 and 44 protein species for
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control versus ES(—) and control versus ES(+), respectively (p < .05). Abbreviations: ES,

embryonic stem cells; FS, fractional shortening; LVDd, left ventricular end-diastolic
dimension; TAC, transverse aortic constriction.
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Figure 2.

Identity of cardiomyopathy-induced subproteome. The 109 significantly altered proteins
induced by progressive cardiomyopathy [ES(—) altered subproteome] and identified by
LTQ-Orbitrap MS/MS analysis, were functionally categorized and color-coded by Swiss-
Prot ontological annotation. Protein names are listed with their symbol (Swiss-Prot gene
abbreviation) and spot numbers to locate corresponding 2D gel position(s) in Figure 1.
Mascot score, number of unique identified peptides, % sequence cov. (coverage), predicted
M; and pl for each protein (following expected post-translational processing, for example,
removal of a mitochondrial signal peptide), and fold change of ES(—) over control are
indicated. For proteins detected in more than one spot, maximum score and corresponding
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number of unique peptides are reported. Fold change was calculated as described in
experimental procedures, and for proteins detected in both increasing and decreasing spots
(*), both values are indicated. Abbreviations: 2D, two-dimensional; CDGSH, Unique 39
amino acid CDGSH domain [C-x-C-x2-(S/T)-x3-P-x-C-D-G-(S/A/T)-H]; ES, Embryonic
stem cells; LTQ, Linear ion trap quadrupole; MS/MS, Tandem mass spectrometry; OX.,
oxidative; Syn./Deg., protein synthesis/degradation; TCA cycle, tricarboxylic acid cycle.
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Swiss-Prot _ Fold Predicted  Mascot Unique Sequence
Protein Name (Symbol) Spot Number(s]
(i) rie) Accession_Change _Mr___ pl __ Score _Peptides _Cov. (%)
[ATP synthase subunit aipha (AtpSat) 9,10,11 Q03265 447 55310 828 2370 33 68
Electron transfer flavoprotein subunit beta (Etfb) 39,40 QoDCW4 184 27402 829 927 14 56 2
INADH dehydrogenase (Ndufs2) 14 Q9IWD5 >50 49220 586 1053 16 a7 o
INADH 1alpha subunit 10 (Ndufa10) 18,41,42 *aeaLcs e, %043 596 148 3 12 g
°
INADH-ubiquinone oxidoreductase 75 kDa subunit (Ndufs1) 1,2 *Q91VD9 i e sa 217 ) 67 H
<
reductase compl protein 1 (Ugerc1) 12,13,14,15,16 *Qocz13 Lo 4210 528 1547 2 o |E
Ubiquinol-cytochrome-c reductase complex core protein 2 (Ugerc2) 19,20,21,22,24.25 QD877 313 46580 899 603 10 30 g
|ubiquinone biosynthesis mor nase COQ6 (Coqh) 15 QER1S0 164 50705 655 13 3 6
[Aconitate hydratase (Aco2) 4, 5 QO9KI0 >50 62463 740 2653 a3 5
Cirate synthase (Cs) 20,21,22 QeczU6 A71 49014 821 246 5 15
- . » 3 (Did) 8 008749 1277 50242 643 236 5 12
58 ponsicl of pyuvete oople) (D) Q8BMF4 681 58778 570 620 1 2
; =
Fumarate hydratase (Fh) 15,16,17 *Po7807 3 aems 188 1233 7 60 9
isocitrate dehydrogenase [NAD)] subunit alpha (Idh3a) 27 QoD6R2 155 36707 560 307 5 1 |2
Isocitrate dehydrogenase [NADP] (1dh2) 16,17,20,24.25 P54071 247 46622 849 1556 2 53 S
Malate dehydrogenase, cytoplasmic (Mdh1) 26,28 P14152 370 36379 616 430 8 2 ®
Malate dehydrogenase, mitochondrial (Mdh2) 29,30,31,32,33,34 P0B249 239 33138 855 1015 15 61
Succiny-CoA ligase [ADP-forming] beta-chain (Sucia2) 22 Qoz219 187 a4z 533 440 8 2
Succinyt-CoA:3-ketoacid-coenzyme A transferase 1 (Oxct1) 8.9 QEDOK2  -1952 51876  7.01 1280 2 59
Succinate i flavoprotein subunit (Sdha) 2.3 QBK283 231 68032 632 305 5 7
[2-oxoisovalerate dehydrogenase subunit apha (Bckdha) 14 P50136 S50 45674 605 604 10 32
3.2-trans-enoyi-CoA isomerase (Dci) 39,40 P42125 84 20110 777 484 8 3
3-ketoacy-CoA thiolase (Acaa2) 19,20,21,22.23,24.25 Q8BWT1 313 41857 833 1446 21 72
[Acetyl-CoA acetyliransferase (Acatt) 23 Q8azT1 800 41413 818 992 17 51
[Acetyl-coenzyme A synthetase 2-iike (Acss1) 2 QEONB1 67 70723 598 1135 2 45
A thioesterase 9 (Acot9) 16 QOROX4 400 48185 738 134 3 12
[Acyt-protein thioesterase 1 (Lypla1) 38 P97823 203 24687 6.4 176 3 20
[Adenosine kinase (Adk) 14 Ps5264 >50 40148 584 338 6 27
[Adenytyl cyclase-associated protein 1 (Cap1) 8 P40124 277 51443 7.33 362 7 19
[Alpha-enolase (Enot) 15 PI7182 164 47009 636 834 1" 20 ;
[Aspartate aminotransferase, cytoplasmic (Got) 18,19 *P05201 3% 10 675 1390 2 68 g
[Aspartate aminotransferase (Got2) 19.23,25 P05202 273 44579 897 443 7 18 ;
[Beta-enolase (Eno3) 15,16 *P21550 1% s es 1861 ) 70
[Branched-chain-amino-acid aminotransferase (Bcat2) 27 035855 485 4175 770 579 12 44
(Camitine O-acetylransferase (Crat) 5 P47934 >50 70924 852 7 1 1
Creatine kinase M-type (Ckm) 19.22 PO7310 313 43044 658 1017 18 el
Creatine kinase, sarcomeric (Ckmt2) 19.20,21.22 QBPBST 217 43386 772 1389 21 62 @
D ine-5-carboxy (Aidhdat) 7 QBCHTO 251 Set24 770 1510 2 57 €
[Enoyl-CoA hydratase (Echs1) 30 Q8BHIS 256 28474 778 55 1 3 g
Fructose-bisphosphate aidolase A (Aldoa) 18.21,23 “P05064 S w24 840 1435 21 74 g
Fumarylacetoacetase (Fah) 19 P35505 910 46103 692 141 2 9 =
(Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) 29,30,31,32,33.34 P16858 239 35678 845 1032 14 62 g
(Guanine deaminase (Gda) 12,13 QoR111 155 51013 536 414 7 18 g
yme A (Hadh) 36 Q61425 333 32995 826 698 13 55 S
Isovaleryl-CoA dehydrogenase (Ivd) 19 QOUHIS 910 42971 629 246 4 2 g
L-lactate dehydrogenase A chain (Ldha) 28 POB151 448 36367 776 1191 18 68
Lactate dehydrogenase B chain (Ldhb) 29,30,31 P16125 237 %441 570 553 9 40
Long-chain specific acyl-CoA dehydrogenase (Acadi) 19,21.22 P51174 304 44627 650 954 15 42
Med ific acy-CoA (Acadm) 18,19.20.21,22 *P45952 3% a2 1e9 1255 20 58
[Methylcrotonoyt-CoA carboxylase beta chain (Mccc2) 7 Q3uLDs 251 58685 688 51 9 2
Nicotinamide phosphoribosyltransferase (Nampt) 8 QUoKQ4 1277 55446 669 145 3 14
(Ornithine aminotransferase (Oat) 14 P29758 >50 4579 573 212 3 12
[Phosphoglycerate kinase 1 (Pgk) 20.21,22 P0G411 A7 aas19 802 1302 21 70
[Phosphoglycerate mutase 2 (Pgamz) 39,40 070250 84 28695 865 348 [ 2
[Propionyl-CoA carboxylase alpha chain (Pcca) 2 Q912A3 167 7518 613 2494 3 65
[Pyruvate dehydrogenase E1 component alpha subunit (Pdhat) 19,20 P35486 207 40180 678 399 7 21
Pyruvate dehydrogenase protein X component (Pdhx) 35 QBBKZ9 953 47948 582 125 2 6
Pyruvate kinase isozymes M1/M2 (Pkm2) 7 P52480 251 STI3 742 1618 2 53
Short-chain specific acy-CoA dehydrogenase (Acads) 18 Qo7417 386 42231 742 318 6 2
Trifunctional enzyme subunit beta (Hadhb) 12,15 Q9asY0 162 47578 924 420 8 20
Triosephosphate isomerase (Tpi1) 37 P17751 250 26561 7.9 224 4 20
UTP-glucose-1-phosphate uridylyliransferase (Ugp2) 8.9,10 Q912i5 1277 56848  7.47 788 1 a7
Very-long-chain specific A (Acadvi) 56 P50544 681 66337 772 2805 46 8
[Aldose reductase (AKr1b1) 29.30,31 P45376 237 35601 679 168 3 ]
(C-terminal-binding protein 1 (Ctbp1) 15 088712 164 47744 628 64 1 4 )
i nsferase A4 (Gstad) 38 P24472 203 25563 677 50 1 50
(Glyoxytate reductase/ydroxypyruvate reductase (Grhpr) 26 Q91253 327 338 757 102 2 6
L-2-hydroxyglutarate dehydrogenase (L2hgah) 20 Q91YPO 210 45664 801 201 3 10
Peroxiredoxin-1 (Prdx1) 41,42 P35700 1388 22176 826 243 6 46
[Peroxiredoxin-5 (Prdx5) 44 P90029 2067 17014 7.70 587 11 56
Sepiapterin reductase (Spr) 37 Q64105 250 27883 559 414 7 40
Thioredoxin reductase 2 (Txnrd2) 8 QoLT4 1277 52886  7.00 179 4 8
Thioredoxin-dependent peroxide reductase (Prdx3) 38 P20108 203 21564 573 301 6 2
Actin, alpha cardiac muscle 1 (Actc1) 22 P68033 187 a4 524 303 5 2
(Annexin A2 (Anxa2) 27 PO7356 455 38545 753 63 1 2
-h it-hel ining protein 3 (Chchd3) 39 QCRBY 256 26334 856 87 2 14
[Cat eye syndrome critcal region protein 5 homolog precursor (Cecrs) 18 Q9IWM2 356 44930 735 57 1 5
Leucine zipper-EF-hand-containing transmembrane protein 1 (Letm1) 4 Qsz2i0 1220 70684 533 a7 1 1
[Mitochondrial inner membrane protein (Immi) 3 Qscaas >50 83900 618 730 15 2
[Prohibitin (Phb) 35 P67778 953 20820 557 368 8 a7
60 kDa heat shock protein (Hspd1) 7 P63038 251 57925 535 74 5 2
[Heat shock cognate 71 kDa protein (Hspag) 3 PB3017 >50 70871 537 283 5 13
Heat-shock protein beta-1 (Hspb1) 37 P14602 250 23013 612 564 " 57
Stress-70 protein (Hspa9) 2 P38647 467 68612 550 252 5 8
T-complex protein 1 subunit epsion (Ccts) 7 PB0316 251 see2 572 65 1 2
[Eukaryotic initiation factor 4A- (Eif4al) 12 P60843 157 46153 532 414 7 26
[Eukaryoic initiation factor 4A-I (Ef4a2) 13 P10630 154 46402 533 442 7 27
[Eukaryotic translation initation factor 3 subunit 5 (Eif3f) 12 QeDCH4 157 38000 533 191 3 10
Proiferation-associated protein 2G4 (Pa2gd) 15 P50580 164 4357 640 121 3 10
Proteasome activator it 2 (Psme2) 35 P97372 953 26926 555 133 3 14
(Chloride intracellular channel protein 4 (Clicd) 35 asavs1 953 28597 545 116 2 12
[Myoglobin (Mb) 43,44 P04247 600 16938 723 965 15 9
Selenium-binding protein 1 (Selenbp1) 10 P17563 721 52514 587 306 6 18

Figure 3.

Identity of cardiomyopathic subproteome following stem cell therapy. The 93 significantly
altered proteins induced by stem cell therapy in the setting of dilated cardiomyopathy [ES(+)
altered subproteome], and identified by LTQ-Orbitrap MS/MS analysis, were functionally
categorized and color-coded by Swiss-Prot ontological annotation. Protein names are listed
with their symbol (Swiss-Prot gene abbreviation) and spot numbers to locate corresponding
2D gel position(s) in Figure 1. Mascot score, number of unique identified peptides, %
sequence cov. (coverage), predicted M, and pl for each protein (following expected post-
translational processing, for example, removal of a mitochondrial signal peptide), and fold
change of ES(+) over control are indicated. For proteins detected in more than one spot,
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maximum score and corresponding number of unique peptides are reported. Fold change
was calculated as described in experimental procedures, and for proteins detected in both
increasing and decreasing spots (*), both values are indicated. Abbreviations: 2D, two-
dimensional; Ox., oxidative; Syn./Deg., protein synthesis/ degradation; TCA cycle,
tricarboxylic acid cycle.
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Figure 4.

Stem cell therapy transforms the cardiomyopathy-associated protein interaction network.
(A): The 109 ES(—) and 93 ES(+) differentially expressed proteins were submitted to IPA as
focus nodes, generating broader interaction networks of 229 and 205 proteins, respectively.
Proteins are designated by symbols corresponding to Swiss-Prot gene abbreviations or by
family name for nodes representing protein families, and are colored by the functional
ontology detailed in Figures 2 and 3, with node shape indicating directionality of focus
protein expression change (legend) and nodes common to both networks maintained in the
same spatial location. Plots of degree distribution [P(k)] versus degree (k) followed power
law distributions, where P(k) ~k™, with y= 1.55 * 0.04 for ES(—) and 1.57 £ 0.04 for ES(+)
networks, respectively, indicating scale-free, nonstochastic network architecture. (B):
Limited overlap was found between ES(—) and ES(+) networks (total unique and common
nodes indicated), with (C) the majority of proteins from each functional category residing
within only one of the two networks. Abbreviations: ES, embryonic stem cells; P(k), degree
distribution; k, node degree.
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A In silico overrepresentation of deleterious outcomes
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Figure 5.

Stem cell-dependent demotion of disease-associated adverse effects. (A): Bioinformatic
interrogation of the ES(—) and ES(+) networks within Ingenuity Pathways Knowledge Base
for deleterious outcomes indicated that significant overrepresentation of “Cardiac disease”
within the ES(—) network was reduced by three orders of magnitude in the ES(+) network
(left panel). Screening against Ingenuity toxicological pathways further indicated seven
adverse effects in the ES(—) subproteome, all of which were cardiac specific, that is,
damage, dilation, dysplasia, enlargement, inflammation, hypertrophy and fibrosis, and
nearly all were abolished in the ES(+) subproteome (right panel). (B): Echocardio-graphic
measurements indicated that (C) LV fractional shortening, (D) LV ejection fraction, (E) LV
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diastolic dimension, (F) LV wall to dimension ratio, and (G) LV end-diastolic volume were
all significantly worsened by pressure overload but returned to prestress levels following 6
weeks of cell therapy. (H-1): Measurement of hearts on autopsy indicated that the
significant increase in heart mass imposed by pressure overload was reversed by cell
therapy. Collectively, these parameters demonstrated cell therapy-induced improvement in
myocardial contractile performance, reduction in LV size and decreased cardiac damage (*,
p < .01 ES(-) versus ES(+) and ES(—) versus control, with control indicated by 95% C.1I. in
gray as noted in panel (D). Abbreviations: C.1., confidence intervals; ES, embryonic stem
cells; LA, left atrium; LV, left ventricle; LVDd, left ventricular end-diastolic dimension;
LVDs, left ventricular end-systolic dimension; RA, right atrium; RV, right ventricle.
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Swiss-Prot  Fold Predicted Mascot Unique Sequence
B Protein Name (Symbol) Spot Number(s) Foe Mr B Cov. (%)
[ATP synthase D chain (AtpSh) 27 Q@Dcx2 270 18618 553 60 1 u |9
[ATP synthase subunit aipha (AtpSat) 3.4 Qo3265 443 s5310 828 325 6 © |3
Electron transfer flavoprotein subunit alpha (Etfa) 19 Q9aLcs 400 32366 710 363 7 a |8
Electron transfer flavoprotein subunit bota (EYb) 23 Qcws 230 274 820 465 8 3 g'
INADH.ub 3 1 Q9tvoe 824 7Tre2 524 2029 3 0 |5
Ubiquinol-cytochrome-c reductase complex core protein 2 (Uqcrc2) 9 QUDBT7 280 46589 899 4s 1 3 S
Malate dehydrogenase (Mdh2) 15 P08249 -220 33138 855 248 6 26 a
Pyruvate dehydrogenase [ipoamide] kinase isozyme 4 (Pdkd) 10 o571 167 44038 6M 212 5 36 E
Succiny-CoA ligase [ADP-forming] beta-chain (Sucla2) 9 Qsz219 280 au2 533 729 9 7 |g
| Alpha-enolase (Eno1) 6,7 P17182 213 47010 6.36 1764 22 /4
[Beta-enolase (Eno3) 6,7 P21550 -213 46894 681 793 12 49 »
[Creatine kinase M-type (Ckm) 8, 9 *PO7310 '222758 43045 6.58 228 3 29 §.
(Glyceraldehyde-3-phosphate dehydrogenase (Gapdh) 15 P16858 220 35679 845 497 8 ® |3
Isovaleryt-CoA dehydrogenase (Ivd) 10 QUUHIS 167 42011 629 1297 20 63 §
Long-chain specific acy-CoA dehydrogenase (Acadi) 8 P51174 225 44621 650 46 1 12 ;
Medium-chain specific acy-CoA dehydrogenase (Acadm) 11 Pasos2 655 43503 760 661 13 0 |8
Mitochondrial-processing peptidase alpha subunit (Pmpca) 3 QoDCet 416 54713 585 125 3 v |7
| Short-chain specific acyl-CoA dehydrogenase (Acads) 12 Q07417 >50 42231 712 a1 1 14 3
[Trifunctional purine biosynthetic protein adenosine-3 (Gart) 5 Q64737 522 45652 597 65 2 6
[Aidehyde dehydrogenase (Aldhz) 5 PaTT36 522 sar5s 605 175 4 2
n " (WahTat) 34 QODBF1 443 65513 599 110 2 6

Glutathione peroxidase 1 (Gpx1) 28 P11352 -1.60 22268 674 214 5 33
Peroxiredoxin-2 (Prdx2) 27 Q61171 270 21647 520 48 1 14
Peroxiredoxin-6 (Prdx6) 26 008709 75 419 572 102 2 16
[Thioredo: Praxs) 12 P20108 >80 21564 573 186 3 1
[Actin, alpha cardiac muscle 1 (Actc1) 89 Pe8033 2% aes 523 1318 2 )
| Actin, cytoplasmic 1 (Actb) 9 P80710 -280 41605 529 1149 19 70
[Myoglobin (Mb) 30, 31 P04247 -333 16938 723 842 14 83
Myosin liht polypeptide 3 (Myl3) 24,25 P09542 460 22200 503 1445 18 8
Protein FAM82B (Famgzb) 22 Q@DCV4 440 35000 885 466 10 u
|Septin-2 (Sept2) 10 Pa2208 167 41525 6.10 99 2 13
| Syntaxin-binding protein 2 (Stxbp2) 24 Q64324 -1.60 66315 628 32 1 4
| Tropomodulin-1 (Tmod1) 8 P49813 225 40484 5.02 95 1 8
Troponin 1, cardiac muscle (Tani3) 20 pasT? 250 24127 957 13 2 20
| Tubulin alpha-18 chain (Tuba1b) 2 P05213 -4.00 50151 494 97 1 18
|GTPase IMAP family member 4 (Gimap4) 12 Q99JY3 >50 24554 653 45 1 9
(Galectin-1 (Lgals1) 31 P16045 338wk s 52 7 58
[Prohibitin (Phb) 20 PE7778 -2.50 29820 5.57 168 5 39
Protein NDRG2 (Nerg2) 8 QQvGo 225 40789 523 210 5 29
[Rho GDP-dissociation inhibitor 1 (Arhgdia) 24,25 Q99PTH 460 20276 512 62 1 13

precursor (Sr) 3.4 Q7TQ48 -4.16 54287 6.21 874 17 30
|GrpE protein homolog 1 (Grpel1) 28 Q99LPE -1.60 21302 6.12 292 7 46
60 KDa heat shock protein (Hspdt) 20 P63038 >50 579 530 290 5 12
Heat shock protein 75 kDa (Trap1) 1 Qscant 824 73783 573 61 1 1
Heat shock protein HSP 90-alpha (Hsp90aa) 1 PO7901 820  saGS7  493 100 2 3
Heat-shock protein beta-1 (Hspb1) 26,27 *P14602 2% zom e 602 12 3
Protein DJ-1 (Park7) 28 Q99LX0 -1.60 20021 6.32 735 13 9
[T-complex protein 1 subunit beta (Cct2) 4 PBO314 473 57TM6 598 1262 25 bl
|Caspase-8 precursor (Casp8) 4 089110 473 55357 5.12 32 1 2
Leukocyte elastase inhibitor A (Serpinb1a) 12 QD154 >50 42575 585 a7 1 7
Proteasome subunit alpha type 1 (Psmat) 18 QORIP4 3080 20546 600 274 6 a7
Proteasome subunit beta type 7 precursor (Psmb7) 21 P70195 390 25252 584 388 7 m
|SAPK substrate protein 1 (Ubxn1) 8 Qo22y1 225 33572 522 41 % 4
Transcription elongation factor B polypeptide 2 (Teeb2) 30 P62869 >50 13170 487 108 2 30
Ubiquinone biosynthesis monooxygenase COQE (Coa8) 7 QBRISO 500 0705 655 407 9 35
Ubiquitin carboxykterminal hydrolase isozyme L1 (Uchi1) 25 QOROPO 190 24838 514 223 5 s
[Chioride intracellular channel protein 4 (Clicd) 20 QeaYB1 251 28597 545 78 2 70 3
Fatty acid-binding protein, heart (Fabp3) 31 P11404 333 w480 61 6 1 10 o
Frataxin (Fxn) 30 035043 >80 18573 576 . 1 5 2
| Tripartite motif-containing protein 72 (Trim72) 23,4 QIXH17 -4.00 52783 6.01 1066 20 7% g
[Transitional endoplasmic reticulum ATPase (Vep) 1 Q01853 824 8910 514 1821 2 a8

Figure 6.

Stem cell therapy-specific subproteome. (A): Comparison of stem cell-treated [ES(+)]
versus untreated [ES(—)] left ventricular tissue extracts by two-dimensional (2D)
electrophoresis. Differentially expressed spots isolated for identification by LTQ-Orbitrap
mass spectrometric analysis are circled, and numbered on the ES(+) gel. Inset: Gel-to-gel
reproducibility indicated by correlation of scatter plot for average normalized densitometric
intensities of matching protein spots from ES(+) versus ES(—) gels. (B): Identities of the 61
proteins significantly altered by cell therapy are listed with their symbol (Swiss-Prot gene
abbreviation) and spot numbers to locate corresponding 2D gel position(s) in panel (A).
Mascot score, number of unique identified peptides, % sequence cov. (coverage), predicted
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M; and pl for each protein (following expected post-translational processing, for example,
removal of a mitochondrial signal peptide), and fold change in ES(+) versus ES(-) are
indicated. For proteins detected in more than one spot, maximum score and corresponding
number of unique peptides are reported. Fold change was calculated as described in
experimental procedures, and for proteins detected in both increasing and decreasing spots
(*), both values are indicated. Abbreviations: ES, embryonic stem cells; Ox., oxidative;
TCA cycle, tricarboxylic acid cycle; SAPK, stress activated protein kinase.
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Figure 7.

Cardiovascular system development prioritized in stem cell therapy-specific network. (A):
Submission to Ingenuity Pathways Analysis (IPA) of differentially expressed proteins in the
ES(+)-treated hearts generated a 120-protein interaction network, functionally categorized
and color-coded by Swiss-Prot ontological annotation (upper legend), with proteins
designated by symbols corresponding to Swiss-Prot gene abbreviations or by family name
for nodes representing protein families, and shape indicating directionality of focus protein
expression change (lower legend). (B): A log-log plot of ES(+)-specific degree distribution
[P(K)] versus degree (k) followed a power law distribution, indicating scale-free,
nonstochastic network architecture. (C): Bioinformatic interrogation of IPA for associated
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developmental functions revealed prioritization of cardiovascular system development in the

ES(+)-de-pendent proteome in response to cell therapy. Abbreviations: P(k), degree
distribution; k, node degree.
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