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Network motifs are small patterns of connections, found
over-represented in gene regulatory networks. An exam-
ple is the negative feedback loop (e.g. factor A represses
itself). This opposes its own state so that when ‘on’ it
tends towards ‘off’ – and vice versa. Here, we argue that
such self-opposition, if considered dimensionlessly, is
analogous to the liar paradox: ‘This statement is false’.
When ‘true’ it implies ‘false’ – and vice versa. Such
logical constructs have provided philosophical conster-
nation for over 2000 years. Extending the analogy, other
network topologies give strikingly varying outputs over
different dimensions. For example, the motif ‘A activates
B and A. B inhibits A’ can give switches or oscillators
with time only, or can lead to Turing-type patterns with
both space and time (spots, stripes orwaves). It is argued
here that the dimensionless form reduces to a variant of
‘The following statement is true. The preceding state-
ment is false’. Thus, merely having a static topological
description of a gene network can lead to a liar paradox.
Network diagrams are only snapshots of dynamic biolo-
gical processes and apparent paradoxes can reveal
important biological mechanisms that are far from para-
doxical when considered explicitly in time and space.
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Introduction

‘The first statement in this paper is false. Therefore, this paper

should be rejected’. Although we are hoping for a more

sympathetic peer review process, the first sentence raises

interesting possibilities: if the sentence is true, it states it is

false. If false, its opposite must be true, so it is true. Thus, the

outcome of review would be an endless cycle (and, although it

may sometimes seem otherwise, real peer review is never like

this). Therefore, we have a problem; such self-referential

arguments are termed ‘liar paradoxes’ and are attributed

either to Epimenides (6th century BC) or Eubulides (4th

century BC). The former, a Cretan, is thought to have been the

first to create confusion by declaring that ‘all Cretans are

liars’.(1) Although this formulation is actually not a paradox (a
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resolution is that some Cretans are liars), there are stronger

formulations, including: ‘The following statement is true. The

preceding statement is false’.

This essay aims to develop the analogy that we recently

proposed between biological network connections and liar

paradoxes.(2) It is extremely common to find self-opposing

biological interactions, resulting in autoregulation or negative

feedback.(3) Thus, the widespread shorthand for describing

biological systems as nodes, connected by pointed arrows for

activation and blunt arrows for repression, is potentially

problematic. Unless the sequence of events is viewed

dynamically, the descriptions of negative feedback are

nonsensical. This should be familiar to anyone who has

thought carefully about a gene network or biological process –

indeed, since the 1960s researchers have developed logical

frameworks for describing gene networks that explicitly

consider the order of events in a network: the Boolean or

logical network formalisms.(4) Boolean networks avoid such

contradictions with sequential time steps (synchronous or

asynchronous) for switching states in feedback systems.(5)

This gives long sequences or histories of system states.

Contrastingly, verbal paradoxes have no inherent time

dimension (for a review, see(6)). The liar paradox analogy

emphasises that commonly presented descriptions of biolo-

gical interactions (A activates B. B inhibits A) are not

understandable if viewed statically with dimensionless

topology diagrams.
An analogy between gene network motifs
and the liar paradoxes

Network motifs are small patterns of interconnections that

are embedded within large complex networks, from gene

regulatory networks to the World Wide Web, and occur more

frequently than one would expect by chance.(7,8) Common

motifs or topologies include: (i) negative-feedback loops,

which reduce transcriptional noise(9) and gene network

response times(3); (ii) positive-feedback loops, made of

factors that activate themselves, which can lead to bist-

ability(10,11) and (iii) positive-negative or dual-negative topol-

ogies that can act as toggle switches,(12,13) providing potential

memory-coding units in cells.(14) Many of these motifs or

topologies involve feedback and can lead to oscillations or

limit-cycle dynamic properties in biological systems.(15–17)
BioEssays 31:1110–1115, � 2009 Wiley Periodicals, Inc.
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The role of biological feedback was neatly encapsulated in

the conjectures of Thomas in the 1980s(5,18,19): positive

feedback is necessary for multiple steady states (multi-

stationarity, e.g. a bistable network); negative feedback allows

a wider range of attractors (recurrent gene activities). These

attractors can be points (stable steady states), oscillators

(limit cycles) or chaotic (non-linear feedback), depending on

the specific interaction parameters involved. Thus, feedback

is always modelled dynamically. The following sentence,

however, has no time dimension:

[1] This statement is false.

This is a paradox because the statement implies the

opposite of its own state (i.e. if it is true it is false and if it is

false it is true). Considered instantaneously, there is a

contradiction, because the two states cannot be compatible

simultaneously. However, the statement contains an inherent

feedback and when reading it to ourselves we tend to

cycle between outcomes, inventing a time frame to give the

opposing outputs (if it is true, then it is false, then it is

true, etc.). By analogy, consider that if the opposite of ‘true’ is

‘false’, then similarly the opposite of ‘on’ is ‘off’ or, for an
Table 1. Liar paradoxes and analogous gene network motifs

Verbal analogy Network motif Input
aA. This statement is false. 0

1

Dm

A. This statement is true. 0

1

<t

>t

A. The next statement is false.

B. The previous statement is false.

A B

0 0

0 1

1 0

1 1

Low A

High B

aA. The next statement is true. See ‘F

parado

Turing

Fig. 1.

B. The previous statement is false.

aA. Statement B. is false A¼1)
B. Statement C. is false )C¼
C. Statement A. is false. )B¼

)A¼1

Only some networks are paradoxes (Marked:a). Others are self-consiste

activation interaction; blocked lines imply repression. For emphasis, networ

inactive states. Modelling the same network motif or ‘topology’ in different d

go from paradox (dimensionless: 0-D), to oscillator (1-D), to stripe patter
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electronic logic gate, the opposite of output ‘1’ is ‘0’. Thus, this

statement also implies the opposite tendency of its own state:

[2] This gene product represses its own production.

This can generate a similar ‘paradox’ if only the connec-

tions are considered instantaneously without dimensions: if a

gene product exists, it switches itself off, therefore it no longer

exists, therefore repression is removed, therefore residual

activation dominates (through promoter leakiness or other

activators), therefore the gene product exists. If it is on it is

off and if it is off it is on (Table 1).

Although removing dimensions is absurd, it stresses that

there are opposite tendencies implicit within the system that

can be resolved by adding the dimension of time, and by

quantifying the control parameters. Opposing forces drive the

system back towards an attractor, such as a mean or steady

state, regardless of what perturbation is applied. Another

analogy for this system is that it is like a thermostat, cycling

between on and off, with stochastic fluctuations around its

central position.(5) Importantly, the central position is not

necessarily off; the system can have a steady-state level, with

turnover of components, as long as energy drives the system.
Output Function

1 Negative feedback loop, autoregulation,

noise filter, thermostat

(mean behaviour: m)

0

�>m

0 Positive feedback loop, bistability, bimodal

expression levels (with threshold: t)1

0

1

A B Mutual inhibition, bistability,

toggle switch, mutually exclusive states,

decision making, memory0 0

0 1

1 0

1 0

or 0 1

High B

Low A

rom liar

xes to

patterns’;
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2- to 4-D: Turing and Meinhardt–Gierer

Patterns (spots, stripes and waves)

B¼0 Repressilator(37) (oscillator)

1)A¼0

1)C¼0

. . ..

nt if the history of the system is measured. Pointed arrows imply an

ks are shown with all-or-nothing digital forms, with 1 and 0 for active or

imensions can give very different results: the penultimate example can

n (up to 4-D).
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A consequence of this analogy is that it is meaningless to

look for a true or false output of the circuit, the system must be

considered over time in terms that take into account all the

parameters involved in the network (production, degradation,

repression, etc.(20)). So, if we want to understand sentence

[1], perhaps we should attempt to measure the parameters

controlling the negative feedback and ask how false is it over

time?
From paradoxes to Turing patterns

The liar analogy can be extended to other motifs as outlined

in Table 1. For example, ‘This statement is true’ has a

counterpart in the positive-feedback motif, which presents no

logical problems in terms of paradoxes, but does have the

property of bistability. Interestingly, the sentence itself could be

considered to be ‘bistable’ with two states, true or false.

Synthetic reconstruction of positive-feedback genetic circuits

has revealed that they can indeed be bistable, especially when

there is noise or fluctuation in gene expression, together with

non-linear activation and appropriate protein degration.(10,11)

Another motif with bistability is the two-component system

with mutual inhibition interactions(13) (Table 1). This system is

extremely common in biological networks and can be used at

decision making branching points in biological path-

ways.(21,22) For an intuitive understanding, imagine a domino

balanced on its edge – pushing either side topples it, blocking

the other side. In the same way, A:B mutual inhibition results in

one side winning or losing the battle for expression and results

in a robust mechanism for bistability (with appropriate

repression, leakiness and component half-lives). The process

can be summed up by a semantic analogy:

[3] A: The next statement is false. B: The previous

statement is false.

This is not a paradox because either statement could be

true; resolution depends on knowing the history of the system.

Either A is true and B is false or vice versa; experimental

measurements would reveal which is the case.

Biological implementations of mutual inhibition circuits are

plentiful and they have even been studied in some elegant

synthetic gene circuits where two transcription factors

mutually repress each other.(23,24) A neat example of a

synthetic mutual inhibition gene circuit came from Ellis et al.,

who precisely characterised randomised promoter variants

and then showed that the components could be used to

engineer new networks with predictable properties.(23)

Mutually repressive TetR- and LacI-regulated promoter

networks resulted in timers that could reliably flip states, to

control the timing of a yeast sedimentation phenotype.

In the study of Kashiwagi et al.,(24) it was found that in vitro

‘evolution’ could reliably select noise-adaptive states over non-

adaptive states during mutual inhibition – the circuits could ‘flip’
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to make the appropriate selections of which factor to select,

even in the absence of signal transduction machinery. Cells will

thus reliably select noise-adaptive states over non-adaptive

states to render the latter less stable. Hence, from evolution’s

point of view, only instability may be stable.

Combining even numbers of negative interactions always

results in multiple, mutually exclusive, stable states (e.g. ‘A

inhibits B. B inhibits C. C inhibits D. D inhibits A.’ has two

possible stable states if each factor can be on or off). On the

other hand, combining odd numbers of negative interactions

is rather more subtle, potentially leading to self-contradictions

as in the dimensionless paradox:

[4] A: The next statement is true. B: The previous

statement is false.

If A is true then B is false then A is false then B is true, etc.

When adding the dimension of time, by analogy, this is very

similar to the genetic clock proposed by Barkai and Leibler(25) or

the oscillator-toggle switch topology built by Atkinson et al.(12):

[5] Autoactivator A makes repressor B. B represses A.

These network topologies are extremely common in

biological networks and can give oscillations in time(14,26–28)

(Table 1). The verbal analogy gives an intuitive feel of why

such systems can oscillate. However, it should be emphasised

that each system is sensitive to its own parameters and that

under certain conditions A or B can dominate (e.g. strong,

long-lived A with weak, short-lived B).

So far we have only considered the dimension of time.

Strikingly, when adding space, time and reaction diffusion, the

same type of interaction gives a system that will be familiar to

anyone interested in the mechanisms behind developmental

pattern formation. The ‘A makes B. B inhibits A.’ interaction is

a more general form of the Gierer and Meinhardt patterning

mechanism (local activation and long-range lateral inhibi-

tion(29,30)). For example, consider:

[6] Autoactivator A diffuses slowly and activates B.

Repressor B diffuses fast and represses A.

Although we are adding extra conditions to the simple

topology in statement [4], the point that needs to be

emphasised is that by adding more dimensions and reactions

to the basic framework, intricate dynamic patterns can result

(Fig. 1). Such reaction-diffusion patterns were originally

discovered by Turing,(31) and can result in spots,(32) stripes(33)

or waves.(34,35) Conversely, by removing dimensions, liar

paradox topologies are obtained.

It should be pointed out that one does not need a Turing-

type mechanism for ‘paradox-based’ pattern formation. Self-

inhibitory dynamical behaviour in individual nuclei in a

morphogenic fields is equally possible. An interesting

example of this with just one diffusing morphogen was

suggested by Lander.(36) If a morphogen upregulates its own

receptor, which is not only involved in signal transduction, but

also ligand endocytosis, then two opposite effects occur at the

same time: signalling increases close to the morphogen
BioEssays 31:1110–1115, � 2009 Wiley Periodicals, Inc.



Figure 1. From liar paradoxes to Turing patterns. A: ‘The next

statement is true. The previous statement is false’ is a zero-dimen-

sional analogue of a stripe-pattern forming system, based on an

activator U and inhibitor V (2-D space and 1-D time). Such systems

rely on reaction and diffusion to make patterns (local autoactivation,

long-range inhibition(29,56)). B: Rainbow colour coding shows local

high expression of activator U (more red) and inhibitor V (more blue).

With high autoactivation and weak repression, the activator domi-

nates giving a uniform stability (red). With high transactivation and

strong repression, the inhibitor dominates (blue). C: By balancing

production, diffusion, reaction and degradation, spots, stripes or

waves spontaneously emerge. D: This simulation has the same

parameters as (C), except with a lower autocatalysis saturation

constant, resulting in spots. E: The discus fish is thought to employ

just such a body-patterning mechanism, based on reaction-diffusion.

Images and calculations kindly provided by Luciano Marcon and

James Sharpe. Discus image by Anka Zolnierzak
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source (where ligand is not limiting), while it decreases further

away (where ligand is limiting). Here, the two effects are not

separated in time, but occur simultaneously at different

locations in space.
Odd numbers of negative interactions
lead to oscillations

It would be possible to extend the verbal network analogy for

many further examples, but we can finish with one final motif

that nicely illustrates how combining simple connections leads

to complicated outcomes. The repressilator(37,38) is a net-

work, built synthetically in Escherichia coli, that exhibits

oscillatory behaviour through three consecutively repressive

interactions (Table 1). The outcome of two consecutive

negative interactions is to create a tendency towards
BioEssays 31:1110–1115, � 2009 Wiley Periodicals, Inc.
positive expression, and thus there are transient activations

in the system. If balanced with appropriate parameters and

time delays between processes, this leads to oscillations. One

can follow this intuitively by reading:

[7] A: Statement B is false. B: Statement C is false.

C: Statement A is false.

Logically, if A is true, then B is false, then C is true, then A is

false, then B is true, then C is false, then back to A is true. This

cycle can be repeated endlessly, like the repressilator

transcription–translation output.

We are used to thinking about systems such as

transcription–translation networks in dynamic terms.(20,39)

However, the concept can be stretched to include problems

not normally viewed as networks. These would include all

kinds of metabolic and enzymatic processes with interde-

pendent steps or processes.

For example, protein folding is usually regarded as a

problem with a single optimal solution: the peptide chain folds

through kinetic intermediates to find first local and then more

global energy minima.(40,41) However, protein folding and

structure prediction are ‘difficult’ problems that cannot be

solved analytically; much effort goes into simulations and

approximations to find the best solution.(42,43) The problem is

computationally expensive because so many conformations

are possible. Even here, it is likely that network concepts of

circularity are an appropriate way of looking at such systems,

as these can add a layer of useful information. In this way, take

three hypothetical intramolecular protein–protein contacts –

A, B and C – and consider them as a network. When

position A is free it clashes with B, freeing it and fixing the

position of A. When B is free it clashes with C, freeing it and

fixing B. When C is free it clashes with A, freeing it and fixing C.

As long as there is a supply and dissipation of free energy

through the system, the result is a dynamic system with

inherent contradictions that only makes sense if you look at it

over both space and time. This can be extended to DNA or

RNA base pairing, or even lipid association, with self-

interaction forming order and asymmetries.

Using reductio ad absurdum with the liar paradox, we see

that static approaches are dangerous. Nowhere are static

connections more apparent than in ‘interactome’ diagrams –

descriptions of all the protein–protein interactions in a given

genome. For example, Vidal and colleagues have produced

wonderfully complicated interactome diagrams, for several

organisms, that resemble ‘hairy monsters’(44–46) (Fig. 2). We

must all keep reminding ourselves that patterns of connec-

tions must be considered over multiple dimensions of time

and space – or their feedbacks can imply different steady

states, attractors or even self-contradictory liar paradoxes.

While the pioneers of interactomes are well-aware that

defining system steady states will be required,(44) elsewhere

the message gets lost. For instance, p53 oscillations(26,47)

were long overlooked because of a static description being
1113



Figure 2. A ‘hairy monster’ diagram of the human protein–protein

interactome.(46) Health warning: static network descriptions may

contain hidden behaviours. Image kindly provided by Marc Vidal.

Reprinted by permission from Macmillan Publishers Ltd: Nature

2005. 437: 1173–1178, � 2005
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interpreted as a control switch to prevent expression levels

from getting too high (e.g. p53 makes Mdm2. Mdm2 degrades

p53, controlling p53 levels). As p53 is one of the best studied

genes – over 20,000 PubMed papers contain p53 in the title –

it took a surprisingly long time to explore the time-dimension

explicity. However, should we really care whether p53 levels

oscillate? Does this increase our biological insight into

cancer? Perhaps the importance of such oscillations is not

as immediately obvious to us as, say, the oscillations of the

cell-division cycle, but there is a result here that may lead us to

an important general principle in biological networks. There is

an old saying (used to criticise generally false predictions) that

goes, ‘Even a stopped clock is correct twice a day’. In biology,

the converse may be more applicable: ‘An oscillating

concentration gives you the correct concentration once or

twice per cycle’. Thus, oscillating concentrations are more

likely to give the correct ‘working’ amount at least some of

the time, even if noise and other factors, keep disturbing the

system. A thermostat or autoregulator is an oscillator with

low amplitude, whereas circuits with larger amplitude may

be more hit-and-miss – and will be correct some of the

time.

Biological examples of oscillators based on negative

feedback are numerous and include the SOS response(27) or

NF-kB signalling.(28) If temporal oscillations have been

frequently overlooked, multi-dimensional problems such as

development would also benefit from a re-appraisal of the

interactions between components. In summary, connection

diagrams (48) give a comforting illusion of understanding a

system, but we should all be wary of taking these networks at

face value.
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Conclusions

This essay is primarily an alternative perspective on gene

networks and does not aim to discuss liar paradoxes formally.

For further reading, there is an accessible review by

Dowden,(6) which summarises the paradoxes and potential

resolutions. Very briefly, these resolutions (amongst others)

include suggesting the proposition is either meaningless,(1,49)

or neither true or false,(50) or even that it is both true and

false(6) and as such occupies a unique position in language.

More worryingly, Tarski was able to prove liar paradox

inconsistency using an arithmetical argument that proved that

true was not definable, and thus languages are either

‘semantically open’ or partly incoherent.(51) What these solutions

do not explore, however, is dimensionality or time and perhaps a

more formal investigation of this possibility is required.

Although a source of delight to many, paradoxes have

continued to trouble mathematicians and philosophers over

the centuries.(52) Russell was deeply shaken when a paradox

concerning self-membership of groups threatened to under-

mine his belief that arithmetic was predicated on a hierarchy of

sets.(53) The ‘set that contains all sets that are not self-

membered’ generates a by-now familiar cyclical eligibility – or

non-eligibility – for being in its own set, depending on where

you are in the logical loop.

Self-referential statements also profoundly influenced

Gödel in his famous incompleteness theorems that destroyed

the hope of a complete axiomatised system of mathe-

matics.(54) Gödel was able to generate statements of the form:

‘This sentence cannot be proved to be true’. If the statement is

in fact true, then it must also be true that it is unprovable. If the

statement is false, then it can be proved to be true, which is a

clear contradiction. For an excellent discussion on this topic,

the reader is referred to Hofstadter.(55)

In this essay, we have explored a path from philosophy to

real-life gene circuits, and provided a brief overview of network

motifs along the way. When faced with the liar paradox, Ludwig

Wittgenstein is attributed with saying that one can only laugh

because it resembles a joke. Clearly, he had a strange sense of

humour but perhaps one should indeed not take these

paradoxes too seriously. Nonetheless, as a final thought, I

would like to point out that if we state now that everything

presented in this paper is false, then we would have to be lying.
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