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Abstract

It is widely acknowledged that neural stem cells generate new neurons through the process of neurogenesis in

the adult brain. In mammals, adult neurogenesis occurs in two areas of the CNS: the subventricular zone and

the subgranular zone of the dentate gyrus of the hippocampus. The newly generated cells display neuronal

morphology, generate action potentials and receive functional synaptic inputs, their properties being equiva-

lent to those of mature neurons. Alzheimer’s disease (AD) is the widespread cause of dementia, and is an age-

related, progressive and irreversible neurodegenerative disease that results in massive neuronal death and dete-

rioration of cognitive functions. Here, we overview the relations between adult neurogenesis and AD, and try

to analyse the controversies in the field. We also summarise recent data obtained in the triple transgenic model

of AD that show time- and region-specific impairment of neurogenesis, which may account for the early

changes in synaptic plasticity and cognitive impairments that develop prior to gross neurodegenerative altera-

tions and that could underlie new rescue therapies.
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Neurogenesis in the CNS

In the second half of the 20th century, one of neurosci-

ence’s central tenets was the ‘no new neurons’ doctrine,

which was subsequently challenged experimentally and

overthrown. The ‘no new neurons’ doctrine assumed that

all neurons are generated (through the process generally

known as neurogenesis) exclusively during prenatal devel-

opment and early postnatal life; in an adult brain, neuro-

genesis was considered to be absent. This doctrine was

initially formulated by Santiago Ramón y Cajal, who wrote:

‘Once development was ended, the fonts of growth and

regeneration of the axons and dendrites dried up irrevoca-

bly. In adult centres, the nerve paths are something fixed

and immutable: everything may die, nothing may be regen-

erated. It is for the science of the future to change, if possi-

ble, this harsh decree’ (Cajal, 1913; Gross, 2000; Colucci-

D’Amato et al. 2006). In the 1960s and1970s, however, this

doctrine was reconsidered following the seminal discovery

of Joseph Altman (Altman, 1962; Altman & Das, 1965), who

found thymidine-H3-labelled neurons and neuroblasts in

the adult rat brain. This initial observation was subse-

quently confirmed at the ultrastructural level in the late

1970s (Kaplan & Hinds, 1977).

Adult neurogenesis is now generally acknowledged.

Numerous experiments have demonstrated that, in adult-

hood, neurogenesis operates mainly in two areas of the

mammalian CNS, in the anterior part of the subventricular

zone (SVZ) along the lateral ventricles, and in the sub-

granular zone (SGZ) of the dentate gyrus (DG) of the hippo-

campus (Cajal, 1913; Taupin & Gage, 2002; Abrous et al.

2005; Colucci-D’Amato et al. 2006). In both areas, neuro-

genesis progresses as a complex multi-stage process, which

starts with the proliferation of neural precursors residing in

the SVZ and the SGZ (Taupin & Gage, 2002; Abrous et al.

2005). These areas (also known as neurogenic niches) con-

tain multipotent neural stem cells (NSCs; Seaberg & van der

Kooy, 2002; Taupin & Gage, 2002). The NSCs that exhibit

slow self-renewal produce neural progenitor cells (NPCs)

with a faster dividing cell cycle, which ultimately differenti-

ate into neurons or neuroglia; the differentiation process is

regulated by numerous trophic factors (Lois & Alvarez-
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Buylla, 1993; Seaberg & van der Kooy, 2002; Abrous et al.

2005). Another important pool of neural precursor cells is

represented by astrocytes residing in the germinal centres

of the adult brain; these astrocytes retain the stem cell

properties throughout the life span, and are involved in

both neuro- and glio-genesis (see Doetsch et al. 1999; Alv-

arez-Buylla et al. 2001; Gotz & Huttner, 2005 and Mori et al.

2005 for review). In addition, astrocytes appear to regulate

the rate of proliferation of hippocampal stem cells, and

favour the generation of new neurons (Song et al. 2002).

Immature neurons generated in the SVZ migrate via the

rostral migratory stream to the olfactory bulb, where they

differentiate into local interneurons (Lledo & Gheusi, 2003).

Although many thousands of new neurons are born in the

SVZ and migrate into the olfactory bulb every day, only a

minority of them survive and acquire adult neuronal prop-

erties (Lois & Alvarez-Buylla, 1993; Seaberg & van der Kooy,

2002). A proportion of SVZ-derived neurons also migrate

radially into neocortical areas and the hippocampal forma-

tion (Gould et al. 1999; Abrous et al. 2005). Incidentally,

those cells may act as neuronal replacements after injury or

disease (Brandt & Storch, 2008).

For the hippocampus, it has also been estimated that sev-

eral thousands of new cells are generated in the SGZ daily

(Abrous et al. 2005). However, within several days after

their birth, and similarly to what happens in the SVZ, at

least half of the newborn cells die (Abrous et al. 2005). The

cells that remain alive differentiate mainly into DG granule

neurons and survive for months, passing through several

differentiation stages, and ultimately becoming immature

and mature granule cells within their specific location in

the DG granule cell layer (GCL; Abrous et al. 2005;

Fig. 1a,b). These newly generated neurons receive synaptic

inputs (Fig. 1c), extend axons along the mossy fibres tract

that pass through the hilus and exhibit electrophysiological

properties similar to those of mature dentate granule cells

(Paterson et al. 1973; Levison & Goldman, 1993). In addi-

tion, these newly generated neurons express the full com-

plement of ionotropic and metabotropic membrane

receptors (Kempermann & Gage, 1999). From a functional

point of view, CNS neurogenesis and, more specifically,

hippocampal neurogenesis, play an important role in struc-

tural plasticity and network maintenance. Therefore, it is

likely to contribute to information storage, as well as learn-

ing and memory processes (Paterson et al. 1973; Levison &

Goldman, 1993; Kempermann & Gage, 1999; Abrous et al.

2005).

Neurogenesis in Alzheimer’s disease (AD)

Alzheimer’s disease, described by the German neuropathol-

ogist Alois Alzheimer as ‘Dementia Praecox’ (Alzheimer,

1907) appears in both genetic (family AD) and sporadic

forms. AD, the widespread cause of dementia, is character-

ised by progressive neurodegeneration and the appearance

of specific histopathological markers represented by focal

extracellular deposits of fibrillar b-amyloid (also called

neuritic or senile plaques) in the brain parenchyma and in

the wall of blood vessels, and by the intraneuronal accumu-

lation of neurofibrillary tangles (NFT) formed as a result of

the abnormal hyperphosphorylation of cytoskeletal Tau

filaments (Selkoe, 2001). The initial neurodegenerative

events of AD appear in the transentorhinal cortex, and sub-

sequently spread to the entorhinal cortex and to the

hippocampus. At the later stages of the disease the neuro-

degenerative process disseminates through the temporal,

frontal and parietal lobes (Thompson et al. 2003, 2007). At

these late stages the grey matter also undergoes severe

atrophy manifested by a profound loss of neurons and syn-

aptic contacts (Scheff et al. 2006).

The hippocampus is affected early in AD. As described

above, the hippocampus is also one of only two neurogenic

niches of the adult brain (Taupin, 2006). Therefore, the

pathological process associated with AD is likely to impinge

a b c

Fig. 1 Neurogenesis in the hippocampus: neuronal formation, maturation and connectivity. (a) Brightfield micrograph showing the anatomical

divisions of the dorsal hippocampus including the DG, one of the adult brain neurogenic changes. (b) High-magnification detail of the GCL of the

hippocampal DG with a schematic cartoon illustrating the different phases from putative hippocampal stem cells (in the SGZ) to mature neurons,

passing by the previous stages of progenitors and immature neurons. (c) Electron micrograph illustrating the synaptic contacts established by tow

axon terminals (T1–T2) onto the newly-formed neurons within the molecular layer (Mol.L) of the DG onto two neighbouring dendritic spines (SP1–

SP2). DG, dentate gyrus; GCL, granule cell layer; M, mitochondria; S.Luc, stratum lucidum; S.Mol, stratum lacunosum molecular; S.Or, stratum

oriens; S.Pyr, stratum pyramidale; S.Rad, stratum radiatum; SVs, synaptic vesicles.
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upon neurogenesis. Impaired neurogenesis, in turn, can be

relevant for the disease progression arguably being

involved in the cognitive impairments linked with neuro-

degeneration (Haughey et al. 2002a; Seaberg & van der

Kooy, 2002; Jin et al. 2004a; Chevallier et al. 2005; Lopez-

Toledano & Shelanski, 2007; Verret et al. 2007; Rodrı́guez

et al. 2008, 2009; Zhao et al. 2008).

Neurogenesis in post mortem tissues and in animal

models of AD

Alzheimer’s disease, like every other form of dementia,

is unique to humans; no other creature acquires AD

(Toledano & Alvarez, 2004). Therefore, substantial efforts

have been invested in generating relevant animal models

of AD that reproduce various subsets of neuropathological,

behavioural and ⁄ or biochemical alterations resembling

those seen in human AD (Gotz et al. 2004; Cassel et al.

2008). The absence of a standard model makes it under-

standable, hence, that the data on neurogenesis arising

from analysis of a post mortem AD brain (Haughey et al.

2002b; Jin et al. 2004b) as well as various transgenic mouse

models of AD remain controversial.

The majority of studies performed on transgenic animals

expressing the mutant amyloid precursor protein (APP)

demonstrated decreased neurogenesis either in the DG or

in both the DG and the SVZ (Feng et al. 2001; Haughey

et al. 2002b; Wen et al. 2002; Wang et al. 2004; Donovan

et al. 2006; Wolf et al. 2006; Zhang et al. 2007). However,

in another study of APPSwe, Ind mutant transgenic mouse,

the enhanced neurogenesis linked to the presence of oligo-

meric Ab was described (Jin et al. 2004a; Chevallier et al.

2005; Lopez-Toledano & Shelanski, 2007). In transgenic mice

expressing various mutated presenilins, enhanced as well as

decreased neurogenesis was observed (Chevallier et al.

2005). Increased neurogenesis was also reported in the SVZ

of young APP ⁄ presenilin 1 (PS1) mice (these animals

expressed mutant APP and PS1). Similarly, an increase in

neurogenesis was observed following in vivo and in vitro

exposure to Ab1–42 (Sotthibundhu et al. 2009). Analysis of

post mortem brain tissues from humans clinically diagnosed

with AD revealed a reduction in progenitors in the SVZ

(Ziabreva et al. 2006), but an increase in progenitor cells in

the DG (Jin et al. 2004b).

Obviously, the changes in neurogenesis associated with

AD are complex and require further clarification, as all the

animal models studied exhibit only a reduced profile of AD

pathology; thus, it is unclear whether the observed varia-

tions in neurogenesis are dependent on genotype in these

studies (Wolf et al. 2006; Herring et al. 2009). Regarding

the data from post mortem human tissues, these are intrin-

sically controversial and ⁄ or difficult to interpret because the

post mortem material as a rule reflects the late stages of

the disease. In addition, artefacts and misinterpretations

can arise from post mortem delay, stage of the disease and

treatments provided (these factors occurring either in isola-

tion or combined). Furthermore, the discrepancies also

depend on the methods used for labelling proliferating

cells. For example, doublecortin labelling is known to iden-

tify both young and immature neurons (Chevallier et al.

2005; Verret et al. 2007). This alone may alter the interpre-

tation of the data because more than 50% of the newborn

cells die (Abrous et al. 2005). Labelling with 5-bromo-2¢-de-

oxyuridine (BrdU) also suffers from uncertainties because it

may not detect a distinct proliferative state, but instead

mark repaired DNA in post-mitotic neurons and ⁄ or in cells

entering an abortive cell cycle (Cooper-Kuhn & Kuhn, 2002;

Rakic, 2002).

Neurogenesis in a triple transgenic mouse model of

AD

Recently the triple transgenic mice model (3xTg-AD), which

harbours three mutant genes for APPSwe, for PS1M146V and

for tauP301L, was developed (Oddo et al. 2003a,b). These

mice show temporal and region-specific Ab and tau pathol-

ogy, which closely resembles that seen in the human AD

brain (Table 1). In addition, the 3xTg-AD animals show clear

functional and cognitive impairments, including reduced

LTP, as well as deficient spatial, long-term and contextual

memory (Oddo et al. 2003a,b). The pathological changes

start in the neocortex and expand towards the hippocam-

pus (from 6 and 12 months old, respectively, for plaques,

whereas NFTs start to be detectable from 12 months old;

Rodrı́guez et al. 2008; Fig. 2). The functional deficits pre-

cede the appearance of histological hallmarks (Oddo et al.

2003a,b) and correlate with the accumulation of intra-

neuronal Ab (Carroll et al. 2007; McKee et al. 2008;

Fig. 2d,e). Therefore, the 3xTg-AD model is most accurate

and relevant for studying the neurogenic and other path-

ological and physiological changes in AD, as even if there

are other double transgenic animal models, such as the

Tg2576xJNPL3 (APPSWE) mouse, and even if Tg2576 and

VLW mice (Lewis et al. 2001; Ribe et al. 2005) reproduce

plaques and NFTs (Table 1), they fail to completely mimic

disease evolution by not developing early behavioural

alterations and having ectopic (spinal cord) NFTs forma-

tion (Lewis et al. 2001), by not having plaques present

throughout the whole hippocampus, and by not having

long-lasting spatial memory deficits except at a very

advanced (over 16 months) age (Ribe et al. 2005).

In experiments on 3xTg-AD animals, we found impaired

neurogenic capabilities in both the SVZ and SGZ of the hip-

pocampal DG (Rodrı́guez et al. 2008, 2009). In both neuro-

genic niches, the SVZ and SGZ of the 3xTg-AD mice, a fair

number of newly generated cells can be detected with

different proliferation markers, such as BrdU, Ki67, PCNA

and HH3 (Abrous et al. 2005; Rodrı́guez et al. 2008, 2009;

Figs 3a–f and 4a,b,d). These newly-formed cells always show

the distinctive characteristics of proliferating cells, being
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Table 1 Neuropathology in the main AD animal models.

Lesion and transgenic mouse, rat and primate models Neuropathology Reference

Ageing Cholinergic involution

and amyloid deposition

Sani et al. (2003)

Fischer et al. (1992)

Michalek et al. (1989)

Electrolytic lesion Neuronal death Lescaudron and Stein (1999)

Vale-Martinez et al. (2002)

Unspecific toxins (NMDA, ibotenic acid,

quisalic acid, quinolic acid, colchicine,

alkaloids, alcohol)

Neuronal death Dunnett et al. (1991)

Winkler et al. (1998)

Boegman et al. (1985)

Shaughnessy et al. (1994)

Di Patre et al. (1989)

Arendt (1994)

Specific toxins (AF64A, 192Ig-G saporin) Cholinergic neuronal death Waite et al. (1995)

Chrobak et al. (1988)

Hanin (1996)

Wiley et al. (1991); Wiley (1992)

b-Amyloid Cholinergic dysfunction Giovannini et al. (2002)

Pavia et al. (2000)

PS1M146L Diffused plaques Blanchard et al. (2003)

APP751SL Plaques Blanchard et al. (2003)

APP ⁄ Ld ⁄ 2 Plaques Moechars et al. (1996)

APPSwe Plaques Eriksen and Janus (2007)

APP Swedish, 695.K670N M671L Plaques Sturchler-Pierrat et al. (1997)

APP751SL ⁄ PS1M146L Plaques Blanchard et al. (2003)

APPSWE ⁄ PS1dE9 Plaques Savonenko et al. (2005)

APPSwedish and PS1M146L Plaques Janus et al. (2000)

APP695SWE Plaques Hsiao et al. (1996)

APPV717F Plaques Dodart et al. (2000)

K670N ⁄ M671L and V717F Plaques Janus et al. (2000)

APP Swedish, 695.K670N-M671L and

Indiana V717F

Plaques Eriksen and Janus (2007)

TgAPPsw and PS1 M146L Plaques Takeuchi et al. (2000)

APPSwedish and V717F Plaques Chishti et al. (2001)

V337M Tangles Tanemura et al. (2002)

4R ⁄ 2N Tangles Tatebayashi et al. (2002)

TauP301L (4R,2-,3-) Tangles Lewis et al. (2000)

P301L Tangles Gotz et al. (2001)

TauP301L Tangles Arendash et al. (2004)

P301S ⁄ G272V Tangles Schindowski et al. (2006)

P301S Tangles Allen et al. (2002)

G272V, P301L, R406W Tangles Eriksen and Janus (2007)

Endogenous tau knocked out Tangles Andorfer et al. (2003)

P301L TET-off Tangles Ramsden et al. (2005)

7TauTg Tangles Ishihara et al. (2001)

Tg2576·JNPL3 (APPSWE) Plaques and tangles Lewis et al. (2001)

Tg2576 and VLW Plaques and tangles Ribe et al. (2005)

3xTg-AD Plaques and tangles Oddo et al. (2003b)

Tg478 None Flood et al. (2009)

Tg1116 None Flood et al. (2009)

K670M ⁄ N671L Plaques Kloskowska et al. (2010)

Tg478 ⁄ Tg1116 Plaques Flood et al. (2009)

NMDA, N-methyl-D-aspartic acid; AF64A, ethylcholine mustard aziridinium ion; 192 IgG Saporin, 12 clone monoclonal antibody to the nerve growth factor

receptor; APP, amyloid precursor protein; APP751SL, single transgenic mouse expressing APP751SL mutation; APP ⁄ Ld ⁄ 2, single transgenic mouse expressing

APP London V642I mutation; APPSwe, double transgenic mouse expressing APP Swedish 695.K670N-M671L mutations; APP Swedish 695.K670N ⁄ M671L,

double transgenic mouse expressing APP Swedish 695.K670N-M671L mutations; PS1M146L, single transgenic mouse expressing PS1M146L mutation;

APP751SL ⁄ PS1M146L, double transgenic mouse expressing APP751SL and PS1M146L mutations; APPSWE ⁄ PS1dE9, double transgenic mouse expressing APPswe

(KM 593 ⁄ 594 NL) and PS1dE9 mutations; APPSwedish and PS1M146L, double transgenic mouse expressing APP swe (K595N, M596L) and PS1 (A246E)

mutations; APP695SWE, double transgenic mouse expressing Swedish double mutations K670N ⁄ M671L; APPV717F, double transgenic mouse expressing

Swedish and Indiana (D664A) mutations; K670N ⁄ M671L and V717F, double transgenic mouse expressing APP Swedish K670N ⁄ M671L and V717F mutations;

K670N ⁄ M671L and Indiana V717F, double transgenic mouse expressing APP Swedish K670N ⁄ M671L and Indiana V717F mutations; TgAPPsw and PS1

M146L, double transgenic mouse expressing APP Swedish K670N ⁄ M671L and PS1M146L mutations; APPSwedish and V717F, double transgenic mouse

expressing APP Swedish (KM670 ⁄ 671NL) and V717F mutations; V337M, single transgenic mouse expressing human Tau V337M mutation; 4R ⁄ 2N, single

transgenic mouse expressing human Tau R406W mutation; TauP301L (4R,2-,3-), single transgenic mouse expressing tau P301L mutation; P301L, single

transgenic mouse expressing tau P301L mutation; G272V, P301L, R406W, triple transgenic mouse expressing G272V, P301L and R406W mutations; Htau,

mouse model with endogenous tau knocked out; P301L TET-off, single transgenic mouse model expressing P301L mutation regulated by tetracycline

responsive promoters; 7TauTg, single transgenic mouse model overexpressing tau protein without L neurofilament subunit; Tg2576·JNPL3, triple

transgenic mouse expressing APP Swedish (KM670 ⁄ 671NL), V717F and tau P301L mutations; Tg2576·VLW, triple transgenic mouse expressing APP Swedish

(KM670 ⁄ 671NL), V717F and triple tau (G272V, P301L and R406W) mutations; 3xTg-AD, triple transgenic mouse expressing APPSwedish, PS1M146L and

TauP301L; Tg478, single transgenic rat expressing APP Swedish K670N ⁄ M671L mutation; Tg1116, single transgenic rat expressing APP V717I mutation;

K670M ⁄ N671L, single transgenic rat expressing APP Swedish K670N ⁄ M671L mutation; Tg478 ⁄ Tg1116, double transgenic rat expressing APP Swedish

K670N ⁄ M671L and V717I mutations; Tg478 ⁄ Tg1116 ⁄ Tg11587, triple transgenic rat expressing APP Swedish K670N ⁄ M671L, V717I and PS-1 M146V

mutations.
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mainly localized in the inferior part of the GCL and demon-

strating typical morphology such as irregular shape and

small size (Figs 1b, 3a–f and 4a,b,d). Sometimes they tend

to appear close together and ⁄ or form clusters (Abrous et al.

2005; Rodrı́guez et al. 2008, 2009), which rarely co-localize

with glial fibrillary acidic protein (GFAP; the main glial cyto-

skeletal component; < 5%; Rodrı́guez et al. 2008, 2009;

Figs 3c–f and 4d).

In the GCL of the hippocampal DG of 3xTg-AD mice (as in

normal aging; Kuhn et al. 1997; Abrous et al. 2005), the

rate of neurogenesis starts to decrease from the age of

6 months (over 50% reduction when compared with early

ages such as 2 months) and decreases further at later ages

(Fig. 3g,h), affecting more females than males (Rodrı́guez

et al. 2008). The age-dependent decrease in neurogenesis,

however, is much more prominent in the 3xTg-AD mice

when compared with the controls. From 9 to 12 months

old, both genders retained very little capacity of forming

new cells within the GCL; in non-Tg control animals the

neurogenic levels that account approximately for a 20–35%

of the young age levels were still preserved (Fig. 3g,h). A

significant decrease in neurogenesis was also observed in

the SVZ during normal aging, but at a lower level ranging

between 19% and 31% (Rodrı́guez et al. 2009; Fig. 4a–c).

The 3xTg-AD when compared with normal animals pre-

sented a further 40% decrease (Fig. 4c), that appears as

early as 3 months old, and is sustained through later ages

(Rodrı́guez et al. 2009).

Our results are in agreement with the majority of

data obtained from APP mutant animals (Feng et al. 2001;

a

d e

c

b

Fig. 2 Brightfield micrographs showing the presence of b-amyloid within the pyramidal neurons of CA1 as well as the presence of a plaque in

12 months 3xTg-AD mice (b) compared with a non-Tg control animal (a). (c) We can see the accumulation phosphorylated Tau within the CA1 of

3xTg-AD mice. (d,e) Linear correlations between the mean number of cells containing b-amyloid in the hippocampal CA1 and the mean area

density of HH3-positive cells in the GCL of the DG of male (d) and female (e) 3xTg-AD mice. S.Mol, stratum lacunosum molecular; S.Or, stratum

oriens; S.Pyr, stratum pyramidale; S.Rad, stratum radiatum. Modified from Rodrı́guez et al. (2008) with permission.
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Haughey et al. 2002b; Wen et al. 2002; Wang et al. 2004; Dono-

van et al. 2006; Wolf et al. 2006; Zhang et al. 2007), and

have recently been confirmed and expanded by showing a

generalised decrease not only in proliferating cells but also

in early neuronal progenitors and neuroblasts (Hamilton

et al. 2010). All in all, these data suggest that the process of

impaired neuronal proliferation and ⁄ or its deregulation can

be not only a consequence of the disease but may represent

a cause for the cognitive alterations associated with AD.

Studies in the 3xTg-AD model also demonstrated that

female mice are affected earlier than males (4 vs. 9 months

old; Fig. 3g,h; Rodrı́guez et al. 2008). These findings are not

only in line with the recently reported sexual dimorphism

observed in cognitive performances (Clinton et al. 2007),

but also correlate to the well-known fact that AD affects

women earlier and with more severity than men (Baum,

2005; Webber et al. 2005). Several lines of evidence suggest

that this difference, even with a potential similar disruption

mechanism, might be exacerbated by the circulating levels

of oestrogens (Manly et al. 2000; Baum, 2005; Webber et al.

2005) as a result of the endocrine status (Galea et al. 2006).

However, the exact mechanism by which neurogenesis is

affected during the progression of AD needs to be fully

understood and ultimately discovered. Recent evidence

a b

c d

e f

g h

Fig. 3 (a–d) Photomicrographs showing phosphorylated HH3 (a proliferating mitotic marker) within the DG of non-Tg mice. (a,b) Single labelling

of HH3-positive cells (arrows) in the DG of 2 (a) and 12 months (b) non-Tg mice. (c,d) Dual labelling of HH3-positive cells (arrows) and glial cells

(GFAP, blue) in the DG of 2 (c) and 12 months (d) non-Tg mice. Brightfield micrographs showing HH3-labelled cells within the DG of 3xTg-AD.

(e,f) Dual labelling of HH3-positive cells (arrows) and glial cells (GFAP, red) in the DG of 2 (e) and 12 months (f) 3xTg-AD mice. (g,h) Bar graphs

showing the mean area density HH3-labelled cells within the GCL of the dorsal DG of both 3xTg-AD and control non-Tg-AD mice males (g) and

females (h). Asterisks indicate a significant difference in the means. GCL, granule cell layer; Mol.L, molecular layer. Modified from Rodrı́guez et al.

(2008) with permission.
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indicates several potential systems as shown in the APP and

in the 3xTg-AD models (Crews & Masliah, 2010; Crews et al.

2010; Hamilton et al. 2010). The potential mechanisms

include the following. (i) Abnormal activation of the p35 cy-

clin-dependent kinase-5 (CDK5), which becomes hyperactive

during the progression of AD as a result of Ab accumulation

and plaque formation. Abnormal activity of CDK5 may

cause physiological alterations in NPCs, impair or even arrest

neuroblast migration, and trigger aberrant synaptic plastic-

ity (Ohshima et al. 1996; Chae et al. 1997; Fischer et al.

2005; Johansson et al. 2005; Hirota et al. 2007; Jessberger

et al. 2008; Lagace et al. 2008; Crews & Masliah, 2010). (ii)

Altered metabolism in NPCs as shown by abnormal accumu-

lation of lipid droplets in the SVZ, which is directly linked

with the ApoE4 risk genetic factor (Hamilton et al. 2010).

(iii) Parallel abnormal Tau hyperphosphorylation in adjacent

SVZ striatal neurons and in DG hilar neurons, which may

impair the maturation and network connectivity of newly-

formed cells (Kippin et al. 2005; Tozuka et al. 2005; Ge et al.

2006, 2007; Liu et al. 2006; Hamilton et al. 2010).

Neurogenesis modulation: a potential
therapeutic approach to AD

The changes in the neurogenesis observed during the initial

stages and progression of AD suggest that a potential

enhancement and ⁄ or potentiation of the new production

of neurons in neurogenic sites may represent a valid thera-

peutic strategy to halt and ⁄ or delay the cognitive and mne-

sic alterations associated with the disease. Therefore,

interventions preserving neurogenesis could be helpful. For

example, increased physical ⁄ cognitive activity is associated

with reduced risk of AD (Wang et al. 2002; Benedetti et al.

2008). Longitudinal studies suggest that regular physical

activity and a higher educational level may help prevent

the development of dementia (Costa et al. 2007; Mohajeri

& Leuba, 2009). Voluntary running (RUN) and environmen-

tal enrichment (ENR) housing environments in rodents have

been used to reproduce the physical and cognitive ‘active’

lifestyle in humans (Cracchiolo et al. 2007; Wood et al.

2010). Exposure to either RUN or ENR enhanced memory in

normal rodents (Nilsson et al. 1999; van Praag et al. 1999;

Kempermann et al. 2002), and in neuropathologically

incomplete transgenic mouse models of AD (Adlard et al.

2005; Lazarov et al. 2005; Costa et al. 2007; Nichol et al.

2007, 2009), as well as increasing hippocampal neurogenesis

(Wen et al. 2004; Lazarov et al. 2005; Wolf et al. 2006; Cat-

low et al. 2009; Herring et al. 2009). Furthermore, we have

recently demonstrated that in the 3xTg-AD mice, environ-

mental enrichment (6 month exposure) not only increased

the neurogenesis rate, but in fact recovered it to the normal

values observed in age-matched controls at 9 months old

(J.J. Rodrı́guez, H.N. Noristani, M. Olabarria, J. Fletcher,

T.D.D. Somerville, C.Y. Yeh, A. Verkhratsky, submitted).

Treatments with antidepressants and 5-HT receptor agon-

ists also have been shown to increase neurogenesis rate and

a b

c d

Fig. 4 Brightfield micrographs showing phosphorylated HH3 (a proliferating mitotic marker) within the SVZ of both non-Tg and 3xTg-AD mice.

(a,b) Single labelling of HH3-positive cells in the SVZ of 3 months non-Tg (a) and 3 months 3xTg-AD mice (b). (c) Bar graphs showing the mean

area density of HH3-labelled cells within the SVZ of both control non-Tg and 3xTg-AD mice. Asterisks indicate a significant difference in the

means. (d) Photomicrograph showing one of the few examples of co-localisation (marked by red circle) of HH3-positive cells (arrows) and glial cells

(GFAP, blue ⁄ black; asterisks) in the SVZ of a 6 months non-Tg mouse, as the majority of proliferating cells did not have glial phenotype. CC,

corpus callosum; CPU, caudate putamen nucleus; LV, lateral ventricles; SVZ, subventricular zone. Modified from Rodrı́guez et al. (2009) with

permission.
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brain-derived neurotrophic factor production, which in

parallel increased the survival of the newly-formed neurons

(Santarelli et al. 2003). This 5-HT facilitation of neurogenesis

agrees with our recent findings of serotonin fibre sprouting

at late ages (12–18 months) when neurogenesis in the

3xTg-AD model is almost absent (Noristani et al. 2010).

Finally, there is preliminary evidence of neurosphere neuro-

protection increase in neuronal survival, which can directly

affect neurons in the newborn through an immunomodula-

tory mechanism (Pluchino et al. 2005).

Conclusions

Here we provide compelling evidence for the impairment

of cell proliferation and neurogenesis in both neurogenic

niches of the adult brain, the SVZ and the SGZ of the hip-

pocampal DG, during the progression of AD. Both neuro-

genic areas are involved in the supply of new neurons to

the neocortex and hippocampus, two of the brain regions

primarily affected by AD (Haughey et al. 2002a; Brandt &

Storch, 2008; Sotthibundhu et al. 2009). The degree of

impaired neurogenesis increases with age, and is more pro-

nounced in females. This latter finding is in agreement

with the disease prevalence and appears early in the SVZ

suggesting a differential effect on neurogenic regions,

which can be a reflection of the different role and final

circuit incorporation of the newly-formed cells (neocortex

vs. hippocampus). Without doubt, the regulation of endo-

genous neurogenesis is a major target in the development

of future treatments for neurodegenerative disorders,

including AD. Although these neurogenic therapies theo-

retically have the potential to halt or even reverse cognitive

decline, further understanding of the factors regulating

neurogenesis in AD may prove invaluable for the develop-

ment of these future treatments.
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